
© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

• Remember to register your attendance using the UoB Check-In app. Either

1. download, install, and use the native app
a

available for Android and iOS, or

2. directly use the web-based app available at

https://check-in.bristol.ac.uk

noting the latter is also linked to via the Attendancemenu item on the left-hand side of the Blackboard-based unit

web-site.

• The hardware and software resources located in the MVB Linux lab(s). (e.g., MVB-1.15 or MVB-2.11) are managed

by the Faculty IT Support Team, a subset of IT Services. If you encounter a problem (e.g., a workstation that fails

to boot, an error when you try to use some software, or you just cannot log into your account), they can help: you

can contact them, to report then resolve said problem, via

https://www.bristol.ac.uk/it-support

• The lab. worksheet is written assuming you work in the lab. using UoB-managed and thus supported equipment. If

you need or prefer to use your own equipment, however, various unsupportedb
alternatives available: for example,

you could 1) manually install any software dependencies yourself, or 2) use the unit-specific Vagrant
c

box by

following instructions at

https://cs-uob.github.io/COMS10015/vm

• The questions are roughly classified as either C (for core questions, that should be attempted within the lab. slot),

A (for additional questions, that could be attempted within the lab. slot), or R (for revision questions). Keep in

mind that we only expect you to attempt the C-class questions: the other classes are provided purely for your benefit

and/or interest, so there is no problem with nor penalty for totally ignoring them.

• There is an associated set of solutions is available, at least for the C-class questions. These solutions are there

for you to learn from (e.g., to provide an explanation or hint, or illustrate a range of different solutions and/or

trade-offs), rather than (purely) to judge your solution against; they often present a solution vs. the solution,

meaning there might be many valid approaches to and solutions for a question.

• Keep in mind that various mechanisms exist to get support with and/or feedback on your work; these include

both in-person (e.g., the lab. slot itself) and online (e.g., the unit forum, accessible via the unit web-site) instances.

ahttps://www.bristol.ac.uk/students/support/it/software-and-online-resources/registering-attendance
b
The implication here is that such alternatives are provided in a best-effort attempt to help you: they are experimental, and so no guarantees

about nor support for their use will be offered.

chttps://www.vagrantup.com

git # b282dbb9 @ 2025-09-03 1

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://check-in.bristol.ac.uk
https://www.bristol.ac.uk/it-support
https://cs-uob.github.io/COMS10015/vm
https://www.bristol.ac.uk/students/support/it/software-and-online-resources/registering-attendance
https://www.vagrantup.com


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

COMS10015 lab. worksheet #1

§1. C-class, or core questions

� Q1[C]. In the lecture slot(s), a very obvious effort was made to differentiate this unit from other units which also

cover Boolean algebra. Despite some overlap at face value, our claimed focus is the practical application versus

purely theoretical study of this topic. If you needed further convincing, this question should provide it.

An important theoretical result we encountered was the universality of the NAND operator: all Boolean

operators, and therefore all Boolean functions, can be realised by using NAND operators alone. We have developed

a kit to allow translation of this result from theory into practice:

A boxed NANDboard kit
a

constitutes

• 1 NANDboard (revision F),

• 1 type-A to type-C USB cable, and

• a set of jumper wires (which can be carefully stripped apart from each other).

Although we cannot let you take the kit away, there should be enough kits for one per student; at the start (resp.

end) of each lab. slot that uses it, collect a kit from (resp. return the kit to) a lab. demonstrator. Try to pack the

content neatly before return: this will help whoever uses it next, in the sense that they can start work as quickly

as possible. There is a chance the kit you collect is either incomplete or defective. Such an event should be rare of

course, but if you identify a problem then let a lab. demonstrator know (e.g., versus just returning it as is): this

allows us to solve the problem, or just provide a replacement.

a
We are very interested in both positive and negative feedback about the kit. If, for instance, you do something interesting or “off piste”

with it, we want to hear: take a photograph and drop us an email, for example, or tweet and mention @BristolCS so we can pick it up!

