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COMS10015 lab. worksheet #2

Although some questions have a written solution below, for others it will be more useful to experiment in a
hands-on manner (e.g., using a concrete implementation). The file

https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/lab-02_s.tar.gz

supports such cases.

§1. C-class, or core questions

� S1[C]. a This is an open-ended question, but selected examples below show how each relevant operator works.

• The bit-wise NOT operator works as follows:

~ 12
↦→ ¬ 12(10)
↦→ ¬ 00001100
↦→ ¬ ⟨0, 0, 1, 1, 0, 0, 0, 0⟩
↦→ ⟨1, 1, 0, 0, 1, 1, 1, 1⟩
↦→ 11110011
↦→ −13(10)

• The bit-wise AND operator works as follows:

-6 & 12
↦→ −6(10) ∧ 12(10)
↦→ 11111010 ∧ 00001100
↦→ ⟨0, 1, 0, 1, 1, 1, 1, 1⟩ ∧ ⟨0, 0, 1, 1, 0, 0, 0, 0⟩
↦→ ⟨0, 0, 0, 1, 0, 0, 0, 0⟩
↦→ 00001000
↦→ 8(10)

• The bit-wise OR operator works as follows:

-6 | 12
↦→ −6(10) ∨ 12(10)
↦→ 11111010 ∨ 00001100
↦→ ⟨0, 1, 0, 1, 1, 1, 1, 1⟩ ∨ ⟨0, 0, 1, 1, 0, 0, 0, 0⟩
↦→ ⟨0, 1, 1, 1, 1, 1, 1, 1⟩
↦→ 11111110
↦→ −2(10)

• The bit-wise XOR operator works as follows:

-6 ^ 12
↦→ −6(10) ⊕ 12(10)
↦→ 11111010 ⊕ 00001100
↦→ ⟨0, 1, 0, 1, 1, 1, 1, 1⟩ ⊕ ⟨0, 0, 1, 1, 0, 0, 0, 0⟩
↦→ ⟨0, 1, 1, 0, 1, 1, 1, 1⟩
↦→ 11110110
↦→ −10(10)

• The (arithmetic) left-shift operator works as follows

-6 << 2
↦→ −6(10) ≪ 2(10)
↦→ 11111010 ≪ 2(10)
↦→ ⟨0, 1, 0, 1, 1, 1, 1, 1⟩ ≪ 2(10)
↦→ ⟨0, 0, 0, 1, 0, 1, 1, 1⟩
↦→ 11101000
↦→ −24(10)
↦→ -24
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which might be a bit confusing because of the way we wrote the bit-sequence: think of the operator as moving
bits so they are placed at more-significant indices (which are at the left-hand end if we write a binary literal),
filling the less-significant indices with the zero.

• The (arithmetic) right-shift operator works as follows

-6 >> 2
↦→ −6(10) ≫ 2(10)
↦→ 11111010 ≫ 2(10)
↦→ ⟨0, 1, 0, 1, 1, 1, 1, 1⟩ ≫ 2(10)
↦→ ⟨0, 1, 1, 1, 1, 1, 1, 1⟩
↦→ 11111110
↦→ −2(10)
↦→ -2

which might be a bit confusing because of the way we wrote the bit-sequence: think of the operator as moving
bits so they are placed at less-significant indices (which are at the right-hand end if we write a binary literal),
filling the more-significant indices with the sign bit.

The main point to grasp for the bit-wise operators is that they are simply applying the associated Boolean
operator to corresponding bits of the operands. Following notation from the lecture slot(s), a unary operator ⊘
such as NOT computes

𝑅𝑖 = ⊘𝑋𝑖

while a binary operator ⊖ such as AND computes

𝑅𝑖 = 𝑋𝑖 ⊖ 𝑌𝑖 .

