© Daniel Page (csdsp@bristol.ac.uk) CS@ UoB

® Remember to register your attendance using the UoB Check-In app. Either

1. download, install, and use the native app” available for Android and iOS, or
2. directly use the web-based app available at

https://check-in.bristol.ac.uk

noting the latter is also linked to via the Attendance menu item on the left-hand side of the Blackboard-based unit
web-site.

® The hardware and software resources located in the MVB Linux lab(s). (e.g., MVB-1.15 or MVB-2.11) are managed
by the Faculty IT Support Team, a subset of IT Services. If you encounter a problem (e.g., a workstation that fails
to boot, an error when you try to use some software, or you just cannot log into your account), they can help: you
can contact them, to report then resolve said problem, via

https://www.bristol.ac.uk/it-support

 The lab. worksheet is written assuming you work in the lab. using UoB-managed and thus supported equipment. If
you need or prefer to use your own equipment, however, various unsupported’ alternatives available: for example,
you could 1) manually install any software dependencies yourself, or 2) use the unit-specific Vagrant® box by
following instructions at

https://cs-uob.github.io/COMS10015/vm

¢ The questions are roughly classified as either C (for core questions, that should be attempted within the lab. slot),
A (for additional questions, that could be attempted within the lab. slot), or R (for revision questions). Keep in
mind that we only expect you to attempt the C-class questions: the other classes are provided purely for your benefit
and/or interest, so there is no problem with nor penalty for totally ignoring them.

¢ There is an associated set of solutions is available, at least for the C-class questions. These solutions are there
for you to learn from (e.g., to provide an explanation or hint, or illustrate a range of different solutions and/or
trade-offs), rather than (purely) to judge your solution against; they often present a solution vs. the solution,
meaning there might be many valid approaches to and solutions for a question.

¢ Keep in mind that various mechanisms exist to get support with and/or feedback on your work; these include
both in-person (e.g., the lab. slot itself) and online (e.g., the unit forum, accessible via the unit web-site) instances.

“https://www.bristol.ac.uk/students/support/it/software-and-online-resources/registering-attendance

bThe implication here is that such alternatives are provided in a best-effort attempt to help you: they are experimental, and so 1o guarantees
about nor support for their use will be offered.

‘https://www.vagrantup.com

git # b282dbb9 @ 2025-09-03 1

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://check-in.bristol.ac.uk
https://www.bristol.ac.uk/it-support
https://cs-uob.github.io/COMS10015/vm
https://www.bristol.ac.uk/students/support/it/software-and-online-resources/registering-attendance
https://www.vagrantup.com

© Daniel Page (csdsp@bristol.ac.uk) CS@ UoB

COMS10015 lab. worksheet #2

Before you start work, download (and, if need be, unarchive”) the file
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/lab-02_q.tar.gz

somewhere secure” in your file system; from here on, we assume ${ARCHIVE} denotes a path to the resulting,
unarchived content. The archive content is intended to act as a starting point for your work, and will be referred

to in what follows.

“For example, you could 1) use tar, e.g., by issuing the command tar xvfz lab-02_g.tar.gzina terminal window, 2) use ark directly: use
the Activities desktop menu item, search for and execute ark, use the Archive—0Open menu item to open lab-082_gq. tar.gz, then extract the
contents via the Extract button, or 3) use ark indirectly: use the Activities desktop menu item, search for and execute dolphin, right-click
on lab-02_q.tar.gz, select Open with, select ark, then extract the contents via the Extract button.

bFor example, the Private sub-directory within your home directory (which, by default, cannot be read by another user).

§1. C-class, or core questions

> Q1[C]. The archive provided includes a C program, divided into two parts:

¢ Figure 1 illustrates the header file rep.h. It first includes stdio.h etc. to allow use of various C standard library
functions such as printf, then defines two macros

— SIZEOF, which gives the number of bytes used to represent the operand x, and
— BITSOF, which gives the number of bits used to represent the operand x.

* Figure 2 illustrates the source code rep.c. It includes two functions:

- rep takes one argument x whose type is int8_t. The purpose of rep is to print the representation of x.
- main acts as the entry point (i.e., where execution starts), which simply calls rep with various test cases (i.e.,
values of t equal to 0, +1, -1, and so on).

