
© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

University Of Bristol
School of Computer Science
https://www.cs.bris.ac.uk

Computer Architecture (COMS10015)

Assessed coursework assignment
Encrypt

Note that:

1. This coursework assignment has a 30 percent weighting, i.e., it represents 30 percent of Credit Points

(CPs) associated with COMS10015, and is assessed on an individual basis. The submission deadline

is 27/11/25.

2. Before you start work, ensure you are aware of and adhere to various regulations
a

which govern

coursework-based assessment: pertinent examples include those related to academic integrity.

3. There are numerous support resources available, for example:

• via the unit forum, where you can get help and feedback via 𝑛-to-𝑚, collective discussion,

• via any lab. and/or drop-in slot(s), where you can get help and feedback via 1-to-1, personal

discussion, or

• via the staff responsible for this coursework assignment: although the above are often preferable, you

can make contact in-person or online (e.g., via email).

a
See both the formal regulations at https://www.bristol.ac.uk/academic-quality/assessment/codeonline.html, and

also the less formal advice at https://www.bristol.ac.uk/students/support/academic-advice.

git # b282dbb9 @ 2025-09-03 1

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://www.cs.bris.ac.uk
https://www.bristol.ac.uk/academic-quality/assessment/codeonline.html
https://www.bristol.ac.uk/students/support/academic-advice

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

1 Introduction
Imagine that two parties 𝒜 and ℬ engage in communication with each other over a public network (e.g., the

Internet): a concrete example could be where they represent a web-browser and web-server respectively. Since the

𝑛𝑏-bit messages they communicate will potentially contain security-critical (e.g., identity-, location-, medical-, or

finance-related) information, it is important to prevent a third-party ℰ having access to them. Assuming 𝒜 and ℬ
have agreed on some 𝑛𝑘-bit key 𝑘 before they start communicating, having them use a block cipher1 to encrypt and

decrypt messages would be one approach to satisfying their requirement for secrecy. The idea is that 𝒜 encrypts

a plaintext message 𝑚 to form the ciphertext message 𝑐 = Enc(𝑘, 𝑚) which is sent to ℬ. Then, ℬ decrypts the

ciphertext message by computing 𝑚′ = Dec(𝑘, 𝑐) and thereby recovers the same plaintext message, i.e., 𝑚′ = 𝑚.
This approach is effective because Enc and Dec are carefully designed so that 1) they act as each others inverse

under 𝑘, and 2) security depends on 𝑘 alone, not on knowledge of Enc and Dec: even if an attacker ℰ intercepts 𝑐,
they cannot easily recover 𝑚 without also knowing 𝑘.

A given block cipher design specifies the algorithms Enc and Dec and associated parameters, e.g., 𝑛𝑘 and

𝑛𝑏 ; numerous such designs exist, the de facto choice being the Advanced Encryption Standard (AES) [1]. AES

replaced the Data Encryption Standard (DES) [2], standardised in the 1970𝑠. DES is less efficient in software than

AES, which should be no surprise: it was designed in an era when block ciphers were more often implemented in

hardware, and uses “hardware friendly” components as a result.

2 Terms and conditions
• The assignment description may refer to the ASCII text file question.txt, or more generally “the marksheet”:

complete and include this file in your submission. This is important, in the sense that 1) it offers you clarity with

respect to the assessment process, e.g., via a marking scheme, and 2) it offers us useful (meta-)information about

your submission. Keep in mind that

– if separate assessment units exist, they may have different assessment criteria and so marking scheme,

– the section related to citation of third-party resources includes use of AI: per the University2 and Faculty3

guidance, you should “you should describe and cite your usage [of AI] and quote output [produced by AI] appropriately

in your work”.

• Certain aspects of the assignment have a (potentially large) design space of possible approaches. Where there

is some debate about the correct or “best” approach, the assignment demands you make an informed decision

yourself: it is therefore not (purely) a programming exercise such that blindly implementing an approach will

be enough. Such decisions should ideally be based on a reasoned argument formed via your own background

research (versus relying exclusively on taught content), and clearly documented (e.g., using the marksheet).

• The assignment design includes some heavily supported, closed initial stages which reflect a lower mark, and

some mostly unsupported, open later stages which reflects a higher mark. This suggests the marking scale is

non-linear: it is clearly easier to obtain 𝑋 marks in the initial stages than in the final stage. The term open (resp.

closed) should be understood as meaning flexibility with respect to options for work, not non-specificity with

respect to workload: each stage has a clear success criteria that limit the functionality you implement, meaning

you can (and should) stop work once they have been satisfied.

• In some, specific instances the required style of Verilog will be dictated by the assignment. If no such requirement

exists, however, you can select whatever style is appropriate: gate-, RTL-, and behavioural-level Verilog styles

are all viable in general. However, whatever style you select, you must consider how your solution relates to

real hardware versus purely whether or not it functions correctly in simulation.

• You should submit your work into the correct component via

https://www.ole.bris.ac.uk

Include any 1) source code files, 2) text or PDF files, (e.g., documentation) and 3) auxiliary files (e.g., example

output), either as required or that you feel are relevant. Keep in mind the following points:

– If separate teaching and assessment units exist, you should submit via the latter not the former.

– Make sure you have actually made a submission, rather than saved a draft ready for submission; ensure said

submission matches what you expect, e.g., by (re)downloading and checking the content.

– Your last submission will be the one assessed, meaning, e.g., you cannot partially or entirely “roll-back” to

some earlier submission.

1https://en.wikipedia.org/wiki/Block_cipher
2https://www.bristol.ac.uk/students/support/academic-advice/academic-integrity
3https://www.ole.bris.ac.uk/bbcswebdav/pid-8241705-dt-content-rid-48627612_3/xid-48627612_3

git # b282dbb9 @ 2025-09-03 2

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://www.ole.bris.ac.uk
https://en.wikipedia.org/wiki/Block_cipher
https://www.bristol.ac.uk/students/support/academic-advice/academic-integrity
https://www.ole.bris.ac.uk/bbcswebdav/pid-8241705-dt-content-rid-48627612_3/xid-48627612_3

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

• To make the submission process easier, the recommended approach is to develop your solution within the same

directory structure as the material provided. This will allow you to first create then submit a single archive (e.g.,

solution.zip using zip, or solution.tar.gz using tar and gzip) of your entire solution, rather than multiple

separate files.

• Any implementations produced as part of the assignment will be assessed using a platform equivalent to the

MVB Linux lab(s). (e.g., MVB-1.15 or MVB-2.11). As such, they must compile, execute, and be thoroughly tested

using both the operating system and development tool-chain versions available by default.

• Although you can definitely expect to receive a partial mark for a partial solution, it will be assessed as is. This

means 1) there will be no effort to enable either optional or commented functionality (e.g., by uncommenting

it, or via specification of compile-time or run-time parameters), and 2) submitting multiple variant solutions is

strongly discouraged, but would be dealt with by considering the variant which yields the highest single mark.

3 Description

3.1 Material
Download and unarchive the file

https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/cw/Encrypt/question.tar.gz

somewhere secure in your file system: from here on, we assume ${ARCHIVE} denotes a path to the resulting,

unarchived content illustrated by Figure 1. In particular, you should find

• question.txt†, the marksheet mentioned in the assessment terms and conditions,

• Makefile, a GNU make based build system described in more detail by Appendix C.

• params.h, a header file that provides a symbolic definition of parameters such as 𝑛𝑘 , 𝑛𝑏 , and 𝑛𝑟 ,

• vectors_k.txt, vectors_m.txt and vectors_c.txt, ASCII text files representing the test vectors described in

more detail by Appendix D,

• encrypt_comb.v†, encrypt_iter.v†, and encrypt_pipe.v†, incomplete implementations of modules called

encrypt_comb, encrypt_iter, and encrypt_pipe,

• clr_28bit.v†, an incomplete implementation of a module called clr_28bit,

• key_schedule.v†, an incomplete implementation of a module called key_schedule,

• round.v†, an incomplete implementation of a module called round,

• util.v, a set of pre-defined support modules including

– split_0, split_1, and split_2, modules that split a single input into multiple outputs,

– merge_0, merge_1, and merge_2, modules that merge multiple inputs into a single output,

– perm_IP, perm_FP, perm_E, perm_P, perm_PC1, and perm_PC2, implementations of the DES permutations, and

– sbox_0 through to sbox_7, implementations of the DES S-boxes.

plus a set of test stimuli: for a module X as defined in X.v, the corresponding test stimulus is X_test as defined in

X_test.v. Viewed at face value, that is a lot of files! However, it is vital to understand that you can complete the

assignment by altering only those files marked with a † symbol. Because you do not need to, you should not alter

any other files: if you do, those alterations will be reverted before (and so therefore ignored during) the marking

process.

