
© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

COMS10015 lab. worksheet #1

§1. C-class, or core questions

� S1[C]. This question is more like a limited form of guided explanation (or tutorial); as such, there is no associated

solution.

� S2[C]. a The first three cases should all be easy to replicate because a) they only need a few NAND operators,

and b) were covered in the lecture slot(s). Specifically, we saw the following identities:

¬𝑥 ≡ 𝑥 ∧ 𝑥

𝑥 ∧ 𝑦 ≡ (𝑥 ∧ 𝑦) ∧ (𝑥 ∧ 𝑦)
𝑥 ∨ 𝑦 ≡ (𝑥 ∧ 𝑥) ∧ (𝑦 ∧ 𝑦)

Note that to compute 𝑥 ∧ 𝑥, you need two jumper wires connected to the NAND operator input pins; both need

either to be disconnected (meaning 𝑥 = 0) or connected to 1, because both represent the same 𝑥. This is is a little

awkward, so it might be easier to use the fact that

¬𝑥 ≡ 𝑥 ∧ 1.

Now the second input pin is fixed to 1, meaning you only have one jumper wire representing 𝑥 (more closely

matching the NOT operator).

The case of XOR is more difficult. We saw in the lecture slot(s) that it can be written in various different ways,

e.g.,

𝑥 ⊕ 𝑦 ≡ (¬𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ¬𝑦)
≡ (𝑥 ∨ 𝑦) ∧ ¬(𝑥 ∧ 𝑦)

For the sake of argument imagine we instead opt for the former: just by applying the identities above, we can

rewrite it as

𝑡0 = 𝑥 ∧ 𝑥

𝑡1 = 𝑦 ∧ 𝑦

𝑡2 = 𝑡0 ∧ 𝑦

𝑡3 = 𝑡2 ∧ 𝑡2
𝑡4 = 𝑡1 ∧ 𝑥

𝑡5 = 𝑡4 ∧ 𝑡4
𝑡6 = 𝑡3 ∧ 𝑡3
𝑡7 = 𝑡5 ∧ 𝑡5
𝑡8 = 𝑡6 ∧ 𝑡7

so that 𝑥 ⊕ 𝑦 ≡ 𝑡8 having used 9 operators. We can then make incremental improvements by inspection. 𝑡3
computes¬𝑡2 = 𝑡2 ∧ 𝑡2 for example, and then later 𝑡6 computes¬𝑡3 in the same way. So basically, since 𝑡6 = ¬¬𝑡2,

we can eliminate both NOTs via the involution axiom, and similarly for 𝑡7, to get

𝑡0 = 𝑥 ∧ 𝑥

𝑡1 = 𝑦 ∧ 𝑦

𝑡2 = 𝑡0 ∧ 𝑦

𝑡4 = 𝑡1 ∧ 𝑥

𝑡8 = 𝑡2 ∧ 𝑡4

having now used only 5 operators: this seems to be about the best we can hope for. But imagine we opt for the

latter expression that describes XOR instead of the former. Some initial manipulation allows us to rewrite it as

follows

𝑥 ⊕ 𝑦 ≡ (𝑥 ∨ 𝑦) ∧ ¬(𝑥 ∧ 𝑦)
≡ ¬(𝑥 ∧ 𝑦) ∧ (𝑥 ∨ 𝑦) (commutativity)

≡ (𝑥 ∧ ¬(𝑥 ∧ 𝑦)) ∨ (𝑦 ∧ ¬(𝑥 ∧ 𝑦)) (distribution)

≡ ¬¬((𝑥 ∧ ¬(𝑥 ∧ 𝑦)) ∨ (𝑦 ∧ ¬(𝑥 ∧ 𝑦))) (involution)

≡ ¬(¬(𝑥 ∧ ¬(𝑥 ∧ 𝑦)) ∧ ¬(𝑦 ∧ ¬(𝑥 ∧ 𝑦))) (NAND)

≡ (𝑥 ∧ (𝑥 ∧ 𝑦)) ∧ (𝑦 ∧ (𝑥 ∧ 𝑦))
It might seem odd to call this simplification, because the result may look more complicated! Crucially however,

every (sub-)term is now computed using NAND: the expression can therefore be rewritten as

𝑡0 = 𝑥 ∧ 𝑦

𝑡1 = 𝑥 ∧ 𝑡0
𝑡2 = 𝑦 ∧ 𝑡0
𝑡3 = 𝑡1 ∧ 𝑡2

git # b282dbb9 @ 2025-09-03 1

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

so that 𝑥 ⊕ 𝑦 ≡ 𝑡3 now using just 4 operators.

Given an expression in SoP (resp. PoS) form, the example above yields a fairly general strategy for simplification

ready for implementation using NAND (resp. NOR) alone. In short, introducing what seem to be redundant

NOT operators turns out to be an advantage, because we can then apply the de Morgan axiom: this “pushes” a

NOT into the expression, swapping ANDs into NANDs etc.

b The first step is to formulate a working design. We want to produce the following behaviour, as translated from

the description:

𝑎 𝑏 𝑐 Maj(𝑎, 𝑏, 𝑐)
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Note that if three of the inputs are 1 then obviously two of them are 1, so it suffices to detect the latter case only.

