
© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

COMS10015 lab. worksheet #4

Although some questions have a written solution below, for others it will be more useful to experiment in a
hands-on manner (e.g., using a concrete implementation). The file

https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/lab-04_s.tar.gz

supports such cases.

§1. C-class, or core questions

� S1[C]. An associated solution, i.e., a (documented) implementation, for this question can be found in the archive
provided. Note that one can produce such a solution by taking content from the lecture slot(s), then translating
(or “porting”) it into a LogisimEvo implementation: for reference, Figure 1 captures that content.

� S2[C]. An associated solution, i.e., a (documented) implementation, for this question can be found in the archive
provided. Unlike the previous question, however, we need to formulate a design before then implementing
and simulating it: doing so involves consideration of two problems, or steps. First, how can we detect whether
𝑥 + 𝑦 < 2𝑛 or 𝑥 + 𝑦 ≥ 2𝑛? Second, how can we use our detection mechanism to force 𝑟 = 𝑥 + 𝑦 or 𝑟 = 2𝑛 − 1
respectively?
• The first problem could be solved using a general-purpose 𝑛-bit comparator; if we can perform a less-than

comparison, i.e., 𝑥+ 𝑦 < 2𝑛 , this is enough. The second problem could be solved using a general-purpose 2-way,
𝑛-bit multiplexer: in short, we use the output of the comparator as a control signal which means the multiplexer
will select between 𝑥 + 𝑦 and 2𝑛 − 1.

• The first problem is easier than it sounds. A special-purpose solution is possible, because the carry-out 𝑐𝑜
produced by the existing ripple-carry adder captures this information: if 𝑐𝑜 = 0 then we know 𝑥 + 𝑦 < 2𝑛 ,
whereas if 𝑐𝑜 = 1 then we know 𝑥 + 𝑦 ≥ 2𝑛 . The second problem is also easier than it sounds. A special-purpose
solution is possible, because the 𝑛-bit representation of 2𝑛 − 1 is such that 𝑟𝑖 = 1 for 0 ≤ 𝑖 < 𝑛. Denoting
the ripple-carry adder output as 𝑟′, we can simply OR 𝑐𝑜 with each 𝑟′

𝑖
therefore: this means if 𝑐𝑜 = 0 then

𝑟𝑖 = 𝑐𝑜 ∨ 𝑟′
𝑖
= 0 ∨ 𝑟′

𝑖
= 𝑟′

𝑖
, whereas if 𝑐𝑜 = 1 then 𝑟𝑖 = 𝑐𝑜 ∨ 𝑟′

𝑖
= 1 ∨ 𝑟′

𝑖
= 1.

§2. R-class, or revision questions

� S3[R]. There is a set of solutions available at

https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_s.pdf

§3. A-class, or additional questions

� S4[A]. An associated solution, i.e., a (documented) implementation, for this question can be found in the archive
provided. Before producing that implementation, however, we follow the same process as we did for the existing
design:
• Step #1: implementing an SR-type latch. We already have the NOR-based version: using 𝑆′ and 𝑅′ to denote

the internal latch inputs, given 𝑄 = 𝑅′ ∨ ¬𝑄 and ¬𝑄 = 𝑆′ ∨ 𝑄 we find that

– if 𝑆′ = 1, 𝑅′ = 0 then only 𝑄 = 1, ¬𝑄 = 0 is valid,
– if 𝑆′ = 0, 𝑅′ = 1 then only 𝑄 = 0, ¬𝑄 = 1 is valid,
– if 𝑆′ = 0, 𝑅′ = 0 then both 𝑄 = 1, ¬𝑄 = 0 and 𝑄 = 0, ¬𝑄 = 1 are valid (i.e., the latch is in storage mode),
– if 𝑆′ = 1, 𝑅′ = 1 then only 𝑄 = 0, ¬𝑄 = 0 is valid (although not ideal since ¬𝑄 should be the inverse of 𝑄).