3.2 Overview
Consider an example scenario, where you join the development team for a device 𝒯 ; to address the challenge

of secure communication, 𝒯 integrates and makes use of a hardware implementation of DES. This assignment

models aspects of the scenario outlined above, using Verilog as a vehicle to do so. More specifically, it tasks you

with implementing the Enc algorithm for DES in Verilog. Remember that, in essence, Verilog simply offers a neat

way to express and experiment with (i.e., simulate) a design you could also write down on paper and reason

about in theory: a sensible strategy throughout is to establish understanding “on paper” before then applying it

“in practice” (e.g., via source code).

Selection of DES4 implies 𝑛𝑘 = 64 and 𝑛𝑏 = 64, meaning a 64-bit cipher key 𝑘 is used to encrypt a 64-bit plaintext

message 𝑚 into a 64-bit ciphertext message 𝑐. DES is an iterative block cipher, meaning that a full encryption

4An accessible introduction to DES is provided by https://en.wikipedia.org/wiki/Data_Encryption_Standard for example. Keep in

mind, however, that various technical details relating to DES are out of scope given the task at hand: where that is the case, we simply ignore

git # b282dbb9 @ 2025-09-03 3

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/cw/Encrypt/question.tar.gz
https://en.wikipedia.org/wiki/Data_Encryption_Standard

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

${ARCHIVE}

question.txt

Makefile
params.h
vectors_k.txt
vectors_m.txt
vectors_c.txt
encrypt_comb.v
encrypt_comb_test.v
encrypt_iter.v
encrypt_iter_test.v
encrypt_pipe.v
encrypt_pipe_test.v

clr_28bit.v
clr_28bit_test.v
key_schedule.v
key_schedule_test.v
round.v
round_test.v

util.v

Figure 1: A diagrammatic description of the material in question.tar.gz.

operation involves successively applying partial encryption rounds (or steps): Figure 2 illustrates this using a

block diagram, noting that a total of 𝑛𝑟 = 16 rounds (numbered 0 to 15 inclusive) are followed (resp. preceded) by

a post-processing (resp. pre-processing) step.

3.3 Detail
Stage 1. The goal of this stage is to implement modules that, when combined, act to support some 𝑖-th round of

encryption. The idea is that by using these modules, the subsequent stages can then explore different

implementation strategies for a full encryption operation.

(a) The clr_28bit module implements what can be described as a “controlled” left-rotate operation:

given a 28-bit x and 4-bit y as input, it computes

r = x≪ 𝑓 (y)

as output, where

𝑓 (y) =
{

1 if y ∈ {0, 1, 8, 15}
2 otherwise

Put another way, it left-rotates x by either 1 or 2 bits depending on y.

Complete the module implementation, using Appendix D to verify (as far as possible) that it functions

as expected: your implementation should express 𝑓 as a (set of) Boolean expressions, e.g., using a

gate-level Verilog style.

(b) With reference to Figure 2, the key_schedulemodule implements some 𝑖-th round of the key schedule:

the required implementation is described in a diagrammatic form by Figure 3.

Complete the module implementation, using Appendix D to verify (as far as possible) that it functions

as expected.

(c) With reference to Figure 2, the roundmodule implements some 𝑖-th round of encryption: the required

implementation is described in a diagrammatic form by Figure 4.

Complete the module implementation, using Appendix D to verify (as far as possible) that it functions

as expected.

Stage 2. The encrypt_combmodule accepts

• a 64-bit value called k, a cipher key, and

• a 64-bit value called m, a plaintext message,

as input, and produces

• a 64-bit value called c, a ciphertext message,

as output: as such, it computes a full encryption operation.

them. For example, note that DES represents a specific instance of a more general block cipher design principle, i.e., a Feistel network. Also

note that only 56 of the 64 bits in 𝑘 are actually used for encryption; the others are discarded after inclusion in a parity check.

git # b282dbb9 @ 2025-09-03 4

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

round

round

· · ·

round

key_schedule

key_schedule

· · ·

key_schedule

split_2

perm_IP

merge_2

perm_FP

perm_PC1

64-bit x

k

64-bit x

m

64-bit r

c

32-bit xr32-bit xl

32-bit rr32-bit rl

32-bit rr

32-bit xr

32-bit rl

32-bit xl

32-bit r0

32-bit xr

32-bit r1

32-bit xl

64-bit r

64-bit x

64-bit r

64-bit x

32-bit r0

32-bit x1

32-bit r1

32-bit x0

56-bit r

56-bit x

56-bit r

56-bit x

56-bit r

56-bit x

48
-b

it
k

48
-b

it
k

48
-b

it
k

48
-b

it
k

48
-b

it
k

48
-b

it
k

4-
bi

ti 4'b0000

4-
bi

ti 4'b0001

4-
bi

ti 4'b1111

0-th round

1-st round

(nr − 1)-th round

Pre-processing

Post-processing

Figure 2: A block diagram illustrating a full encryption operation using DES, i.e., computation of c = Enc(k, m).

git # b282dbb9 @ 2025-09-03 5

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

split_0

clr_28bit clr_28bit

merge_0

perm_PC2

28-bit x

28-bit r1

28-bit x

28-bit r0

28-bit r

28-bit x1

28-bit r

28-bit x0

56-bit x

x

48-bit r

k

56-bit r

56-bit x

r

i

4-
bi

ty

4-
bi

ty

Figure 3: The key_schedule module, as used to form the 𝑖-th round of DES.

git # b282dbb9 @ 2025-09-03 6

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

perm_E

⊕

split_1

merge_1

perm_P

⊕

sbox_0sbox_1· · ·sbox_7

48-bit r

48-bit x

6-bit x

6-bit r0

4-bit r

4-bit x0

6-bit x

6-bit r1

4-bit r

4-bit x1

6-bit x

6-bit r7

4-bit r

4-bit x7

32-bit r

32-bit x

32-bit r

rr

k

32-bit x

xrxl

rl

Figure 4: The round module, as used to form the 𝑖-th round of DES.

git # b282dbb9 @ 2025-09-03 7

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

The goal of this stage is to implement the encrypt_combmodule, using a combinatorial design strategy

which replicates Figure 2 in a fairly direct manner. Adopting this strategy trades-off higher area (since 𝑛𝑟

rounds are instantiated) in favour of lower latency (since the number of clock cycles for each encryption

is 1), in relative terms, and makes the resulting implementation easier to use: the output is computed

continuously from the input.

Complete the module implementation, using Appendix D to verify (as far as possible) that it functions

as expected.

Stage 3. The encrypt_iter module has an interface matching that of encrypt_comb except for some additional

inputs and outputs, namely

• a 1-bit value called clk, a clock signal,

• a 1-bit value called rst, a reset signal,

• a 1-bit value called req, a request signal, and

• a 1-bit value called ack, an acknowledge signal,

and also computes a full encryption operation.

The goal of this stage is to implement the encrypt_iter module, using a different, iterative design

strategy. Adopting this strategy trades-off higher latency (since the number of clock cycles for each

encryption is ∼ 𝑛𝑟), in favour of lower area (since 1 round is instantiated), in relative terms, and makes

the resulting implementation harder to use: a control protocol outlined by Appendix A must be followed

to provide input and accept output correctly.

Complete the module implementation, using Appendix D to verify (as far as possible) that it functions

as expected.

Advice. The natural way to design and implement the control protocol is by treating it as a Finite State

Machine (FSM). More so than other stages, it is important to explain the design of said FSM: use either

question.txt and/or comments in your source code to do so.

Advice. Until you implement the module, simulating it will “hang” as a result of incorrect interaction

with the test stimulus. In more detail, the test stimulus follows the control protocol and hence waits for the

module to set ack to 1 at the end of computation: ack is not updated by the incomplete implementation,

so the test stimulus ends up waiting forever.