Q1–§1 An overview of the NANDboard

Figure 1 captures the main features of the board in high-level block diagram. When oriented to match and viewed

left-to-right, you should be able to identify

a the input group,

b the NAND groups,

c the output group and

d the power group.

Figure 2 offers a more detailed specification of each group (i.e., the internal components and structure), which is

explained by the following Sections.

Q1–§2 An overview of the NANDboard: the power group

The power group houses a USB connector: connecting it, via the supplied cable, to the USB port of a host

workstation provides a power supply to the board.

Note that above and below the USB connector there are 2 groups of 4 pins. These allow multiple NANDboards to

be combined together, but doing so demands care: misuse can potentially damage the board and/or workstation.

Since they need not and so should not be used within the context of this worksheet, you should find they are

covered by red (for 𝑉𝑑𝑑 ≡ 5V) and black (for 𝐺𝑁𝐷) protective jumpers. Leave them in place!

Q1–§3 An overview of the NANDboard: the input group

The input group houses 4 switches (or “push buttons” if you prefer). Each 𝑗-th switch is connected to 4 pins (to

the right of the switch) labelled 𝑋𝑗 : the switch controls the value of those pins, in the sense that

𝑋𝑗 =

{
0 if the 𝑗-th switch is not pressed

1 if the 𝑗-th switch is pressed

git # b282dbb9 @ 2025-09-03 2

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
@BristolCS


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

Q1–§4 An overview of the NANDboard: the output group

The output group houses 4 LEDs. Each 𝑗-th LED is connected to 4 pins (to the left of the LED) labelled 𝑅 𝑗 : the

LED is controlled by the value of those pins, in the sense that

the 𝑗-th LED is

{
off if 𝑅 𝑗 = 0

on if 𝑅 𝑗 = 1

Q1–§5 An overview of the NANDboard: the NAND group(s)

Each NAND group houses 4 NAND operators1, meaning there are 16 such operators on the board. Each 𝑗-th
operator in each 𝑖-th group is connected to 4 input pins (to the left of the operator) and 4 output pins (to the right

of the operator): the operator uses the input pin values to control the the output pins, in the sense that it computes

𝑟𝑖 , 𝑗 = 𝑥𝑖 , 𝑗 ∧ 𝑦𝑖 , 𝑗 .

In more detail, the behaviour of each operator is as follows:

• Each operator will use 2 inputs to compute an output. As Figure 2 shows, however, said inputs can be provided

by either of 2 different input pins. For example, notice there are two pins labelled 𝑥0,0 (resp. 𝑦0,0) which a) are

connected together, and b) provide the first (resp. second) of 2 inputs to the operator.

• Although you are free to use either of the 2 input pins labelled 𝑥𝑖 , 𝑗 (resp. 𝑦𝑖 , 𝑗) to provide a given input, there is

one restriction: the pins cannot be contradictory, in the sense that both input pins labelled 𝑥𝑖 , 𝑗 (resp. 𝑦𝑖 , 𝑗) must

have the same value.

• Each output pin reflects the output from an associated operator, and is also visualised by an associated LED2: if

the output is 0 then the LED is off, whereas if the output is 1 then the LED is on.

• By default, each input pin is 0. This means that when an (empty) board is initially powered-on, each operator

will compute 0 ∧ 0 = 1 and so each LED should be on: this fact provides a quick way to check the board is

working correctly before carry on!

• To change what a given operator computes, connections can be made between pins using jumper wire. For

example, the input pin for an operator can be connected to any (otherwise unused)

– constant 1 pin (which are above the input pins),

– input group pin,

– NAND group output pin, or
– NAND group input3 pin.

• The NAND groups and hence operators are independent, meaning you can form inter- and intra-group connec-

tions (i.e., inside one group and between two groups).