You can use the program via an edit-compile-execute style design cycle, which, more concretely, means using a
terminal’ to execute the following commands:

a Fix the working directory:
cd ${ARCHIVE}

b Build the executable, i.e., compile the source code, using the Makefile? provided:

make rep

¢ Execute the executable:
./rep

Notice that the left-hand side of the output produced shows the decimal value of some x, whereas the right-hand

side shows the representation. Put simply, then the idea is that rep illustrates how theory from the lecture slot(s)

is actually used in practice: looking at the relationship between left- and right-hand side, it should be clear that a

givenx is represented internally (i.e., “within the computer”) as a sequence of 8 bits using two’s-compliment. By

using this starting point, you should be able to explore each of the following tasks/challenges:

a Using Wikipedia, for example, improve your understanding of the C bit-wise and (both arithmetic and logical)
shift operators; where relevant, write some short functions to experiment with their behaviour.

b Now armed with your understanding of the operators involved, try to explain how rep works. For example,
consider the expression (x >> i) & 1: what does it do, and why (i.e., what purpose does it have)?

¢ Alter the program to answer the following:

* In the function rep, change the argument x so it has a different (integer) type. For instance, how and why
does using an unsigned type such as uint8_t change the behaviour?

* In the function main, each call to rep is made with a manually selected input t. Motivated by the need for
more exhaustive testing, imagine that we need to try all possible values of t: how could we change main to do
this, ideally using as general an approach way as possible?

1That is, within a BASH shell (or prompt, e.g., a terminal window) or similar: see, e.g., https://en.wikipedia.org/wiki/Unix_shell.
2https://en.wikipedia.org/wiki/Make_(software)

git # b282dbb9 @ 2025-09-03 2

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/lab-02_q.tar.gz
https://en.wikipedia.org/wiki/Unix_shell
https://en.wikipedia.org/wiki/Make_(software)

© Daniel Page (csdsp@bristol.ac.uk) CS@ UoB

8 | #ifndef __REP_H
9 | #define __REP_H

11 | #include <stdbool.h>
12 | #include <stdint.h>
13 | #include <stdio.h>
14 | #include <stdlib.h>

15

16 | #define SIZEOF(x) (sizeof(x))
17 | #define BITSOF(x) (sizeof(x) * 8)
18

19 | #endif

Figure 1: rep.h.

15 |void rep(int8_t x) {

16 printf("%4d_{(10)} =", x);

17

18 for(int i = (BITSOF(x) - 1); i >=0; i--) {
19 printf("%d", (x > 1) & 1);

20 }

21

22 printf("_{(2)}\n");

23 |}

30 | int main(int argc, char* argv[]) {

31 int8_t t;

32

33 t = 0; rep(t);
34 t = +1; rep(t);
35 t = -1; rep(t);
36 t = +127; rep(t);
37 t = -128; rep(t);
38

39 return 0;

40 |3}

Figure 2: rep.c.

¢ In the function rep, the right-hand side of the output, i.e., the representation of an x is expressed as a binary
sequence. Imagine we want to express it by using hexadecimal, which acts as a “short-hand” for the same
binary sequence: how could we change rep to do this, ideally using as general an approach way as possible?

> Q2[C]. The following questions challenge you to take various concepts encountered previously, and apply them
in your own programs. In each case, the solution should be a short C function which applies the concept of
“bit manipulation” (i.e., explicitly manipulating bits in some low-level representation to realise some higher-level
function); take care to verify your solution works by using an appropriate call from main, as with rep above.

a Implement a function whose prototype is
int sign(int8_t x);

and that returns 0 if x is positive, or 1 if x is negative. Try to write the function without using any C comparison
operators.
b Implement a function whose prototype is

int8_t neg(int8_t x);

and that returns the (arithmetic) negation of x, such that neg(x) + x = 0. Try to write the function without
using the C negation or minus operators.

¢ Implement a function whose prototype is
uint8_t mod(uint8_t x, int n);

and that returns x modulo 2™. Try to write the function without using the C modulo operator.

git # b282dbb9 @ 2025-09-03 3

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page (csdsp@bristol.ac.uk) CS@ UoB

§2. R-class, or revision questions
> Q3[R]. There is a set of questions available at
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_q.pdf

Using pencil-and-paper, each asks you to solve a problem relating to Boolean algebra. There are too many for the
lab. session(s) alone, but, in the longer term, the idea is simple: attempt to answer the questions, applying theory
covered in the lecture(s) to do so, as a means of revising and thereby ensuring you understand the material.

> Q4[R]. An online, JavaScript-based quiz relating to number systems should be accessible directly at
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/quiz/jsq-conf_convert.html

or via the unit web-page: it presents randomly generated questions, which require conversion from one rep-
resentation to another and so on. Although the application itself is extremely rudimentary® and somewhat in
development, it provides hands-on practice and, perhaps more crucially, immediate (albeit automated) help and
feedback with this topic.