Stage 4. The encrypt_pipe module has an interface matching that of encrypt_comb except for some additional

inputs and outputs, namely

• a 1-bit value called clk, a clock signal, and

• a 1-bit value called rst, a reset signal,

and also computes a full encryption operation.

The goal of this stage is to implement the encrypt_pipe module, using a different, pipelined design

strategy which delivers a different trade-off: this strategy focuses on maximising throughput, rather

than minimising latency (as with encrypt_comb) or area (as with encrypt_iter). Note that a control

protocol outlined by Appendix B must be followed to provide input and accept output correctly.

Complete the module implementation, using Appendix D to verify (as far as possible) that it functions

as expected.

Advice. Before investing significant effort in design or implementation tasks, it is crucial you first

conduct some background research in order to understand the concept of pipelining.

Advice. In general, the number of pipeline stages represents a parameter for which a concrete value

must be selected. Here, however, the assumption is that a fully pipelined design strategy is employed.

This implies 1) there are 𝑛𝑟 pipeline stages, so 2) computation of an output from the associate inputs has

an 𝑛𝑟 clock cycle latency.

git # b282dbb9 @ 2025-09-03 8

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

References
[1] Advanced Encryption Standard (AES). National Institute of Standards and Technology (NIST) Federal Informa-

tion Processing Standard (FIPS) 197. 2001. url: https://doi.org/10.6028/NIST.FIPS.197 (see p. 2).

[2] Data Encryption Standard (DES). National Institute of Standards and Technology (NIST) Federal Information

Processing Standard (FIPS) 46-3. 1999 (see p. 2).

git # b282dbb9 @ 2025-09-03 9

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://doi.org/10.6028/NIST.FIPS.197

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

A Control protocol for the iterative design strategy

A.1 Problem
The iterative design strategy requires an understanding of how the module (i.e., encrypt_iter) and the user of

said module (e.g., the test stimulus encrypt_iter_test) interact. Two underlying problems exist, namely 1) the

module does not know know when to start computation (i.e., when input is available), and 2) the user does not

know know when computation has finished (i.e., when output is available).

The solution of both problems is for both parties to follow a protocol: this is based on use of the request

signal req and acknowledge signal ack, and driven by (positive edges of) the clock signal clk. You could frame

interaction between the module and user as communication between (i.e., of input and output to and from) them,

and so a “conversation” controlled (or structured) by the protocol: the rules of said protocol essentially mean, e.g.,

one party cannot be “confused” as a result of communication by the other.

A.2 Protocol
Based on the following diagrammatic example

clk

rst

req

ack

t0 t1 t3 t4 t5
t2

the (intentionally simple) protocol can be explained as follows, noting the initial toggling of rst from 0 to 1 and

back again signals a reset (e.g., of any registers to an initial state):

• At some positive edge on clk (labelled 𝑡0), both req and ack are initially 0.

• At some positive edge on clk (labelled 𝑡1), the user wants the module start a computation. It proceeds by 1)

driving values onto any inputs (i.e., k and m), then 2) changing req from 0 to 1.

• The module notices the change to (e.g., positive edge on) req, and concludes that the inputs are available. Note

that, in general, it would need to store the inputs ready for subsequent use. The reason for storing them internally

within the module stems from a need to be pessimistic: the module must pessimistically assume any externally

provided input may be changed during computation which uses them. However, given the assignment remit,

we relax the requirement to do so by guaranteeing all inputs are stable throughout the computation (i.e., they

will not change until the computation is complete, so there is no need to store them internally).

• During some period (labelled 𝑡2), the module computes the outputs from the inputs using clk to trigger each

constituent step; during this period, the user is essentially waiting for the computation to finish.

• At some positive edge on clk (labelled 𝑡3), the module finishes the computation. It proceeds by 1) driving values

onto any outputs (i.e., c), then 2) changing ack from 0 to 1.

• The user notices the change to (e.g., positive edge on) ack, and concludes that the outputs are available. It

proceeds by 1) storing any outputs ready for subsequent use, then 2) changing req from 1 to 0.

• The module notices the change to (e.g., negative edge on) req, and concludes that the interaction is finished. It

proceeds by changing ack from 1 to 0.

• The user notices the change to (e.g., negative edge on) ack and concludes that the interaction is finished.

• Since both req and ack are 0 again, the module and user are ready to engage in successive interactions if/when

need be.

git # b282dbb9 @ 2025-09-03 10

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

B Control protocol for the pipelined design strategy

B.1 Problem
In the same way as described in Chapter A, the pipelined design strategy requires careful control (or structure)

with respect to interaction between the module and user; this is realised by having them adhere to a protocol.

Similar underlying problems exist, but they now stem from the fact that, at a given instant, a pipeline with

𝑛𝑟 stages could be described as simultaneously processing 𝑛𝑟 independent computations, each of which is at a

different stage of completeness i.e., less (resp. more) complete within initial (resp. latter) stages. This description

implies a need to control what the pipeline does, and when it does it, that that, e.g., inputs and outputs are accepted

and produced correctly, and computations of one from the other progresses correctly.

B.2 Protocol
Based on the following diagrammatic example

clk

rst

t0 t1

i
=

0
in

pu
ta

cc
ep

te
d

i
=

1
in

pu
ta

cc
ep

te
d

i
=

2
in

pu
ta

cc
ep

te
d

i
=

0
ou

tp
ut

pr
od

uc
ed

i
=

1
ou

tp
ut

pr
od

uc
ed

i
=

2
ou

tp
ut

pr
od

uc
ed

cl
oc

k
cy

cl
e

1
i
=

0
in

pu
tp

ro
ce

ss
ed

by
ro

un
d

0
pi

pe
lin

e
st

ag
e

cl
oc

k
cy

cl
e

2
i
=

0
in

pu
tp

ro
ce

ss
ed

by
ro

un
d

1
pi

pe
lin

e
st

ag
e

cl
oc

k
cy

cl
e

3
i
=

0
in

pu
tp

ro
ce

ss
ed

by
ro

un
d

2
pi

pe
lin

e
st

ag
e

cl
oc

k
cy

cl
e

n r
−

1
i
=

0
in

pu
tp

ro
ce

ss
ed

by
ro

un
d

n r
−

2
pi

pe
lin

e
st

ag
e

cl
oc

k
cy

cl
e

n r
i
=

0
in

pu
tp

ro
ce

ss
ed

by
ro

un
d

n r
−

1
pi

pe
lin

e
st

ag
e

the (intentionally simple) protocol can be explained as follows, noting the initial toggling of rst from 0 to 1 and

back again signals a reset (e.g., of any registers to an initial state): at every positive edge on clk,

• the module accepts input (i.e., k and m) from the user and

• the user accepts output (i.e., c) from the module.

Despite being (or perhaps because it is) so simple, several subtle but important points need to be considered: these

points are reflected by the test stimulus, but warrant discussion and explanation. First, the output associated

with a specific input will be spaced 𝑛𝑟 clock cycles apart; this fact stems from the number of stages in and hence

computational latency of the pipeline. Second, the output will be invalid in some clock cycles; this fact stems from

it not corresponding to any value associated input. For example, the 0-th input is provided to the pipeline on

the clock edge labelled 𝑡0. On the clock edge labelled 𝑡1, that input have only been processed by 1 pipeline stage:

this means the associated output is not ready, and so what the pipeline produces is therefore is invalid (because

no input has been fully processed at that instant). Third, clk is now the only form of synchronisation between

the module and user: in contrast to Chapter A, for example, req and ack no longer exist. This places a stricter

constraint on both the module and user, in the sense that the input (resp. output) must be ready at the required

positive edge on clk (because there is no way to wait, e.g., if the input (resp. output) is not ready).

git # b282dbb9 @ 2025-09-03 11

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

C Developing your solution

C.1 Workflow
To use the content provided, and thus support development of your solution based on it, you can and so should

adopt the same approach as presented in the lab. worksheet(s). Before you start:

1. update your ${PATH}5 environment variable by executing

export PATH="${PATH}:/opt/anaconda/3-2025/bin

2. check said update worked correctly by executing

which iverilog
which gtkwave

noting that any reported error (e.g., no iverilog in ... or similar) suggests it did not: ask for help!