Q1–§6 Example #1 (red): validating NAND-like behaviour

We already saw that a Boolean expression can be thought of Mathematically, or diagrammatically. For example,

we can express 1 ∧ 1 = 0 using the following diagram

∧
1
1 0

instead. Using the NANDboard, we can concretely implement and thus evaluate the expression, rather than reason

about it abstractly via pencil-and-paper alone:

a Replicate example #1, using 2 jumper wires the match the (red) connections shown in the top-left NAND group in

Figure 2. As soon as you connect both jumper wires, the top-most NAND operator will change from computing

0 ∧ 0 = 1, meaning the LED is on, to 1 ∧ 1 = 0, meaning the LED is off.

1In reality, the operators are realised using logic gates; we will encounter the internal, transistor-based design of these components in some

later lecture slot(s), but you can ignore this for now.

2Keep in mind that the LED colour is not relevant: it turns out that the different manufacturing runs that produced our stock of NANDboards

have used green, red, or even a mixture of the two!

3At first glance this may seem odd (it suggests the input pin is being used as an output), but can be useful in some circumstances. Imagine

you want to compute 𝑡 ∧ 𝑡, for example: one approach would be to connect 𝑥0 = 𝑡 and 𝑦0 = 𝑡, whereas another approach would be to connect

𝑥0 = 𝑡 and 𝑦0 = 𝑥1 = 𝑥0 = 𝑡. Although the first approach is arguably simply, the second may be advantageous if 1 pin is available to provide a

connection from 𝑡 (e.g., one free output pin).

git # b282dbb9 @ 2025-09-03 3

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

NAND
group #1

NAND
group #2

NAND
group #3

NAND
group #4

Input
group

Output
group

Power
group

Figure 1: A high-level overview of the NANDboard.

b Write down the truth table for NAND, then work step-by-step through each row: verify that the behaviour of

operators on the board match the truth table, using jumper wire to connect the input pins to 0 or 1 as appropriate

(versus only 1 as above).

Q1–§7 Example #2 (blue): using multiple operators

Consider a slightly more complicated example, whereby (1 ∧ 0) ∧ 1 = 0 now includes two NAND operators rather

than one. The same approach applies to diagrammatic expression, meaning we could draw

∧

∧

1
0

1 0

instead.

a Replicate example #2, using 3 jumper wires the match the (blue) connections shown in the top-right NAND

group in Figure 2. Notice that the top-most LED is on because 1 ∧ 0 = 1 while the LED below it is off because

(1 ∧ 0) ∧ 1 = 1 ∧ 1 = 0.

b Verify that you can use either input pin or any output pin for a given operator: alter the design so it evaluates

the same expression (and so yields the same result) via a different configuration of jumper wires.

Q1–§8 Example #3 (green): using switches to model variables

If we write (𝑥 ∧ 0) ∧ 𝑦 = 𝑟, the expression has the same structure as the previous example, but differs in the sense

that some constant values are replaced by a variable. The result obviously depends on 𝑥 and 𝑦 (i.e., is a function

of the LHS), so the result (or RHS) is also written as a variable 𝑟. Again we could draw

∧

∧

x
0

y r

instead.

a Replicate example #1, using 3 jumper wires the match the (green) connections shown in the bottom-left NAND

group of Figure 2.

b Verify that pressing the switches yields the result you expect. For example, if you press both switches this would

be the analogy of setting 𝑥 = 𝑦 = 1 and thus producing 𝑟 = (1 ∧ 0) ∧ 1 = 0 as above.