With the NAND-based version, however, we need to produce a reasoned alternative. Although it seems a
leap of faith, the natural question is whether we can simply replace the cross-coupled NOR gates with NAND
gates. The short answer is yes, but we need to justify why and what caveats apply. Given 𝑄 = 𝑅′ ∧ ¬𝑄 and
¬𝑄 = 𝑆′ ∧ 𝑄 we find that

– if 𝑆′ = 1, 𝑅′ = 0 then only 𝑄 = 1, ¬𝑄 = 0 is valid,
– if 𝑆′ = 0, 𝑅′ = 1 then only 𝑄 = 0, ¬𝑄 = 1 is valid,
– if 𝑆′ = 1, 𝑅′ = 1 then both 𝑄 = 1, ¬𝑄 = 0 and 𝑄 = 0, ¬𝑄 = 1 are valid (i.e., the latch is in storage mode),

git # b282dbb9 @ 2025-09-03 1

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/lab-04_s.tar.gz
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_s.pdf


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

0

Φ1

Φ2

1 0 0 0

r 0 r 1

r n
−

1

rst

(a) A latch based design, using a 2-phase clock.

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

0

clk

1 0 0 0

r 0 r 1

r n
−

1

rst

(b) A flip-flop based design, using a 1-phase clock.

Figure 1: A design for a cyclic 𝑛-bit counter.

git # b282dbb9 @ 2025-09-03 2

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

– if 𝑆′ = 0, 𝑅′ = 0 then only 𝑄 = 1, ¬𝑄 = 1 is valid (although not ideal since ¬𝑄 should be the inverse of 𝑄).

So the NAND-based version provides basically the same behaviour, but it differs in terms of the input required
for storage mode: 𝑆′ = 0, 𝑅′ = 0 implies storage mode in the NOR-based version, but now 𝑆′ = 1, 𝑅′ = 1 implies
storage mode in the NAND-based version.

• Step #2: adding an enable signal. In the existing design, we added an enable signal by setting

𝑆′ = 𝑆 ∧ 𝑒𝑛
𝑅′ = 𝑅 ∧ 𝑒𝑛

The idea was that since 𝑡 ∧ 0 = 0 and 𝑡 ∧ 1 = 𝑡 for any 𝑡, 𝑒𝑛 gated (i.e., conditionally turned off) 𝑆 and 𝑅: if 𝑒𝑛 = 0
then 𝑆′ = 𝑅′ = 0 irrespective of 𝑆 and 𝑅 so the internal latch is in storage mode, but if 𝑒𝑛 = 1 then 𝑆′ = 𝑆 and
𝑅′ = 𝑅 so the internal latch is controlled by 𝑆 and 𝑅 as normal.

– For NOR we have 𝑡 ∨ 0 = ¬𝑡 and 𝑡 ∨ 1 = 0, As is, this swaps the semantics for 𝑒𝑛, i.e., 𝑒𝑛 = 1 and 𝑒𝑛 = 0
mean not enabled (or storage mode) and enabled (or update); we can deal with this by adding a NOR-based
NOT gate to swap them back again. However, the additional NOT in ¬𝑡 (versus just 𝑡) implies 𝑆 and 𝑅 will
be swapped, or, equivalently 𝑄 and ¬𝑄 are swapped.

– For NAND we have 𝑡 ∧ 0 = 1 and 𝑡 ∧ 1 = ¬𝑡. This matches the semantics for 𝑒𝑛, i.e., 𝑒𝑛 = 0 and 𝑒𝑛 = 1 mean
not enabled (or storage mode) and enabled (or update); no additional NAND-based NOT gate is required
therefore. However, the additional NOT in ¬𝑡 (versus just 𝑡) implies 𝑆 and 𝑅 will be swapped, or, equivalently
𝑄 and ¬𝑄 are swapped.

• Step #3: forcibly avoiding the case where 𝑆 = 𝑅 = 0. In the existing design, we avoided the case where
𝑆 = 𝑅 = 0 by setting 𝑅 = ¬𝑆 = 𝐷. So with the NOR-based version we set 𝑅 = ¬𝑆 ≡ 𝑆 ∨ 𝑆 = 𝐷, whereas with
the NAND-based version, 𝑅 = ¬𝑆 ≡ 𝑆 ∧ 𝑆 = 𝐷.

git # b282dbb9 @ 2025-09-03 3

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