Imagine you have 1) X.v, which implements a module X, plus 2) X_test.v, which implements a module X_test,
where the latter acts as a test stimulus for the former. Although all of the steps related to use of X.v and X_test.v
could be performed manually, the Makefile provided represents an automated build system which implies less

effort and less chance of error. Based on the use of Makefile, an edit-compile-execute style design cycle can be

roughly summerised as follows:

1. Edit the Verilog source code file X.v.

2. Execute

make clean

to clean (i.e., remove) residual files stemming from previous compilation or simulation steps.

3. Execute

make X_test.vvp

to compile the design using iverilog: doing so combines the Verilog source code file X.v with the associated

test stimulus X_test.v to produce the executable X_test.vvp.

4. Execute

make X_test.vcd

to simulate the design using vvp: doing so produces 1) some machine-readable output via a Value Change

Dump (VCD)6 file X_test.vcd, plus 2) some human-readable output via the terminal.

Not all test stimuli are fully-automatic; some require arguments (or parameters) to control them. In such a case,

Makefile uses the ARGS environment variable to capture arguments it then passes to vvp. For example, imagine

X_test requires three 1-bit arguments called x, y, and z: instead of the above, one could instead execute

make ARGS="+x=0 +y=1 +z=0" X_test.vcd

to set x = 0, y = 1, and z = 0.

5. Execute

gtkwave X_test.vcd

to visualise the resulting VCD file using gtkwave.

Once you have completed your solution, execute

make solution.tar.gz

to automatically create a single archive, i.e., the file, solution.tar.gz, consisting of all files in the current working

directory.

C.2 Example
In more concrete terms, one might consider the case where X = encrypt_comb which means that the Ver-

ilog source code files encrypt_comb.v and encrypt_comb_test.v describe the modules encrypt_comb, and

encrypt_comb_test respectively. The development workflow would then be

1. edit encrypt_comb.v to complete the module implementation,

5http://en.wikipedia.org/wiki/PATH_(variable)
6https://en.wikipedia.org/wiki/Value_change_dump

git # b282dbb9 @ 2025-09-03 12

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
http://en.wikipedia.org/wiki/PATH_(variable)
https://en.wikipedia.org/wiki/Value_change_dump

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

2. execute make clean,

3. execute make encrypt_comb_test.vvp,

4. execute make encrypt_comb_test.vcd,

5. execute gtkwave encrypt_comb_test.vcd.

git # b282dbb9 @ 2025-09-03 13

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

D Testing your solution

D.1 Test vectors
The process of testing and debugging an implementation of some arithmetic operation (e.g., a ripple-carry adder)

is arguably made easier by the fact we can (and sometimes do) compute the same results manually; this fact affords

some intuition about whether the correct result is produced, and, crucially, the reason why if not. The same is not

true of a block cipher implementation, where, by design, there is no analogous intuition for what the correct result

should be (in the sense it should “look” random).

This problem demands a considered approach to testing and debugging, for which a number of number of

different options exist. For example:

1. Given an implementation of only Enc, we can test whether 𝑐
?

= Enc(𝑘, 𝑚) if provided with 𝑘 and 𝑚 and the

corresponding, known to be correct 𝑐.

2. Given an implementation of both Enc and Dec, we can apply a consistency check by testing whether 𝑚
?

=

Dec(𝑘, Enc(𝑘, 𝑚)) for some random 𝑘 and 𝑚.

Each has advantages and disadvantages, and one might sensibly argue that a combination of these (and others)

would be ideal. In the context of this assignment we focus on the former, which is based on availability of a

test vector7, i.e., a set of inputs and expected outputs: we test an implementation involved by providing it the

inputs then comparing the output it computes against the one expected. The test stimuli encrypt_comb_test.v,
encrypt_iter_test.v, and encrypt_pipe_test.v provided use exactly this approach: each 𝑖-th line of the ASCII

text file

• vectors_k.txt contains 𝑘[𝑖], the 𝑖-th 64-bit hexadecimal cipher key,

• vectors_m.txt contains 𝑚[𝑖], the 𝑖-th 64-bit hexadecimal plaintext message, and

• vectors_c.txt contains 𝑐[𝑖], the 𝑖-th 64-bit hexadecimal ciphertext message,

such that 𝑐[𝑖] = Enc(𝑘[𝑖], 𝑚[𝑖]). For example, the first lines contain

𝑘[0] = 𝐹𝐸𝐷𝐶𝐵𝐴9876543210(16) ↦→ 64'hFEDCBA9876543210
𝑚[0] = 30323231534𝐷4𝐹43(16) ↦→ 64'h30323231534D4F43
𝑐[0] = 𝐴𝐵𝐷3787𝐴𝐶6026𝐶𝐵1(16) ↦→ 64'hABD3787AC6026CB1

A given test stimuli loads this content into a corresponding memory using the readmemh system task, then tests

whether 𝑐[𝑖] ?

= Enc(𝑘[𝑖], 𝑚[𝑖]) for each 𝑖-th test vector. This allows the test process to be automatic, and avoids the

test stimuli itself becoming too verbose (e.g., due to expression of the test vectors as Verilog source code). Note

that displayed output from a test stimuli of this type, as produced by the $display system task, has a standard

format:

• A line of the form ![<index>] <string> (e.g., ![0] aborting (ack = 1'bZ)), describes an error, e.g., the

simulation and hence test process aborted for some cited reason.

• A line of the form >[<index>] <signal>=<value> (e.g., >[0] k=dc8770e93ea141e1fc67), describes an input,

i.e., that for vector number index the (input) signal signal has the value value.

• A line of the form <[<index>] <signal>=<value> (e.g., <[0] c=02debc8cb87bc942), describes an output, i.e.,

that for vector number index the (output) signal signal has the value value.

• A line of the form ?[<index>] pass (e.g., ?[0] pass), describes a pass test outcome, i.e., that for vector number

index all of the computed outputs matched the associated expected output.

• A line of the form ?[<index>] fail (e.g., ?[0] fail), describes a fail test outcome, i.e., that for vector number

index one of the computed outputs did not match the associated expected output.

D.2 Fully worked example
Although the test vectors described above are useful for testing whether an overall result is correct, when said result

is incorrect they offer little or no insight into what or where the problem might be. To help address this limitation,

the following represents a fully worked example for test vector 𝑖 = 0. Note that it includes all intermediate inputs

and outputs for every operation within every round: although this makes it extremely verbose, it should, e.g.,

allow you identify exactly where your implementation and the example differ.

7https://en.wikipedia.org/wiki/Test_vector

git # b282dbb9 @ 2025-09-03 14

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://en.wikipedia.org/wiki/Test_vector

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

Input

k = 64'hfedcba9876543210
m = 64'h30323231534d4f43

Pre-processing

• perm_IP
x = 64'h30323231534d4f43
r = 64'hf01f60f8000f60d6

• split_2
x = 64'hf01f60f8000f60d6
r0 = 32'h000f60d6
r1 = 32'hf01f60f8

• perm_PC1
x = 64'hfedcba9876543210
r = 56'h0f3355f55330ff

0-th round

• round
xl = 32'hf01f60f8
xr = 32'h000f60d6
k = 48'hf4fd9864b65a
rl = 32'h000f60d6
rr = 32'h3c77eacc

– perm_E
x = 32'h000f60d6
r = 48'h00005eb016ac

– split_1
x = 48'hf4fdc6d4a0f6
r0 = 6'h36
r1 = 6'h03
r2 = 6'h0a
r3 = 6'h35
r4 = 6'h06
r5 = 6'h37
r6 = 6'h0f
r7 = 6'h3d

– sbox_0
x = 6'h36
r = 4'hd

– sbox_1
x = 6'h03
r = 4'h0

– sbox_2
x = 6'h0a
r = 4'h2

– sbox_3
x = 6'h35
r = 4'h0

– sbox_4
x = 6'h06
r = 4'h3

– sbox_5
x = 6'h37
r = 4'h3

– sbox_6
x = 6'h0f
r = 4'he

git # b282dbb9 @ 2025-09-03 15

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

– sbox_7
x = 6'h3d
r = 4'h6

– merge_1
x0 = 6'hd
x1 = 6'h0
x2 = 6'h2
x3 = 6'h0
x4 = 6'h3
x5 = 6'h3
x6 = 6'he
x7 = 6'h6
r = 48'h6e33020d

– perm_P
x = 32'h6e33020d
r = 32'hcc688a34

– key_schedule
x = 56'h0f3355f55330ff
i = 4'h0
r = 56'h1e66abeaa661fe
k = 48'hf4fd9864b65a