� Q2[C]. a Use a NANDboard to implement

git # b282dbb9 @ 2025-09-03 4

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

X
0

X
0

X
0

X
0

X
1

X
1

X
1

X
1

X
2

X
2

X
2

X
2

X
3

X
3

X
3

X
3

sw
itc

h
#0

sw
itc

h
#1

sw
itc

h
#2

sw
itc

h
#3

1
1

1
1

x 0
,0

x 0
,0

y 0
,0

y 0
,0

x 0
,1

x 0
,1

y 0
,1

y 0
,1

x 0
,2

x 0
,2

y 0
,2

y 0
,2

x 0
,3

x 0
,3

y 0
,3

y 0
,3

r 0
,0

r 0
,0

r 0
,0

r 0
,0

r 0
,1

r 0
,1

r 0
,1

r 0
,1

r 0
,2

r 0
,2

r 0
,2

r 0
,2

r 0
,3

r 0
,3

r 0
,3

r 0
,3

∧

LE
D

∧

LE
D

∧

LE
D

∧

LE
D

1
1

1
1

x 1
,0

x 1
,0

y 1
,0

y 1
,0

x 1
,1

x 1
,1

y 1
,1

y 1
,1

x 1
,2

x 1
,2

y 1
,2

y 1
,2

x 1
,3

x 1
,3

y 1
,3

y 1
,3

r 1
,0

r 1
,0

r 1
,0

r 1
,0

r 1
,1

r 1
,1

r 1
,1

r 1
,1

r 1
,2

r 1
,2

r 1
,2

r 1
,2

r 1
,3

r 1
,3

r 1
,3

r 1
,3

∧

LE
D

∧

LE
D

∧

LE
D

∧

LE
D

1
1

1
1

x 2
,0

x 2
,0

y 2
,0

y 2
,0

x 2
,1

x 2
,1

y 2
,1

y 2
,1

x 2
,2

x 2
,2

y 2
,2

y 2
,2

x 2
,3

x 2
,3

y 2
,3

y 2
,3

r 2
,0

r 2
,0

r 2
,0

r 2
,0

r 2
,1

r 2
,1

r 2
,1

r 2
,1

r 2
,2

r 2
,2

r 2
,2

r 2
,2

r 2
,3

r 2
,3

r 2
,3

r 2
,3

∧

LE
D

∧

LE
D

∧

LE
D

∧

LE
D

1
1

1
1

x 3
,0

x 3
,0

y 3
,0

y 3
,0

x 3
,1

x 3
,1

y 3
,1

y 3
,1

x 3
,2

x 3
,2

y 3
,2

y 3
,2

x 3
,3

x 3
,3

y 3
,3

y 3
,3

r 3
,0

r 3
,0

r 3
,0

r 3
,0

r 3
,1

r 3
,1

r 3
,1

r 3
,1

r 3
,2

r 3
,2

r 3
,2

r 3
,2

r 3
,3

r 3
,3

r 3
,3

r 3
,3

∧

LE
D

∧

LE
D

∧

LE
D

∧

LE
D

R 0
R 0

R 0
R 0

R 1
R 1

R 1
R 1

R 2
R 2

R 2
R 2

R 3
R 3

R 3
R 3

LE
D

#0

LE
D

#1

LE
D

#2

LE
D

#3

U
SB

co
nn

ec
to

r

Figure 2: A low-level overview of the NANDboard: note that this diagram includes three examples, with examples #1, #2,
and #3 using the top-right, bottom-left, and bottom-right NAND groups and red, blue, and green wires respectively.

git # b282dbb9 @ 2025-09-03 5

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

i NOT,

ii AND,

iii OR, and

iv XOR

operators. As above, verify that the physical computation matches what you expect in theory by work step-by-

step through each row in the associated truth table.

b Stated generally, the majority function takes 𝑛 inputs, and produces 1 as an output iff. ⌈ 𝑛
2
⌉ or more of the inputs

are equal to 1; otherwise the output is 0.

Consider the specific case of 𝑛 = 3 inputs called 𝑎, 𝑏, and 𝑐, where the function can be written more descriptively

as

Maj(𝑎, 𝑏, 𝑐) =
{

1 if 3 or 2 of 𝑎, 𝑏 and 𝑐 are equal to 1

0 if 1 or 0 of 𝑎, 𝑏 and 𝑐 are equal to 1

Your goal in this question is to first design then implement this function using a NANDboard. This is more

difficult than previous questions, so the recommended approach is to work step-by-step:

• write a truth table for the function to specify the behaviour required,

• think about how this behaviour can be realised using NOT, AND and OR operators, and write this design

down on paper,

• translate the design into NAND-based version, i.e., one using only NAND operators, then

• implement the NAND-based version using a NANDboard, and verify that it works correctly.