This reduces the amount of work required, because we already know AND will produce 1 as an output if both

inputs are 1: we can use AND to “detect” each of three cases where two or more inputs are 1. Put another way,

we can express the function as

Maj(𝑎, 𝑏, 𝑐) = (𝑏 ∧ 𝑐) ∨ (𝑎 ∧ 𝑐) ∨ (𝑎 ∧ 𝑏),

i.e., “the output is 1 when either 𝑏 = 1 and 𝑐 = 1, or 𝑎 = 1 and 𝑐 = 1, or 𝑎 = 1 and 𝑏 = 1”.

The next step is to translate this into NAND operators. Conceptually this is easy, because we just apply the

known identities (as we did above with XOR). However, this quickly becomes hard to manage: when written out

naively in full, we use around 39 NAND operators. With more care, we can share numerous common sub-terms

and write

𝑡0 = 𝑏 ∧ 𝑐

𝑡1 = 𝑎 ∧ 𝑐

𝑡2 = 𝑎 ∧ 𝑏

𝑡3 = 𝑡0 ∧ 𝑡0
𝑡4 = 𝑡1 ∧ 𝑡1
𝑡5 = 𝑡2 ∧ 𝑡2
𝑡6 = 𝑡3 ∧ 𝑡3
𝑡7 = 𝑡4 ∧ 𝑡4
𝑡8 = 𝑡5 ∧ 𝑡5
𝑡9 = 𝑡6 ∧ 𝑡7
𝑡10 = 𝑡9 ∧ 𝑡9
𝑡11 = 𝑡8 ∧ 𝑡10

where Maj(𝑎, 𝑐, 𝑏) = 𝑡11 having used 12 operators. But we can again make improvements to this with initial

simplification of our expression. Applying roughly the same strategy as with XOR, we find that

Maj(𝑎, 𝑏, 𝑐) = (𝑏 ∧ 𝑐) ∨ (𝑎 ∧ 𝑐) ∨ (𝑎 ∧ 𝑏)
≡ (𝑏 ∧ 𝑐) ∨ (𝑎 ∧ (𝑐 ∨ 𝑏)) (distribution)

≡ ¬¬((𝑏 ∧ 𝑐) ∨ (𝑎 ∧ (𝑐 ∨ 𝑏))) (involution)

≡ ¬(¬(𝑏 ∧ 𝑐) ∧ ¬(𝑎 ∧ (𝑐 ∨ 𝑏))) (de Morgan)

≡ ¬(¬(𝑏 ∧ 𝑐) ∧ ¬(𝑎 ∧ ¬¬(𝑐 ∨ 𝑏))) (involution)

≡ ¬(¬(𝑏 ∧ 𝑐) ∧ ¬(𝑎 ∧ ¬(¬𝑐 ∧ ¬𝑏))) (NAND)

≡ (𝑏 ∧ 𝑐) ∧ (𝑎 ∧ ((𝑐 ∧ 𝑐) ∧ (𝑏 ∧ 𝑏)))

and produce an implementation

𝑡0 = 𝑏 ∧ 𝑐

𝑡1 = 𝑐 ∧ 𝑐

𝑡2 = 𝑏 ∧ 𝑏

𝑡3 = 𝑡1 ∧ 𝑡2
𝑡4 = 𝑎 ∧ 𝑡3
𝑡5 = 𝑡0 ∧ 𝑡4

where Maj(𝑎, 𝑐, 𝑏) = 𝑡5 now using just 6 operators.

git # b282dbb9 @ 2025-09-03 2

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

§2. R-class, or revision questions

� S3[R]. There is a set of solutions available at

https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_s.pdf

§3. A-class, or additional questions

� S4[A]. To start with, think a bit about what the majority function is doing: you can think of it as an exercise in

voting, with the output representing a majority decision between voters 𝑎, 𝑏, and 𝑐. For instance if two or more

vote 1 then the output is 1; otherwise two or more must have voted 0 meaning the output is 0.

By using the majority function as suggested in the question, you produce a component called a C-element.
Now there are only two voters, but also a “default result” that decides the output in case of a tie. Put another way,

we can write the as

𝑎 𝑏 𝑐′ = Maj(𝑎, 𝑏, 𝑐)
0 0 0

0 1 𝑐
1 0 𝑐
1 1 1

where 𝑐 and 𝑐′ are the values of 𝑐 before and after we set 𝑎 and 𝑏. The middle two rows are saying that if the value

was 𝑐 = 0 (resp. 𝑐 = 1), then it will remain 𝑐′ = 0 (resp. 𝑐′ = 1); in contrast, the top and bottom rows are saying that

𝑐′ is forced to 0 and 1 respectively, regardless of what 𝑐 was before.

In short, this component retains or remembers some state over time; this differs significantly from those

previously seen, the majority function for example, where the output changes (and is lost) as soon as the inputs

change. Since 𝑐 is representing 1 bit, the C-element acts as a cell that can store 1-bit values, very roughly like a

memory cell does. In later lecture slot(s), we see that it falls within a larger class of components called latches.

git # b282dbb9 @ 2025-09-03 3

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_s.pdf