* split_0
x = 56'h0f3355f55330ff
r0 = 28'h55330ff
r1 = 28'h0f3355f

* clr_28bit (left-hand instance)

x = 28'h0f3355f
y = 4'h0
r = 28'h1e66abe

* clr_28bit (right-hand instance)

x = 28'h55330ff
y = 4'h0
r = 28'haa661fe

* merge_0
x0 = 28'haa661fe
x1 = 28'h1e66abe
r = 56'h1e66abeaa661fe

* perm_PC2
x = 56'h1e66abeaa661fe
r = 48'hf4fd9864b65a

1-st round

• round
xl = 32'h000f60d6
xr = 32'h3c77eacc
k = 48'h9659a6da95d9
rl = 32'h3c77eacc
rr = 32'h72731955

– perm_E
x = 32'h3c77eacc
r = 48'h1f83aff55658

– split_1

git # b282dbb9 @ 2025-09-03 16

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

x = 48'h89da092fc381
r0 = 6'h01
r1 = 6'h0e
r2 = 6'h3c
r3 = 6'h0b
r4 = 6'h09
r5 = 6'h28
r6 = 6'h1d
r7 = 6'h22

– sbox_0
x = 6'h01
r = 4'h1

– sbox_1
x = 6'h0e
r = 4'hd

– sbox_2
x = 6'h3c
r = 4'hb

– sbox_3
x = 6'h0b
r = 4'h7

– sbox_4
x = 6'h09
r = 4'h6

– sbox_5
x = 6'h28
r = 4'h8

– sbox_6
x = 6'h1d
r = 4'hb

– sbox_7
x = 6'h22
r = 4'h1

– merge_1
x0 = 6'h1
x1 = 6'hd
x2 = 6'hb
x3 = 6'h7
x4 = 6'h6
x5 = 6'h8
x6 = 6'hb
x7 = 6'h1
r = 48'h1b867bd1

– perm_P
x = 32'h1b867bd1
r = 32'h727c7983

– key_schedule
x = 56'h1e66abeaa661fe
i = 4'h1
r = 56'h3ccd57c54cc3fd
k = 48'h9659a6da95d9

* split_0
x = 56'h1e66abeaa661fe
r0 = 28'haa661fe
r1 = 28'h1e66abe

* clr_28bit (left-hand instance)

x = 28'h1e66abe
y = 4'h1
r = 28'h3ccd57c

* clr_28bit (right-hand instance)

git # b282dbb9 @ 2025-09-03 17

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

x = 28'haa661fe
y = 4'h1
r = 28'h54cc3fd

* merge_0
x0 = 28'h54cc3fd
x1 = 28'h3ccd57c
r = 56'h3ccd57c54cc3fd

* perm_PC2
x = 56'h3ccd57c54cc3fd
r = 48'h9659a6da95d9

2-nd round

• round
xl = 32'h3c77eacc
xr = 32'h72731955
k = 48'hba2b754bd72d
rl = 32'h72731955
rr = 32'hf4bb5951

– perm_E
x = 32'h72731955
r = 48'hba43a68f2aaa

– split_1
x = 48'h0068d3c4fd87
r0 = 6'h07
r1 = 6'h36
r2 = 6'h0f
r3 = 6'h31
r4 = 6'h13
r5 = 6'h23
r6 = 6'h06
r7 = 6'h00

– sbox_0
x = 6'h07
r = 4'h8

– sbox_1
x = 6'h36
r = 4'h8

– sbox_2
x = 6'h0f
r = 4'h5

– sbox_3
x = 6'h31
r = 4'h6

– sbox_4
x = 6'h13
r = 4'h7

– sbox_5
x = 6'h23
r = 4'ha

– sbox_6
x = 6'h06
r = 4'he

– sbox_7
x = 6'h00
r = 4'he

– merge_1

git # b282dbb9 @ 2025-09-03 18

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

x0 = 6'h8
x1 = 6'h8
x2 = 6'h5
x3 = 6'h6
x4 = 6'h7
x5 = 6'ha
x6 = 6'he
x7 = 6'he
r = 48'heea76588

– perm_P
x = 32'heea76588
r = 32'hc8ccb39d

– key_schedule
x = 56'h3ccd57c54cc3fd
i = 4'h2
r = 56'hf3355f05330ff5
k = 48'hba2b754bd72d

* split_0
x = 56'h3ccd57c54cc3fd
r0 = 28'h54cc3fd
r1 = 28'h3ccd57c

* clr_28bit (left-hand instance)

x = 28'h3ccd57c
y = 4'h2
r = 28'hf3355f0

* clr_28bit (right-hand instance)

x = 28'h54cc3fd
y = 4'h2
r = 28'h5330ff5

* merge_0
x0 = 28'h5330ff5
x1 = 28'hf3355f0
r = 56'hf3355f05330ff5

* perm_PC2
x = 56'hf3355f05330ff5
r = 48'hba2b754bd72d

3-rd round

• round
xl = 32'h72731955
xr = 32'hf4bb5951
k = 48'h8d762d5a7da8
rl = 32'hf4bb5951
rr = 32'h022d760b

– perm_E
x = 32'hf4bb5951
r = 48'hfa95f6af2aa3

– split_1
x = 48'h77e3dbf5570b
r0 = 6'h0b
r1 = 6'h1c
r2 = 6'h15
r3 = 6'h3d
r4 = 6'h1b
r5 = 6'h0f
r6 = 6'h3e
r7 = 6'h1d

– sbox_0

git # b282dbb9 @ 2025-09-03 19

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

x = 6'h0b
r = 4'h3

– sbox_1
x = 6'h1c
r = 4'h6

– sbox_2
x = 6'h15
r = 4'hd

– sbox_3
x = 6'h3d
r = 4'h5

– sbox_4
x = 6'h1b
r = 4'ha

– sbox_5
x = 6'h0f
r = 4'ha

– sbox_6
x = 6'h3e
r = 4'hf

– sbox_7
x = 6'h1d
r = 4'h3

– merge_1
x0 = 6'h3
x1 = 6'h6
x2 = 6'hd
x3 = 6'h5
x4 = 6'ha
x5 = 6'ha
x6 = 6'hf
x7 = 6'h3
r = 48'h3faa5d63

– perm_P
x = 32'h3faa5d63
r = 32'h705e6f5e

– key_schedule
x = 56'hf3355f05330ff5
i = 4'h3
r = 56'hccd57c34cc3fd5
k = 48'h8d762d5a7da8

* split_0
x = 56'hf3355f05330ff5
r0 = 28'h5330ff5
r1 = 28'hf3355f0

* clr_28bit (left-hand instance)

x = 28'hf3355f0
y = 4'h3
r = 28'hccd57c3

* clr_28bit (right-hand instance)

x = 28'h5330ff5
y = 4'h3
r = 28'h4cc3fd5

* merge_0
x0 = 28'h4cc3fd5
x1 = 28'hccd57c3
r = 56'hccd57c34cc3fd5

* perm_PC2
x = 56'hccd57c34cc3fd5
r = 48'h8d762d5a7da8

git # b282dbb9 @ 2025-09-03 20

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

4-th round

• round
xl = 32'hf4bb5951
xr = 32'h022d760b
k = 48'hc317fce8593d
rl = 32'h022d760b
rr = 32'h8ea83bc2

– perm_E
x = 32'h022d760b
r = 48'h80415abac056

– split_1
x = 48'h4356a652996b
r0 = 6'h2b
r1 = 6'h25
r2 = 6'h29
r3 = 6'h14
r4 = 6'h26
r5 = 6'h1a
r6 = 6'h35
r7 = 6'h10

– sbox_0
x = 6'h2b
r = 4'ha

– sbox_1
x = 6'h25
r = 4'hd

– sbox_2
x = 6'h29
r = 4'h9

– sbox_3
x = 6'h14
r = 4'h3

– sbox_4
x = 6'h26
r = 4'h0

– sbox_5
x = 6'h1a
r = 4'h4

– sbox_6
x = 6'h35
r = 4'h7

– sbox_7
x = 6'h10
r = 4'h3

– merge_1
x0 = 6'ha
x1 = 6'hd
x2 = 6'h9
x3 = 6'h3
x4 = 6'h0
x5 = 6'h4
x6 = 6'h7
x7 = 6'h3
r = 48'h374039da