In each case the operators work element-wise, producing each 𝑖-th bit of the result 𝑅 from corresponding 𝑖-th
bit(s) of operand(s) 𝑋 and 𝑌. Given the elements are bits, the the name “bit-wise operator” should therefore be
clear. That is, the C bit-wise operators do exactly the same: by combining the operands x and y via

r = x & y;

we find the 𝑖-th bit of r is computed by AND’ing together the 𝑖-th bits of x and y. So understanding the result in
each case boils down to understanding the representation of each operand (and the result), then just using the
right truth table.
A second point to grasp is the difference between so-called logical and arithmetic shifts. In C at least, right-
shifting a signed operand implies arithmetic shift whereas an unsigned operand implies logical shift (whereas in
Java, for example, there are distinct operators to do this). The operands here were signed, so the last examples is
an arithmetic arithmetic: this is important, because we fill the more-significant indices with the sign bit (rather
than zero, as would be the case for a logical right-shift) to preserve the sign.

b The way repworks boils down to understanding what the expression

( x >> i ) & 1

does. The purpose of this expression is to extract (or isolate) the i-th bit of x: the function as a whole iterates
through all such bits using the for loop, printing them to demonstrate the underlying representation. Note that
in this case we know x is an 8-bit, signed integer because of the type; the function is more general however, since
the BITSOFmacro will force the loop to iterate the correct number of times for any x.
The expression works in two steps. First it right-shifts x by a distance of i bits; this has the effect of moving the
i-th bit of the operand (here x) into the 0-th bit of the result. Then, we AND this result with 1 which means we
end up with just the 0-th bit: all other bits will be zero (because 0 ∧ 𝑡 ≡ 0 for any 𝑡). Overall, we can therefore
say that

( x >> i ) & 1 =

{
1 if the i-th bit of x is 1
0 if the i-th bit of x is 0

c • Following the recommendation, imagine the type of x is changed to uint8_t. Now, if we call repwith a signed
argument then it is coerced (i.e., an implicit conversion inserted by the compiler, in contrast with an explicit
cast written by the programmer) to match the function parameter: think of this as the compiler automatically
changing each call to read

rep( ( uint8_t )( t ) );

so t is converted from the source type int8_t into the target type uint8_t before being used as the argument
x.
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The conversion here is simple though. Rather than changing the underlying representation, it is just reinter-
preted by using the target rather than source type: when rep is called using

t = 11111111 ↦→ −1(10)

the compiler reinterprets t to provide the argument

x = 11111111 ↦→ 255(10).

So to cut a long story short, the output may not differ the way you expected: the underlying representation
is the same in both cases, but printf maps it to a different value based on the type (i.e., either signed or
unsigned).
The goal of this question is to stress that one representation (a sequence of bits) can be interpreted as many
values: it just depends on our interpretation. In this case the interpretation is determined by the variable
type, and, as a result, you might argue that taking care with types in your program is crucial because
misinterpretation could easily lead to a bug.

• A solution might be something like the following:

int main( int argc, char* argv[] ) {
int n = BITSOF( int8_t );

int lo = -( ( 1 << ( n - 1 ) ) );
int hi = +( ( 1 << ( n - 1 ) ) - 1 );

for( int t = lo; t <= hi; t++ ) {
rep( t );

}
}

In general an 𝑛-bit, signed integer 𝑥 represented using two’s-complement can take values in the range

−2𝑛−1 ≤ 𝑥 ≤ +2𝑛−1 − 1.

We want to iterate through all such values. Provided with 𝑛 by using BITSOF, the function first computes the
same upper- and lower-bounds, and iterates through the range by using a for loop: note that t is initialised
to the lower-bound and is then incremented after each iteration, and that the loop terminates once t equals
the upper-bound.
There are two features which might not be obvious at first:

i The variable t is of type int rather than int8_t as before: why is this? The first point to grasp is how the
for loop works. The easiest way is to rewrite it as a while loop:

int t = 0;

while( t <= 127 ) {
rep( t );
t++;

}

This means exactly the same, but highlights where each of the initialisation, comparison and update
expressions in the for loop version are executed.
Consider the iteration where t = 127. Having first initialised t, we test whether t ≤ 127: it is, so we execute
the loop body then increment t. Then the process repeats again, in the sense we test whether t ≤ 127.
Beforehand we had t = 127, but then we incremented it; the issue therefore boils down to understanding
what the result of 127 + 1 is.
The obvious answer is of course 128, and if t is of type int this is exactly what we get. If we use the type
int8_t instead (meaning a signed, 8-bit two’s-complement integer) we cannot represent this value: 127 + 1
overflows (or “wraps around”) to −128. As a result we find that −128 ≤ 127, so basically the loop never
terminates! To sum up, there are various ways to resolve this problem, but using the type int is arguably
the most straightforward: we can represent all values within the required range, plus we know from the
question above that when used as an argument in a call to rep it will be coerced into the correct type
automatically.