§2. R-class, or revision questions

� Q3[R]. There is a set of questions available at

https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_q.pdf

Using pencil-and-paper, each asks you to solve a problem relating to Boolean algebra. There are too many for the

lab. session(s) alone, but, in the longer term, the idea is simple: attempt to answer the questions, applying theory

covered in the lecture(s) to do so, as a means of revising and thereby ensuring you understand the material.

§3. A-class, or additional questions

� Q4[A]. Imagine you take your NANDboard-based implementation of a majority gate, and connect the output to

reuse it as an input. For example,

𝑐 = Maj(𝑎, 𝑏, 𝑐)
describes a situation where the output is connected to 𝑐.

a Experiment with different values of the remaining inputs 𝑎 and 𝑏; write a truth table to capture the behaviour

you observe.

b Based on the truth table above, can you think of a use for this component?

� Q5[A]. bOOleO is a card game involving Boolean algebra. Using AND(r), OR(r) and XOR(r) to denote cards for

Boolean AND, OR and XOR operators whose output is 𝑟, a full deck of bOOleO cards includes the following:

• 48 Boolean operator cards, namely

– 8 × AND(0) cards,

– 8 × AND(1) cards,

– 8 × OR(0) cards,

– 8 × OR(1) cards,

– 8 × XOR(0) cards,

– 8 × XOR(1) cards,

– 8 × NOT cards

and

• 6 Boolean value cards (which have a 0 and 1 on).

There is a Wikipedia entry

https://en.wikipedia.org/wiki/Booleo

with a brief overview of the rules, but, for completeness, an alternative follows:

git # b282dbb9 @ 2025-09-03 6

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_q.pdf
https://en.wikipedia.org/wiki/Booleo


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

• Decide which player will act as the dealer: they should shuffle the operator cards, and (separately) the value

cards. The dealer should then place the value cards between the players (st. the short edges face the players).

An example might be as follows:

0

1

0

1

0

1

0

1

1

0

1

0

The top player faces downward at the value cards (read from left-to right) 110000; the bottom player faces

upward at the value cards 111100.

Finally, the dealer should deal 4 operator cards to each player: this becomes their hand. All remaining operator

cards form a draw deck from which players take cards (the draw deck is placed face down, meaning the card

types cannot be seen).

• The goal of the game, for each player, is to form a valid tree (or pyramid) of operator cards. Some rules for

forming the tree are as follows:

– For a given player, the tree should start from (i.e., the base should be) the value cards and extend outward

towards them.

– The tree should end with (i.e., the tip should be) a single output matching the right-most value card (in the

example, for the bottom player the output should be 0).

– The inputs and outputs of operator cards in the tree should respect Boolean algebra: if one evaluates the

operator (by using inputs from the layer of tree above it), the output should match the following:

𝑥 𝑦 valid operator card

0 0 AND(0) OR(0) XOR(0)

0 1 AND(0) OR(1) XOR(1)

1 0 AND(0) OR(1) XOR(1)

1 1 AND(1) OR(1) XOR(0)

• The game is turn-based, st. one player has a turn then the other and so on until the game terminates. The

non-dealer should start. Within their turn, a player

– draws a new operator card from the draw deck, then

– plays or discards an operator card from their hand

meaning that after their turn, they still have a 4 card hand. If the player plays a card, this implies they will either

– use a NOT operator card, which flips a value card (literally rotating it) selected by the player,

– place any other operator card in the tree, thus extending it, or

– replace any operator card in the tree.

• Some special-cases need further explanation:

– When a card needs to be discarded, it is placed on a discard deck next to the draw deck. If/when the draw

deck is empty, the dealer should shuffle the discard deck which then becomes the new draw deck.

– When a turn is complete, one or both trees need to be reevaluated: any part of either tree which is invalid

(e.g., the output of a given operator card no longer matches the inputs), must be discarded. The reevaluation

process should start at the value cards, and progress layer-by-layer through the entire tree.

– An operator card which is left “dangling” with no input(s), e.g., due to an operator card in the layer above

having been discarded, is not viewed as invalid per se: rather, it is left inactive and then reevaluated when an

input becomes available.

