
© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

COMS10015 lab. worksheet #8

Although some questions have a written solution below, for others it will be more useful to experiment in a
hands-on manner (e.g., using a concrete implementation). The file

https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/lab-08_s.tar.gz

supports such cases.

§1. C-class, or core questions

� S1[C]. First we need to take stock of the problem itself: there is basically one input (the emergency stop button,
denoted 𝑟𝑠𝑡) and six outputs (the traffic light values, denoted 𝑀𝑔 , 𝑀𝑎 and 𝑀𝑟 for the main road and 𝐴𝑔 , 𝐴𝑎 and
𝐴𝑟 for the access road). We know that Figure 1 can act as a starting point, in the sense that we just need to fill in
each block with a problem-specific implementation.

Latch based
register(s)

δ

ω

Latch based
register(s)

Input

Output

Φ1

Φ2

Q

Q

Q′

Q′

(a) Using a 2-phase clock.

Flip-flop based
register(s)

δ

ω

Input

Output

Clock

Q

Q

Q′

(b) Using a 1-phase clock.

Figure 1: Two generic FSM frameworks (for different clocking strategies) into which one can place implementations of the
state, 𝛿 (the transition function) and 𝜔 (the output function).

Next we try to develop a precise description of the FSM behaviour. We need 7 states in total: 𝑆0 , 𝑆1 , . . . , 𝑆5
represent steps in the normal traffic light sequence, and 𝑆6 represents an extra emergency stop state. Figure 2
shows both a tabular and diagrammatic description of the transition function; in essence, it is similar to the counter
example (in the sense that it cycles from 𝑆0 through to 𝑆5 and back again) if 𝑟𝑠𝑡 = 0, but if 𝑟𝑠𝑡 = 1 in any state then
we move to the 𝑆6. As an aside, however, it is vital to view this description is one among several derived from what
is (by design) a rather imprecise question. Put another way, we have made several assumptions and/or decisions.
One example is the decision to use a separate emergency stop state, and have the FSM enter this as the next state
of any current state if 𝑟𝑠𝑡 = 1; the red lights are both forced on as a result of being in the emergency stop state,
therefore, rather than by 𝑟𝑠𝑡 per se. Another valid approach might be to have 𝜔 depend on 𝑟𝑠𝑡 as well (rather than
only 𝑄, turning it from a Moore-based into a Mealy-based FSM) and forcing the red lights on as soon as 𝑟𝑠𝑡 = 1
irrespective of what state the FSM is in. This is arguably more attractive, in the sense that now the emergency stop
is instant: we no longer need to wait for the next clock cycle when the next state is latched. Likewise, we have
opted to make the first state listed in the question (i.e., green on the main road and red on the access road) the
initial state; since the sequence is cyclic this decision seems a little arbitrary, so other options (plus what state the
FSM restarts in after an emergency stop) might also seem reasonable.

Accepting the above, however, we next follow standard practice by translating the description into an imple-
mentation. Since 23 = 8 > 7 we can represent the current and next states via 3-bit integers 𝑄 = ⟨𝑄0 , 𝑄1 , 𝑄2⟩ and

git # b282dbb9 @ 2025-09-03 1

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/lab-08_s.tar.gz

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝑄′ = ⟨𝑄′
0 , 𝑄

′
1 , 𝑄

′
2⟩ where

𝑆0 ↦→ ⟨0, 0, 0⟩ ≡ 000(2)
𝑆1 ↦→ ⟨1, 0, 0⟩ ≡ 001(2)
𝑆2 ↦→ ⟨0, 1, 0⟩ ≡ 010(2)
𝑆3 ↦→ ⟨1, 1, 0⟩ ≡ 011(2)
𝑆4 ↦→ ⟨0, 0, 1⟩ ≡ 100(2)
𝑆5 ↦→ ⟨1, 0, 1⟩ ≡ 101(2)
𝑆6 ↦→ ⟨0, 1, 1⟩ ≡ 110(2)

and we have one unused state (namely 𝑆7 ↦→ ⟨1, 1, 1⟩). As a result, the input and output registers can each be
implemented by using three 1-bit storage components, i.e., either D-type latches or flip-flops.

Now we have a concrete value for each abstract state label, we can expand the tabular description of the FSM
into a (lengthy) truth table:

𝛿 𝜔
𝑟𝑠𝑡 𝑄2 𝑄1 𝑄0 𝑄′

2 𝑄′
1 𝑄′

0 𝑀𝑔 𝑀𝑎 𝑀𝑟 𝐴𝑔 𝐴𝑎 𝐴𝑟

0 0 0 0 0 0 1 1 0 0 0 0 1
0 0 0 1 0 1 0 0 1 0 0 0 1
0 0 1 0 0 1 1 0 0 1 0 1 0
0 0 1 1 1 0 0 0 0 1 1 0 0
0 1 0 0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1 0 0 0 1
0 1 1 0 0 0 0 0 0 1 0 0 1
0 1 1 1 ? ? ? ? ? ? ? ? ?
1 0 0 0 1 1 0 1 0 0 0 0 1
1 0 0 1 1 1 0 0 1 0 0 0 1
1 0 1 0 1 1 0 0 0 1 0 1 0
1 0 1 1 1 1 0 0 0 1 1 0 0
1 1 0 0 1 1 0 0 0 1 0 1 0
1 1 0 1 1 1 0 0 1 0 0 0 1
1 1 1 0 1 1 0 0 0 1 0 0 1
1 1 1 1 ? ? ? ? ? ? ? ? ?