ii The way the bounds lo and hi are computed might look quite (even overly) complicated: again the idea is to
think about the representation of values in terms of bits. Both expressions depend on the fact that left-shift
by a distance of 𝑘 bits is the same as multiplying by 2𝑘 . This is true because the left-shift operation moves
each 𝑖-th bit in the operand into the (𝑖 + 𝑘)-th bit in the result: having been weighted by 2𝑖 beforehand, it
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will be weighted by 2𝑖+𝑘 afterwards. For example,

1 << 2
↦→ 1(10) ≪ 2(10)
↦→ 00000001 ≪ 2(10)
↦→ 00000100
↦→ 4(10)

and of course equals 4 = 22. So if we set 𝑘 = 𝑛 − 1, then 1(10) ≪ (𝑛 − 1) evaluates to 2𝑛−1 and our bounds are
therefore as required.

• A solution might be something like the following
char itox( int x ) {
if ( x >= 0 && x <= 9 ) {
return ( char )( ( int )( '0' ) + x );

}
else if( x >= 10 && x <= 15 ) {
return ( char )( ( int )( 'A' ) + x - 10 );

}

return '?';
}

void rep( int8_t x ) {
printf( "%4d_{(16)} = ", x );

for( int i = ( BITSOF( x ) - 4 ); i >= 0; i -= 4 ) {
printf( "%c", itox( ( x >> i ) & 0xF ) );

}

printf( "_{(2)}\n" );
}

which can be explained via two changes to the for loop in rep. Both changes are motivated by the fact that
a sub-sequence of 4 bits can be expressed using 1 hexadecimal digit: since there are 24 = 16 possible 4-bit
sequences and each hexadecimal digit is between 0 and 15, we have that

{0, 0, 0, 0} ↦→ 0(16)
{1, 0, 0, 0} ↦→ 1(16)

...
{1, 0, 0, 1} ↦→ 9(16)
{0, 1, 0, 1} ↦→ 𝐴(16)
{1, 1, 0, 1} ↦→ 𝐵(16)
{0, 0, 1, 1} ↦→ 𝐶(16)
{1, 0, 1, 1} ↦→ 𝐷(16)
{0, 1, 1, 1} ↦→ 𝐸(16)
{1, 1, 1, 1} ↦→ 𝐹(16)

First, the loop counter initialisation and increment expressions is changed so that it decrements in steps of 4
rather than 1: if BITSOF( x ) = 8 for example, we now have i ∈ {4, 0} rather than i ∈ {7, 6, 5, 4, 3, 2, 1, 0}.
Second, the loop body is changed so that 4-bit rather than 1-bit sub-sequence of x is extracted in each iteration.
This sub-sequence is converted into a hexadecimal digit via a call to itox, then, finally, printed as before.

� S2[C]. An associated solution, i.e., a (documented) implementation, for this question can be found in the archive
provided. Beyond this, however, the mod function has a fairly wide range of potential solutions: some seem worthy
of more detailed discussion, which is the goal of the following. To give a consistent example throughout, consider
the case where

x = 15(10)
↦→ 00001111(2)

n = 2(10)

so we know mod should compute
x mod 2n = 15 mod 22 = 3.

• If you look at the binary values involved, i.e.,

x = 15(10)
↦→ 00001111(2)

x mod 2n = 3(10)
↦→ 00000011(2)

git # b282dbb9 @ 2025-09-03 4

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

it becomes clear that computing xmodulo 2n, basically means retaining the n LSBs and “killing off” or zero’ing
out all remaining MSBs of x. For example, here we want to retain the n = 2 LSBs. So, with this in mind, you
might reasonably think that a good solution would be a function such as
uint8_t mod( uint8_t x, int n ) {
return ( x << ( BITSOF( x ) - n ) ) >> ( BITSOF( x ) - n );

}

Why might this work? Given BITSOF( x ) = 8 in this case (since uint8_t is the type of x), we know

BITSOF( x ) - n = 8 − 2 = 6

and should find, in theory, that
x = 00001111(2)
x ≪ 6 = 11000000(2)

( x ≪ 6 ) ≫ 6 = 00000011(2)
So by first left-shifting we kill off the BITSOF( x ) - n, i.e., 6 MSBs, and the right-shift the result back into place
to get the result we want. In practice, however, it fails to work: using the same example computes a result of 15,
which is confusing.
The reason is quite subtle, but highlights the value of understanding the C type system. We can start by instead
looking at a simpler expression, namely

x << ( BITSOF( x ) - n )

which we may as well write as
x << 6

given our example. If look at the C specification, e.g.,

https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS/ISO/IEC+9899-1999+(R2005)

then Section 6.5.7 tells us what the semantics (or meaning) of left- and right-shift should be: for example, it
states that

Integer promotions are performed on each of the operands. The type of the result is that of the
promoted left operand.