– When a NOT operator card is played, it is removed from play permanently rather than being discarded.

– When a NOT operator card is played, the opponent can optionally cancel the flipping effect by playing a NOT
of their own during their turn. The need to wait and see what the opponent does suggests you should wait to

see if the tree(s) need reevaluation, and only do so if the value card is flipped after all.

• Ignoring the top player, imagine the game state wrt. the bottom player is as follows:

git # b282dbb9 @ 2025-09-03 7

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

0

1

0

1

0

1

0

1

1

0

1

0

∧

x y

1
∨

x y

1
⊕

x y

0

∧

x y

1

Assuming the relevant cards are available, some valid moves and their implication then include:

– Extend the tree by placing an operator card next to the lower AND(1) card, e.g., XOR(1) or AND(0).

– Update the tree by replacing the OR(1) operator card, for example: if we replace it with AND(1) then the card

below it is still valid so is retained, if we replace it with XOR(0) (which is still valid wrt. the inputs) then the

card below becomes invalid and is discarded.

– Use a NOT operator, on the right-most value card whose value is 1 for example. In this case it will flip from 1

to 0, so the XOR(0) card below becomes invalid and is discarded.

Based on this, have a go at the following tasks:

a The pages toward the end of this worksheet include enough cards for a half deck: this implies you first need

to find an opponent to play against, and then combine your cards. Find another student, and see if you can

complete a game of bOOleO. Or, if you prefer, use the Android-based app available at

https://play.google.com/store/apps/details?id=com.oliviercrt.booleo

instead.

b Based on your experience, think about the following:

• There are various strategies relating to different aspects of the game. Think about the first row of operator

cards placed below the value cards: is there a reason to favour one type over another, and why is this the case?

• It is possible for one or other player to hit a “dead end” meaning the game cannot terminate (which is quite

annoying): can you identify this case, and suggest a way to resolve the problem?

• Various extensions or variations of bOOleO are possible; bOOleO-N, for example, introduces NAND and

NOR operator cards. Can you think of any other interesting variations?

For example, one could imagine a “wildcard” operator of some sort: is there a Boolean or physical justification

for such an operator? Or, what happens if you add 𝑛-input, 𝑚-output operators (for 𝑛 > 2 and/or 𝑚 > 1):

can you think of any interesting examples? Or, what about involving more than two players?

git # b282dbb9 @ 2025-09-03 8

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://play.google.com/store/apps/details?id=com.oliviercrt.booleo


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

1

0

1

0

1

0

1

0

¬ ¬ ¬ ¬

∧
𝑥 𝑦

0

∧
𝑥 𝑦

0

∧
𝑥 𝑦

0

∧
𝑥 𝑦

0

∧
𝑥 𝑦

1

∧
𝑥 𝑦

1

∧
𝑥 𝑦

1

∧
𝑥 𝑦

1

git # b282dbb9 @ 2025-09-03 9

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

∨
𝑥 𝑦

0

∨
𝑥 𝑦

0

∨
𝑥 𝑦

0

∨
𝑥 𝑦

0

∨
𝑥 𝑦

1

∨
𝑥 𝑦

1

∨
𝑥 𝑦

1

∨
𝑥 𝑦

1

⊕
𝑥 𝑦

0

⊕
𝑥 𝑦

0

⊕
𝑥 𝑦

0

⊕
𝑥 𝑦

0

⊕
𝑥 𝑦

1

⊕
𝑥 𝑦

1

⊕
𝑥 𝑦

1

⊕
𝑥 𝑦

1

git # b282dbb9 @ 2025-09-03 10

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

	An overview of the NANDboard
	An overview of the NANDboard: the power group
	An overview of the NANDboard: the input group
	An overview of the NANDboard: the output group
	An overview of the NANDboard: the NAND group(s)
	Example #1 (red): validating NAND-like behaviour
	Example #2 (blue): using multiple operators
	Example #3 (green): using switches to model variables