Although this looks intimidating, we can use decomposition to consider the transition function and the output
function and then each output signal within them separately:
• The transition function 𝛿 is just three Boolean expressions, one for each 𝑄′

𝑖
, using 𝑟𝑠𝑡, 𝑄2, 𝑄1 and 𝑄0 as input.

The Karnaugh maps

00 01 11 10

00

01

11

10

Q′2

rst

Q1

Q2

Q0

0
0

0
1

1
2

0
3

0
4

1
5

0
6

?
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

?
15

00 01 11 10

00

01

11

10

Q′1

rst

Q1

Q2

Q0

0
0

1
1

0
2

0
3

1
4

0
5

0
6

?
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

?
15

00 01 11 10

00

01

11

10

Q′0

rst

Q1

Q2

Q0

1
0

0
1

1
2

0
3

1
4

0
5

0
6

?
7

0
8

0
9

0
10

0
11

0
12

0
13

0
14

?
15

can be used to produce said expressions:

𝑄′
2 = (𝑟𝑠𝑡) ∨

(𝑄2 ∧ ¬𝑄1 ∧ ¬𝑄0) ∨
(𝑄1 ∧ 𝑄0)

𝑄′
1 = (𝑟𝑠𝑡) ∨

(¬𝑄2 ∧ ¬𝑄1 ∧ 𝑄0) ∨
(¬𝑄2 ∧ 𝑄1 ∧ ¬𝑄0)

𝑄′
0 = (¬𝑟𝑠𝑡 ∧ ¬𝑄1 ∧ ¬𝑄0) ∨

(¬𝑟𝑠𝑡 ∧ ¬𝑄2 ∧ ¬𝑄0)

git # b282dbb9 @ 2025-09-03 2

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝛿 𝜔
𝑄 𝑄′ 𝑀𝑔 𝑀𝑎 𝑀𝑟 𝐴𝑔 𝐴𝑎 𝐴𝑟

𝑟𝑠𝑡 = 0 𝑟𝑠𝑡 = 1
𝑆0 𝑆1 𝑆6 1 0 0 0 0 1
𝑆1 𝑆2 𝑆6 0 1 0 0 0 1
𝑆2 𝑆3 𝑆6 0 0 1 0 1 0
𝑆3 𝑆4 𝑆6 0 0 1 1 0 0
𝑆4 𝑆5 𝑆6 0 0 1 0 1 0
𝑆5 𝑆0 𝑆6 0 1 0 0 0 1
𝑆6 𝑆0 𝑆6 0 0 1 0 0 1

(a) A tabular description.

S0

startstart

S1

S2

S3

S4

S5

S6

rst = 0

rst = 1
rst = 0

rst = 1

rst = 0
rst = 1

rst = 0

rst = 1

rst = 0

rst = 1

rst = 0

rst = 1

rst = 0

rst = 1

(b) A diagrammatic description.

Figure 2: An FSM for the traffic light controller.

• The output function 𝜔 is just six Boolean expressions, one for each 𝑀𝑖 and 𝐴 𝑗 , using 𝑟𝑠𝑡, 𝑄2, 𝑄1 and 𝑄0 as input.
The Karnaugh maps

00 01 11 10

0

1

Mg

Q1

Q2

Q0

1
0

0
1

0
2

0
3

0
4

0
5

0
6

?
7

00 01 11 10

0

1

Ma

Q1

Q2

Q0

0
0

1
1

0
2

1
3

0
4

0
5

0
6

?
7

00 01 11 10

0

1

Mr

Q1

Q2

Q0

0
0

0
1

1
2

0
3

1
4

1
5

1
6

?
7

00 01 11 10

0

1

Ag

Q1

Q2

Q0

0
0

0
1

0
2

0
3

0
4

1
5

0
6

?
7

00 01 11 10

0

1

Aa

Q1

Q2

Q0

0
0

0
1

1
2

0
3

1
4

0
5

0
6

?
7

00 01 11 10

0

1

Ar

Q1

Q2

Q0

1
0

1
1

0
2

1
3

0
4

0
5

1
6

?
7

can be used to produce said expressions:

𝑀𝑔 = (¬𝑄2 ∧ ¬𝑄1 ∧ ¬𝑄0)
𝑀𝑎 = (¬𝑄1 ∧ 𝑄0)
𝑀𝑟 = (𝑄1) ∨

(𝑄2 ∧ ¬𝑄0)

𝐴𝑔 = (𝑄1 ∧ 𝑄0)
𝐴𝑎 = (¬𝑄2 ∧ 𝑄1 ∧ ¬𝑄0) ∨

(𝑄2 ∧ ¬𝑄1 ∧ ¬𝑄0)
𝐴𝑟 = (¬𝑄2 ∧ ¬𝑄1) ∨

(¬𝑄1 ∧ 𝑄0) ∨
(𝑄2 ∧ 𝑄1)

The final step is to implement everything in LogisimEvo. Although this requires some effort, conceptually it means
completing Figure 1 with 1) instantiations of the input and output registers, plus 2) instantiations of 𝛿 and 𝜔, i.e.,
a translation of each expression into corresponding logic gates.

§2. R-class, or revision questions

� S2[R]. There is a set of solutions available at

https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_s.pdf

git # b282dbb9 @ 2025-09-03 3

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_s.pdf

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

§3. A-class, or additional questions

� S3[A]. There is no associated solution for this question, because it is somewhat open-ended with respect to 1) the
goal or challenge presented, and/or 2) the assumptions and decisions you make, and therefore the design space
of viable solutions.

git # b282dbb9 @ 2025-09-03 4

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