– perm_P
x = 32'h374039da
r = 32'h7a136293

– key_schedule

git # b282dbb9 @ 2025-09-03 21

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

x = 56'hccd57c34cc3fd5
i = 4'h4
r = 56'h3355f0f330ff55
k = 48'hc317fce8593d

* split_0
x = 56'hccd57c34cc3fd5
r0 = 28'h4cc3fd5
r1 = 28'hccd57c3

* clr_28bit (left-hand instance)

x = 28'hccd57c3
y = 4'h4
r = 28'h3355f0f

* clr_28bit (right-hand instance)

x = 28'h4cc3fd5
y = 4'h4
r = 28'h330ff55

* merge_0
x0 = 28'h330ff55
x1 = 28'h3355f0f
r = 56'h3355f0f330ff55

* perm_PC2
x = 56'h3355f0f330ff55
r = 48'hc317fce8593d

5-th round

• round
xl = 32'h022d760b
xr = 32'h8ea83bc2
k = 48'hdcdae1c37aba
rl = 32'h8ea83bc2
rr = 32'hbfb63e46

– perm_E
x = 32'h8ea83bc2
r = 48'h45d5501f7e05

– split_1
x = 48'h990fb1dc04bf
r0 = 6'h3f
r1 = 6'h12
r2 = 6'h00
r3 = 6'h37
r4 = 6'h31
r5 = 6'h3e
r6 = 6'h10
r7 = 6'h26

– sbox_0
x = 6'h3f
r = 4'hb

– sbox_1
x = 6'h12
r = 4'hc

– sbox_2
x = 6'h00
r = 4'hc

– sbox_3
x = 6'h37
r = 4'h9

– sbox_4
x = 6'h31
r = 4'h9

git # b282dbb9 @ 2025-09-03 22

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

– sbox_5
x = 6'h3e
r = 4'h7

– sbox_6
x = 6'h10
r = 4'h9

– sbox_7
x = 6'h26
r = 4'h8

– merge_1
x0 = 6'hb
x1 = 6'hc
x2 = 6'hc
x3 = 6'h9
x4 = 6'h9
x5 = 6'h7
x6 = 6'h9
x7 = 6'h8
r = 48'h89799ccb

– perm_P
x = 32'h89799ccb
r = 32'hbd9b484d

– key_schedule
x = 56'h3355f0f330ff55
i = 4'h5
r = 56'hcd57c3ccc3fd54
k = 48'hdcdae1c37aba

* split_0
x = 56'h3355f0f330ff55
r0 = 28'h330ff55
r1 = 28'h3355f0f

* clr_28bit (left-hand instance)

x = 28'h3355f0f
y = 4'h5
r = 28'hcd57c3c

* clr_28bit (right-hand instance)

x = 28'h330ff55
y = 4'h5
r = 28'hcc3fd54

* merge_0
x0 = 28'hcc3fd54
x1 = 28'hcd57c3c
r = 56'hcd57c3ccc3fd54

* perm_PC2
x = 56'hcd57c3ccc3fd54
r = 48'hdcdae1c37aba

6-th round

• round
xl = 32'h8ea83bc2
xr = 32'hbfb63e46
k = 48'h93fb6af51b39
rl = 32'hbfb63e46
rr = 32'h70425c5d

– perm_E
x = 32'hbfb63e46
r = 48'h5ffdac1fc20d

– split_1

git # b282dbb9 @ 2025-09-03 23

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

x = 48'hcc06c6ead934
r0 = 6'h34
r1 = 6'h24
r2 = 6'h2d
r3 = 6'h3a
r4 = 6'h06
r5 = 6'h1b
r6 = 6'h00
r7 = 6'h33

– sbox_0
x = 6'h34
r = 4'ha

– sbox_1
x = 6'h24
r = 4'hb

– sbox_2
x = 6'h2d
r = 4'hf

– sbox_3
x = 6'h3a
r = 4'h3

– sbox_4
x = 6'h06
r = 4'h3

– sbox_5
x = 6'h1b
r = 4'hb

– sbox_6
x = 6'h00
r = 4'hf

– sbox_7
x = 6'h33
r = 4'hb

– merge_1
x0 = 6'ha
x1 = 6'hb
x2 = 6'hf
x3 = 6'h3
x4 = 6'h3
x5 = 6'hb
x6 = 6'hf
x7 = 6'hb
r = 48'hbfb33fba

– perm_P
x = 32'hbfb33fba
r = 32'hfeea679f

– key_schedule
x = 56'hcd57c3ccc3fd54
i = 4'h6
r = 56'h355f0f330ff553
k = 48'h93fb6af51b39

* split_0
x = 56'hcd57c3ccc3fd54
r0 = 28'hcc3fd54
r1 = 28'hcd57c3c

* clr_28bit (left-hand instance)

x = 28'hcd57c3c
y = 4'h6
r = 28'h355f0f3

* clr_28bit (right-hand instance)

git # b282dbb9 @ 2025-09-03 24

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

x = 28'hcc3fd54
y = 4'h6
r = 28'h30ff553

* merge_0
x0 = 28'h30ff553
x1 = 28'h355f0f3
r = 56'h355f0f330ff553

* perm_PC2
x = 56'h355f0f330ff553
r = 48'h93fb6af51b39

7-th round

• round
xl = 32'hbfb63e46
xr = 32'h70425c5d
k = 48'ha877c7931a7e
rl = 32'h70425c5d
rr = 32'h9603df08

– perm_E
x = 32'h70425c5d
r = 48'hba02042f82fa

– split_1
x = 48'h1275c3bc9884
r0 = 6'h04
r1 = 6'h22
r2 = 6'h09
r3 = 6'h2f
r4 = 6'h03
r5 = 6'h17
r6 = 6'h27
r7 = 6'h04

– sbox_0
x = 6'h04
r = 4'h8

– sbox_1
x = 6'h22
r = 4'h4

– sbox_2
x = 6'h09
r = 4'h7

– sbox_3
x = 6'h2f
r = 4'hd

– sbox_4
x = 6'h03
r = 4'h8

– sbox_5
x = 6'h17
r = 4'he

– sbox_6
x = 6'h27
r = 4'h1

– sbox_7
x = 6'h04
r = 4'hd

– merge_1

git # b282dbb9 @ 2025-09-03 25

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

x0 = 6'h8
x1 = 6'h4
x2 = 6'h7
x3 = 6'hd
x4 = 6'h8
x5 = 6'he
x6 = 6'h1
x7 = 6'hd
r = 48'hd1e8d748

– perm_P
x = 32'hd1e8d748
r = 32'h29b5e14e

– key_schedule
x = 56'h355f0f330ff553
i = 4'h7
r = 56'hd57c3ccc3fd54c
k = 48'ha877c7931a7e

* split_0
x = 56'h355f0f330ff553
r0 = 28'h30ff553
r1 = 28'h355f0f3

* clr_28bit (left-hand instance)

x = 28'h355f0f3
y = 4'h7
r = 28'hd57c3cc

* clr_28bit (right-hand instance)

x = 28'h30ff553
y = 4'h7
r = 28'hc3fd54c

* merge_0
x0 = 28'hc3fd54c
x1 = 28'hd57c3cc
r = 56'hd57c3ccc3fd54c

* perm_PC2
x = 56'hd57c3ccc3fd54c
r = 48'ha877c7931a7e

8-th round

• round
xl = 32'h70425c5d
xr = 32'h9603df08
k = 48'h3f3616d947c6
rl = 32'h9603df08
rr = 32'h4d44034b

– perm_E
x = 32'h9603df08
r = 48'h4ac007efe851

– split_1
x = 48'h75f61136af97
r0 = 6'h17
r1 = 6'h3e
r2 = 6'h2a
r3 = 6'h0d
r4 = 6'h11
r5 = 6'h18
r6 = 6'h1f
r7 = 6'h1d

– sbox_0

git # b282dbb9 @ 2025-09-03 26

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

x = 6'h17
r = 4'hb

– sbox_1
x = 6'h3e
r = 4'h2

– sbox_2
x = 6'h2a
r = 4'h8

– sbox_3
x = 6'h0d
r = 4'hd

– sbox_4
x = 6'h11
r = 4'h4

– sbox_5
x = 6'h18
r = 4'hb

– sbox_6
x = 6'h1f
r = 4'h5

– sbox_7
x = 6'h1d
r = 4'h3

– merge_1
x0 = 6'hb
x1 = 6'h2
x2 = 6'h8
x3 = 6'hd
x4 = 6'h4
x5 = 6'hb
x6 = 6'h5
x7 = 6'h3
r = 48'h35b4d82b