The idea is simple: take the quiz regularly (e.g., every week or so), and regularly score at least 70%. Although
the results are not collected or assessed, doing so acts as a means of revising and thereby ensuring you understand
the material.

§3. A-class, or additional questions

> Q5[A]. In the lecture slot(s), we explored an algorithm for binary addition; the questions below task you with
developing a concrete implementation of this algorithm in C. Taking care to test your functions after each step,
implement each of the following;:

a A function whose prototype is
int int2seq(bool* X, int8_t x);

that should extract and then store each i-th bit of x in the i-th element of array X; it should return the total
number of elements stored.
b A function whose prototype is
int8_t seq2int(bool* X, int n);
that should basically reverse int2seq by returning a result x whose i-th bit (of n in total) matches the i-th
element of array X.
¢ A function whose prototype is

void add_seq(bool* R, bool* X, bool* Y, int n);

that should compute binary addition of the n element sequences X and Y, producing their sum in R.

In combination, you should be able to write something like

int main(int argc, char* argv[]) {
bool X[8 1, Y[8 1, R[8 1;

int x
int y

107;
14;

int2seq(X, x);
int2seq(Y, y);

add_seq(R, X, Y, 8);
int r = seq2int(R, 8);
printf("add(%d,%d) = %d, %d + %d = %d", x, y, r, X, Y, X + Y);

return 0;

}

and find r = 121 as expected, thereby explaining in enormous detail how the significantly easier and more obvious
way to compute the same result (i.e., r = x + y) actually works!

3The application has only been tested at all with Chrome and Firefox, and even then in a fairly limited manner; if you identify a problem
with the questions (e.g., it generates one that makes no sense, or has no answer) or the Ul (e.g., some element is rendered incorrectly), I would
be glad to know st. I can improve it if/when I get time.

git # b282dbb9 @ 2025-09-03 4

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_q.pdf
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/quiz/jsq-conf_convert.html

© Daniel Page (csdsp@bristol.ac.uk) CS@ UoB

> Q6[A]. A bit-set* is a set data structure. Imagine you have a universe of n objects: a bit-set X captures set
membership (resp. non-membership) of each i-th object by setting X;, i.e., the i-th bit of X, to 1 (resp. 0). Put
another way,
X = { 0 then object number i is ¢ X
"7 1 1 then object numberiis e X

Unlike alternative set data structures (e.g., using a list of objects), a bit-set therefore captures the set meaning versus
the content: it assumes we can give each object a number (i.e., an integer index), and that the objects themselves
are stored in some other data structure. Although this is sometimes disadvantageous, the clear advantage is that
it allows a) very compact representation, and b) very efficient operations on the set, by focusing at a low-level.

a Implement

* abit-set data structure, i.e., a structure bs_t which can represent sub-sets of a fixed sized, n-object universe.
¢ a function
void bs_rep(bs_t* X);
which prints a human-readable version of a bit-set represented by X.

Note that, ideally, if w is the processor word size (e.g., w = 32 or w = 64) then your data structure should support
a choice of n > w.

b Implement functions for some standard set access operations, e.g.,
void bs_add (bs_t* X, int i);

and
void bs_remove(bs_t* X, int i);

which add and remove object i from bit-set X, and
bool bs_is_member(const bs_t* X, int i);

which tests whether i is a member of bit-set X.
¢ Implement functions for some standard set arithmetic operations, e.g.,

void bs_union(bs_t* R, const bs_t* X, const bs_t* Y);

which would compute R, the union of bit-sets X and Y.

> Q7[A]. Inthelecture slot(s), we discussed carry and overflow conditions when computing integer addition: both
are errors, in the sense that the sum computed is incorrect, relating to the fixed range of representable values given
any fixed n. Implement two functions whose prototypes are

uint8_t add_flag u(uint8_t x, uint8_t y);

and
int8_t add_flag_s(int8_t x, int8_t y);

and that both return the sum of x and y. In addition, they should set a global variable called flag to signal whether
said addition was correct, or produced a carry or overflow respectively.

Various approaches are possible, but, since this is an optional question, you may be interested to explore use
of inline assembly language®. Each time an addition instruction is executed by the processor, it will update a set
of (hardware) flags to reflect carry and overflow conditions.

Although these cannot be accessed directly from C, you could access from an alternative based on assembly
language: embedding instructions in your C program (i.e., inline vs. stand-alone) is an attractive compromise
versus writing whole programs in assembly language, and a useful topic to know something about more generally.

4https://en.wikipedia.org/wiki/Bit_array
5See, e.g., https://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html.

git # b282dbb9 @ 2025-09-03 5

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://en.wikipedia.org/wiki/Bit_array
https://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