What does that mean? Well, Section 6.3.1.1 tells us

If an int can represent all values of the original type, the value is converted to an int; otherwise, it is
converted to an unsigned int.

and that, in a nutshell, explains the problem: whereas we wrote

x << 6

the compiler is interpreting this more like

( int )( x ) << 6

because the right-hand operand is (implicitly) cast, or converted into an int type before the shift happens; the
type of the result is also int. So we actually compute

x = 00001111(2)
( int )( x ) = 00000000000000000000000000001111(2)
( int )( x ) ≪ 6 = 00000000000000000000001111000000(2)

( ( int )( x ) ≪ 6 ) ≫ 6 = 00000000000000000000000000001111(2)

and hence end up with the result 15 not 3 because the MSBs are not killed off as we expected. In fact, we can
check this using
uint8_t mod_v1( uint8_t x, int n ) {
return ( x << ( BITSOF( x ) - n ) ) >> ( BITSOF( x ) - n );

}

uint8_t mod_v2( uint8_t x, int n ) {
return ( uint8_t )( x << ( BITSOF( x ) - n ) ) >> ( BITSOF( x ) - n );

}
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where the second function (explicitly) casts the right-hand operand of the right-shift into a uint8_t. You can
see the impact of this additional cast using the -S flag when compiling via gcc: it produces assembly language
as output, rather than an executable. Removing (a lot of) detail for clarity, we get
mod_v1: movl $8, %ecx

movzbl %dil, %eax
subl %esi, %ecx
sall %cl, %eax
sarl %cl, %eax
ret

mod_v2: movl $8, %ecx
movzbl %dil, %eax
subl %esi, %ecx
sall %cl, %eax
movzbl %al, %eax
sarl %cl, %eax
ret

Notice the only difference is an extra movzbl instruction, which can be read as “move zero-extended byte to long”:
it takes the least-significant byte of register eax, and zero-extends it (i.e., adds 24 zeros to the more-significant
end). Either way, we get the correct result because

x = 00001111(2)
( int )( x ) = 00000000000000000000000000001111(2)
( int )( x ) ≪ 6 = 00000000000000000000001111000000(2)

( uint8_t )( ( int )( x ) ≪ 6 ) = 11000000(2)
( uint8_t )( ( int )( x ) ≪ 6 ) ≫ 6 = 00000011(2)

So there we are: subtle, potentially quite annoying because the idea behind the solution seems sound, but
actually correct behaviour per the C specification!

• What if we want to avoid the cast, and produce a solution which is more intuitive? We can (re)use the same
reasoning to some extent, and consider this solution
uint8_t mod( uint8_t x, int n ) {
return x ^ ( ( x >> n ) << n );

}

instead. At face value it looks similar; there are still two shifts, for example. Taking the same approach, i.e.,
inspecting the binary values at each step, we can show why this works:

x = 00001111(2)
x ≫ 2 = 00000011(2)

( x ≫ 2 ) ≪ 2 = 00001100(2)
x ⊕ ( ( x ≫ 2 ) ≪ 2 ) = 00000011(2)

Put another way, we first kill off the LSBs (rather than MSBs as in the previous approach) by first right- and
then left-shifting by n. We then use that result, in which only the original MSBs remain, to kill off the MSBs we
wanted to in the first place: the XOR of said result with x achieves this, noting we could have used subtraction
as an alternative.
Although the same reasoning to the above applies wrt. casting of the short operands, we are saved from the
same problem by right-shifting as the first step: the value cannot “grow” to the right as it can if we extend the
length via a cast to int, so we can be confident the LSBs are killed off as intended.

§2. R-class, or revision questions

� S3[R]. There is a set of solutions available at

https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_s.pdf

§3. A-class, or additional questions

� S5[A]. An associated solution, i.e., a (documented) implementation, for this question can be found in the archive
provided.

� S6[A]. An associated solution, i.e., a (documented) implementation, for this question can be found in the archive
provided.

� S7[A]. An associated solution, i.e., a (documented) implementation, for this question can be found in the archive
provided.
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