– perm_P
x = 32'h35b4d82b
r = 32'h3d065f16

– key_schedule
x = 56'hd57c3ccc3fd54c
i = 4'h8
r = 56'haaf879987faa99
k = 48'h3f3616d947c6

* split_0
x = 56'hd57c3ccc3fd54c
r0 = 28'hc3fd54c
r1 = 28'hd57c3cc

* clr_28bit (left-hand instance)

x = 28'hd57c3cc
y = 4'h8
r = 28'haaf8799

* clr_28bit (right-hand instance)

x = 28'hc3fd54c
y = 4'h8
r = 28'h87faa99

* merge_0
x0 = 28'h87faa99
x1 = 28'haaf8799
r = 56'haaf879987faa99

* perm_PC2
x = 56'haaf879987faa99
r = 48'h3f3616d947c6

git # b282dbb9 @ 2025-09-03 27

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

9-th round

• round
xl = 32'h9603df08
xr = 32'h4d44034b
k = 48'h6e1cf89ce28d
rl = 32'h4d44034b
rr = 32'h28c52afd

– perm_E
x = 32'h4d44034b
r = 48'ha5aa08006a56

– split_1
x = 48'hcbb6f09c88db
r0 = 6'h1b
r1 = 6'h23
r2 = 6'h08
r3 = 6'h27
r4 = 6'h30
r5 = 6'h1b
r6 = 6'h3b
r7 = 6'h32

– sbox_0
x = 6'h1b
r = 4'he

– sbox_1
x = 6'h23
r = 4'hb

– sbox_2
x = 6'h08
r = 4'h9

– sbox_3
x = 6'h27
r = 4'h7

– sbox_4
x = 6'h30
r = 4'hf

– sbox_5
x = 6'h1b
r = 4'hb

– sbox_6
x = 6'h3b
r = 4'h5

– sbox_7
x = 6'h32
r = 4'hc

– merge_1
x0 = 6'he
x1 = 6'hb
x2 = 6'h9
x3 = 6'h7
x4 = 6'hf
x5 = 6'hb
x6 = 6'h5
x7 = 6'hc
r = 48'hc5bf79be

– perm_P
x = 32'hc5bf79be
r = 32'hbec6f5f5

– key_schedule

git # b282dbb9 @ 2025-09-03 28

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

x = 56'haaf879987faa99
i = 4'h9
r = 56'habe1e661feaa66
k = 48'h6e1cf89ce28d

* split_0
x = 56'haaf879987faa99
r0 = 28'h87faa99
r1 = 28'haaf8799

* clr_28bit (left-hand instance)

x = 28'haaf8799
y = 4'h9
r = 28'habe1e66

* clr_28bit (right-hand instance)

x = 28'h87faa99
y = 4'h9
r = 28'h1feaa66

* merge_0
x0 = 28'h1feaa66
x1 = 28'habe1e66
r = 56'habe1e661feaa66

* perm_PC2
x = 56'habe1e661feaa66
r = 48'h6e1cf89ce28d

10-th round

• round
xl = 32'h4d44034b
xr = 32'h28c52afd
k = 48'hdee07cf276c5
rl = 32'h28c52afd
rr = 32'h658f5c8b

– perm_E
x = 32'h28c52afd
r = 48'h95160a9557fa

– split_1
x = 48'h4bf67667213f
r0 = 6'h3f
r1 = 6'h04
r2 = 6'h32
r3 = 6'h19
r4 = 6'h36
r5 = 6'h19
r6 = 6'h3f
r7 = 6'h12

– sbox_0
x = 6'h3f
r = 4'hb

– sbox_1
x = 6'h04
r = 4'h2

– sbox_2
x = 6'h32
r = 4'h0

– sbox_3
x = 6'h19
r = 4'h3

– sbox_4
x = 6'h36
r = 4'he

git # b282dbb9 @ 2025-09-03 29

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

– sbox_5
x = 6'h19
r = 4'hc

– sbox_6
x = 6'h3f
r = 4'h9

– sbox_7
x = 6'h12
r = 4'ha

– merge_1
x0 = 6'hb
x1 = 6'h2
x2 = 6'h0
x3 = 6'h3
x4 = 6'he
x5 = 6'hc
x6 = 6'h9
x7 = 6'ha
r = 48'ha9ce302b

– perm_P
x = 32'ha9ce302b
r = 32'h28cb5fc0

– key_schedule
x = 56'habe1e661feaa66
i = 4'ha
r = 56'haf8799a7faa998
k = 48'hdee07cf276c5

* split_0
x = 56'habe1e661feaa66
r0 = 28'h1feaa66
r1 = 28'habe1e66

* clr_28bit (left-hand instance)

x = 28'habe1e66
y = 4'ha
r = 28'haf8799a

* clr_28bit (right-hand instance)

x = 28'h1feaa66
y = 4'ha
r = 28'h7faa998

* merge_0
x0 = 28'h7faa998
x1 = 28'haf8799a
r = 56'haf8799a7faa998

* perm_PC2
x = 56'haf8799a7faa998
r = 48'hdee07cf276c5

11-st round

• round
xl = 32'h28c52afd
xr = 32'h658f5c8b
k = 48'h8ecf1abaa3ab
rl = 32'h658f5c8b
rr = 32'h28965e1b

– perm_E
x = 32'h658f5c8b
r = 48'hb0bc5eaf9456

– split_1

git # b282dbb9 @ 2025-09-03 30

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

x = 48'h3e73441537fd
r0 = 6'h3d
r1 = 6'h1f
r2 = 6'h13
r3 = 6'h05
r4 = 6'h04
r5 = 6'h0d
r6 = 6'h27
r7 = 6'h0f

– sbox_0
x = 6'h3d
r = 4'h6

– sbox_1
x = 6'h1f
r = 4'h6

– sbox_2
x = 6'h13
r = 4'h1

– sbox_3
x = 6'h05
r = 4'h2

– sbox_4
x = 6'h04
r = 4'he

– sbox_5
x = 6'h0d
r = 4'h6

– sbox_6
x = 6'h27
r = 4'h1

– sbox_7
x = 6'h0f
r = 4'h1

– merge_1
x0 = 6'h6
x1 = 6'h6
x2 = 6'h1
x3 = 6'h2
x4 = 6'he
x5 = 6'h6
x6 = 6'h1
x7 = 6'h1
r = 48'h116e2166

– perm_P
x = 32'h116e2166
r = 32'h005374e6

– key_schedule
x = 56'haf8799a7faa998
i = 4'hb
r = 56'hbe1e66afeaa661
k = 48'h8ecf1abaa3ab

* split_0
x = 56'haf8799a7faa998
r0 = 28'h7faa998
r1 = 28'haf8799a

* clr_28bit (left-hand instance)

x = 28'haf8799a
y = 4'hb
r = 28'hbe1e66a

* clr_28bit (right-hand instance)

git # b282dbb9 @ 2025-09-03 31

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

x = 28'h7faa998
y = 4'hb
r = 28'hfeaa661

* merge_0
x0 = 28'hfeaa661
x1 = 28'hbe1e66a
r = 56'hbe1e66afeaa661

* perm_PC2
x = 56'hbe1e66afeaa661
r = 48'h8ecf1abaa3ab

12-nd round

• round
xl = 32'h658f5c8b
xr = 32'h28965e1b
k = 48'h6e3b2fb67f03
rl = 32'h28965e1b
rr = 32'h58b6744e

– perm_E
x = 32'h28965e1b
r = 48'h9514ac2fc0f6

– split_1
x = 48'hfb2f8399bff5
r0 = 6'h35
r1 = 6'h3f
r2 = 6'h1b
r3 = 6'h26
r4 = 6'h03
r5 = 6'h3e
r6 = 6'h32
r7 = 6'h3e

