COMS10015 lab. worksheet #4

Although some questions have a written solution below, for others it will be more useful to experiment in a hands-on manner (e.g., using a concrete implementation). The file

https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/lab-04_s.tar.gz

supports such cases.

§1. C-class, or core questions

- ▷ **S1**[C]. An associated solution, i.e., a (documented) implementation, for this question can be found in the archive provided. Note that one can produce such a solution by taking content from the lecture slot(s), then translating (or "porting") it into a LogisimEvo implementation: for reference, Figure 1 captures that content.
- \triangleright S2[C]. An associated solution, i.e., a (documented) implementation, for this question can be found in the archive provided. Unlike the previous question, however, we need to formulate a design before then implementing and simulating it: doing so involves consideration of two problems, or steps. First, how can we detect whether $x + y < 2^n$ or $x + y \ge 2^n$? Second, how can we use our detection mechanism to force r = x + y or $r = 2^n 1$ respectively?
 - The first problem could be solved using a general-purpose n-bit comparator; if we can perform a less-than comparison, i.e., $x + y < 2^n$, this is enough. The second problem could be solved using a general-purpose 2-way, n-bit multiplexer: in short, we use the output of the comparator as a control signal which means the multiplexer will select between x + y and $2^n 1$.
 - The first problem is easier than it sounds. A special-purpose solution is possible, because the carry-out co produced by the existing ripple-carry adder captures this information: if co = 0 then we know $x + y < 2^n$, whereas if co = 1 then we know $x + y \ge 2^n$. The second problem is also easier than it sounds. A special-purpose solution is possible, because the n-bit representation of $2^n 1$ is such that $r_i = 1$ for $0 \le i < n$. Denoting the ripple-carry adder output as r', we can simply OR co with each r'_i therefore: this means if co = 0 then $r_i = co \lor r'_i = 0 \lor r'_i = r'_i$, whereas if co = 1 then $r_i = co \lor r'_i = 1 \lor r'_i = 1$.

§2. R-class, or revision questions

 \triangleright S3[R]. There is a set of solutions available at

https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_s.pdf

§3. A-class, or additional questions

- ▷ **S4[A].** An associated solution, i.e., a (documented) implementation, for this question can be found in the archive provided. Before producing that implementation, however, we follow the same process as we did for the existing design:
 - Step #1: implementing an SR-type latch. We already have the NOR-based version: using S' and R' to denote the internal latch inputs, given $Q = R' \vee \neg Q$ and $\neg Q = S' \vee Q$ we find that
 - if S' = 1, R' = 0 then only Q = 1, $\neg Q = 0$ is valid,
 - if S' = 0, R' = 1 then only Q = 0, $\neg Q = 1$ is valid,
 - if S' = 0, R' = 0 then both Q = 1, $\neg Q = 0$ and Q = 0, $\neg Q = 1$ are valid (i.e., the latch is in storage mode),
 - if S' = 1, R' = 1 then only Q = 0, $\neg Q = 0$ is valid (although not ideal since $\neg Q$ should be the inverse of Q).

With the NAND-based version, however, we need to produce a reasoned alternative. Although it seems a leap of faith, the natural question is whether we can simply replace the cross-coupled NOR gates with NAND gates. The short answer is yes, but we need to justify why and what caveats apply. Given $Q = R' \wedge \neg Q$ and $\neg Q = S' \wedge Q$ we find that

- if S' = 1, R' = 0 then only Q = 1, $\neg Q = 0$ is valid,
- if S' = 0, R' = 1 then only Q = 0, $\neg Q = 1$ is valid,
- if S' = 1, R' = 1 then both Q = 1, $\neg Q = 0$ and Q = 0, $\neg Q = 1$ are valid (i.e., the latch is in storage mode),

(a) A latch based design, using a 2-phase clock.

(b) A flip-flop based design, using a 1-phase clock.

Figure 1: *A design for a cyclic n-bit counter.*

- if S' = 0, R' = 0 then only Q = 1, $\neg Q = 1$ is valid (although not ideal since $\neg Q$ should be the inverse of Q).

So the NAND-based version provides basically the same behaviour, but it differs in terms of the input required for storage mode: S' = 0, R' = 0 implies storage mode in the NOR-based version, but now S' = 1, R' = 1 implies storage mode in the NAND-based version.

• Step #2: adding an enable signal. In the existing design, we added an enable signal by setting

$$S' = S \wedge en$$

 $R' = R \wedge en$

The idea was that since $t \land 0 = 0$ and $t \land 1 = t$ for any t, en gated (i.e., conditionally turned off) S and R: if en = 0 then S' = R' = 0 irrespective of S and R so the internal latch is in storage mode, but if en = 1 then S' = S and R' = R so the internal latch is controlled by S and R as normal.

- − For NOR we have $t \nabla 0 = \neg t$ and $t \nabla 1 = 0$, As is, this swaps the semantics for en, i.e., en = 1 and en = 0 mean not enabled (or storage mode) and enabled (or update); we can deal with this by adding a NOR-based NOT gate to swap them back again. However, the additional NOT in $\neg t$ (versus just t) implies S and R will be swapped, or, equivalently Q and $\neg Q$ are swapped.
- For NAND we have t $\overline{\land}$ 0 = 1 and t $\overline{\land}$ 1 = ¬t. This matches the semantics for en, i.e., en = 0 and en = 1 mean not enabled (or storage mode) and enabled (or update); no additional NAND-based NOT gate is required therefore. However, the additional NOT in ¬t (versus just t) implies S and R will be swapped, or, equivalently Q and ¬Q are swapped.
- Step #3: forcibly avoiding the case where S = R = 0. In the existing design, we avoided the case where S = R = 0 by setting $R = \neg S = D$. So with the NOR-based version we set $R = \neg S \equiv S \ \overline{\lor} \ S = D$, whereas with the NAND-based version, $R = \neg S \equiv S \ \overline{\land} \ S = D$.