– sbox_0
x = 6'h35
r = 4'h9

– sbox_1
x = 6'h3f
r = 4'hc

– sbox_2
x = 6'h1b
r = 4'hb

– sbox_3
x = 6'h26
r = 4'hb

– sbox_4
x = 6'h03
r = 4'h8

– sbox_5
x = 6'h3e
r = 4'h7

– sbox_6
x = 6'h32
r = 4'h8

– sbox_7
x = 6'h3e
r = 4'h0

– merge_1

git # b282dbb9 @ 2025-09-03 32

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

x0 = 6'h9
x1 = 6'hc
x2 = 6'hb
x3 = 6'hb
x4 = 6'h8
x5 = 6'h7
x6 = 6'h8
x7 = 6'h0
r = 48'h0878bbc9

– perm_P
x = 32'h0878bbc9
r = 32'h3d3928c5

– key_schedule
x = 56'hbe1e66afeaa661
i = 4'hc
r = 56'hf8799aafaa9987
k = 48'h6e3b2fb67f03

* split_0
x = 56'hbe1e66afeaa661
r0 = 28'hfeaa661
r1 = 28'hbe1e66a

* clr_28bit (left-hand instance)

x = 28'hbe1e66a
y = 4'hc
r = 28'hf8799aa

* clr_28bit (right-hand instance)

x = 28'hfeaa661
y = 4'hc
r = 28'hfaa9987

* merge_0
x0 = 28'hfaa9987
x1 = 28'hf8799aa
r = 56'hf8799aafaa9987

* perm_PC2
x = 56'hf8799aafaa9987
r = 48'h6e3b2fb67f03

13-rd round

• round
xl = 32'h28965e1b
xr = 32'h58b6744e
k = 48'habbc497e2372
rl = 32'h58b6744e
rr = 32'h48389819

– perm_E
x = 32'h58b6744e
r = 48'h2f15ac3a825c

– split_1
x = 48'h84a9e544a12e
r0 = 6'h2e
r1 = 6'h04
r2 = 6'h0a
r3 = 6'h11
r4 = 6'h25
r5 = 6'h27
r6 = 6'h0a
r7 = 6'h21

– sbox_0

git # b282dbb9 @ 2025-09-03 33

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

x = 6'h2e
r = 4'h2

– sbox_1
x = 6'h04
r = 4'h2

– sbox_2
x = 6'h0a
r = 4'h2

– sbox_3
x = 6'h11
r = 4'h5

– sbox_4
x = 6'h25
r = 4'h0

– sbox_5
x = 6'h27
r = 4'h0

– sbox_6
x = 6'h0a
r = 4'hb

– sbox_7
x = 6'h21
r = 4'hf

– merge_1
x0 = 6'h2
x1 = 6'h2
x2 = 6'h2
x3 = 6'h5
x4 = 6'h0
x5 = 6'h0
x6 = 6'hb
x7 = 6'hf
r = 48'hfb005222

– perm_P
x = 32'hfb005222
r = 32'h60aec602

– key_schedule
x = 56'hf8799aafaa9987
i = 4'hd
r = 56'he1e66abeaa661f
k = 48'habbc497e2372

* split_0
x = 56'hf8799aafaa9987
r0 = 28'hfaa9987
r1 = 28'hf8799aa

* clr_28bit (left-hand instance)

x = 28'hf8799aa
y = 4'hd
r = 28'he1e66ab

* clr_28bit (right-hand instance)

x = 28'hfaa9987
y = 4'hd
r = 28'heaa661f

* merge_0
x0 = 28'heaa661f
x1 = 28'he1e66ab
r = 56'he1e66abeaa661f

* perm_PC2
x = 56'he1e66abeaa661f
r = 48'habbc497e2372

git # b282dbb9 @ 2025-09-03 34

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

14-th round

• round
xl = 32'h58b6744e
xr = 32'h48389819
k = 48'h496efaf5e94a
rl = 32'h48389819
rr = 32'h93cd4d3b

– perm_E
x = 32'h48389819
r = 48'ha501f14f00f2

– split_1
x = 48'hec6f0bbae9b8
r0 = 6'h38
r1 = 6'h26
r2 = 6'h2e
r3 = 6'h2e
r4 = 6'h0b
r5 = 6'h3c
r6 = 6'h06
r7 = 6'h3b

– sbox_0
x = 6'h38
r = 4'hf

– sbox_1
x = 6'h26
r = 4'hd

– sbox_2
x = 6'h2e
r = 4'h3

– sbox_3
x = 6'h2e
r = 4'h8

– sbox_4
x = 6'h0b
r = 4'hf

– sbox_5
x = 6'h3c
r = 4'he

– sbox_6
x = 6'h06
r = 4'he

– sbox_7
x = 6'h3b
r = 4'h0

– merge_1
x0 = 6'hf
x1 = 6'hd
x2 = 6'h3
x3 = 6'h8
x4 = 6'hf
x5 = 6'he
x6 = 6'he
x7 = 6'h0
r = 48'h0eef83df

– perm_P
x = 32'h0eef83df
r = 32'hcb7b3975

– key_schedule

git # b282dbb9 @ 2025-09-03 35

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

x = 56'he1e66abeaa661f
i = 4'he
r = 56'h8799aafaa9987f
k = 48'h496efaf5e94a

* split_0
x = 56'he1e66abeaa661f
r0 = 28'heaa661f
r1 = 28'he1e66ab

* clr_28bit (left-hand instance)

x = 28'he1e66ab
y = 4'he
r = 28'h8799aaf

* clr_28bit (right-hand instance)

x = 28'heaa661f
y = 4'he
r = 28'haa9987f

* merge_0
x0 = 28'haa9987f
x1 = 28'h8799aaf
r = 56'h8799aafaa9987f

* perm_PC2
x = 56'h8799aafaa9987f
r = 48'h496efaf5e94a

15-th round

• round
xl = 32'h48389819
xr = 32'h93cd4d3b
k = 48'h35c2fc478fcd
rl = 32'h93cd4d3b
rr = 32'h5e8e5083

– perm_E
x = 32'h93cd4d3b
r = 48'hca7e5aa5a9f7

– split_1
x = 48'hffbca6e2263a
r0 = 6'h3a
r1 = 6'h18
r2 = 6'h22
r3 = 6'h38
r4 = 6'h26
r5 = 6'h32
r6 = 6'h3b
r7 = 6'h3f

– sbox_0
x = 6'h3a
r = 4'h3

– sbox_1
x = 6'h18
r = 4'h5

– sbox_2
x = 6'h22
r = 4'he

– sbox_3
x = 6'h38
r = 4'h6

– sbox_4
x = 6'h26
r = 4'h0

git # b282dbb9 @ 2025-09-03 36

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

– sbox_5
x = 6'h32
r = 4'h1

– sbox_6
x = 6'h3b
r = 4'h5

– sbox_7
x = 6'h3f
r = 4'hd

– merge_1
x0 = 6'h3
x1 = 6'h5
x2 = 6'he
x3 = 6'h6
x4 = 6'h0
x5 = 6'h1
x6 = 6'h5
x7 = 6'hd
r = 48'hd5106e53

– perm_P
x = 32'hd5106e53
r = 32'h16b6c89a

– key_schedule
x = 56'h8799aafaa9987f
i = 4'hf
r = 56'h0f3355f55330ff
k = 48'h35c2fc478fcd

* split_0
x = 56'h8799aafaa9987f
r0 = 28'haa9987f
r1 = 28'h8799aaf

* clr_28bit (left-hand instance)

x = 28'h8799aaf
y = 4'hf
r = 28'h0f3355f

* clr_28bit (right-hand instance)

x = 28'haa9987f
y = 4'hf
r = 28'h55330ff

* merge_0
x0 = 28'h55330ff
x1 = 28'h0f3355f
r = 56'h0f3355f55330ff

* perm_PC2
x = 56'h0f3355f55330ff
r = 48'h35c2fc478fcd

Post-processing

• merge_2
x0 = 32'h93cd4d3b
x1 = 32'h5e8e5083
r = 64'h5e8e508393cd4d3b

• perm_FP
x = 64'h5e8e508393cd4d3b
r = 64'habd3787ac6026cb1

Output

c = 64'habd3787ac6026cb1

git # b282dbb9 @ 2025-09-03 37

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

	Introduction
	Terms and conditions
	Description
	Material
	Overview
	Detail

	Control protocol for the iterative design strategy
	Problem
	Protocol

	Control protocol for the pipelined design strategy
	Problem
	Protocol

	Developing your solution
	Workflow
	Example

	Testing your solution
	Test vectors
	Fully worked example

