© Daniel Page (csdsp@bristol.ac.uk) CS@ UoB

® Remember to register your attendance using the UoB Check-In app. Either

1. download, install, and use the native app” available for Android and iOS, or
2. directly use the web-based app available at

https://check-in.bristol.ac.uk

noting the latter is also linked to via the Attendance menu item on the left-hand side of the Blackboard-based unit
web-site.

® The hardware and software resources located in the MVB Linux lab(s). (e.g., MVB-1.15 or MVB-2.11) are managed
by the Faculty IT Support Team, a subset of IT Services. If you encounter a problem (e.g., a workstation that fails
to boot, an error when you try to use some software, or you just cannot log into your account), they can help: you
can contact them, to report then resolve said problem, via

https://www.bristol.ac.uk/it-support

 The lab. worksheet is written assuming you work in the lab. using UoB-managed and thus supported equipment. If
you need or prefer to use your own equipment, however, various unsupported’ alternatives available: for example,
you could 1) manually install any software dependencies yourself, or 2) use the unit-specific Vagrant® box by
following instructions at

https://cs-uob.github.io/COMS10015/vm

¢ The questions are roughly classified as either C (for core questions, that should be attempted within the lab. slot),
A (for additional questions, that could be attempted within the lab. slot), or R (for revision questions). Keep in
mind that we only expect you to attempt the C-class questions: the other classes are provided purely for your benefit
and/or interest, so there is no problem with nor penalty for totally ignoring them.

¢ There is an associated set of solutions is available, at least for the C-class questions. These solutions are there
for you to learn from (e.g., to provide an explanation or hint, or illustrate a range of different solutions and/or
trade-offs), rather than (purely) to judge your solution against; they often present a solution vs. the solution,
meaning there might be many valid approaches to and solutions for a question.

¢ Keep in mind that various mechanisms exist to get support with and/or feedback on your work; these include
both in-person (e.g., the lab. slot itself) and online (e.g., the unit forum, accessible via the unit web-site) instances.

“https://www.bristol.ac.uk/students/support/it/software-and-online-resources/registering-attendance

bThe implication here is that such alternatives are provided in a best-effort attempt to help you: they are experimental, and so 1o guarantees
about nor support for their use will be offered.

‘https://www.vagrantup.com

git # b282dbb9 @ 2025-09-03 1


mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://check-in.bristol.ac.uk
https://www.bristol.ac.uk/it-support
https://cs-uob.github.io/COMS10015/vm
https://www.bristol.ac.uk/students/support/it/software-and-online-resources/registering-attendance
https://www.vagrantup.com

© Daniel Page (csdsp@bristol.ac.uk) CS@ UoB

COMS10015 lab. worksheet #9

During the period of time aligned with this lab. worksheet, there is an active (or open) coursework assignment
for the unit. You could address this fact by dividing your time between them. However, our (strong) suggestion
is to view the former as of secondary importance (or optional, basically), and instead focus on the latter: since it
is credit bearing, the coursework assignment should be viewed as of primary importance. Put another way, focus
exclusively on completing the latter before you invest any time at all in the former.

Before you start work, download (and, if need be, unarchive”) the file
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/lab-09_g.tar.gz

somewhere secure” in your file system; from here on, we assume ${ARCHIVE} denotes a path to the resulting,
unarchived content. The archive content is intended to act as a starting point for your work, and will be referred
to in what follows. In common with lab. worksheet #4, note that the archive provides a user-defined a 2-phase
clock generator component.

“For example, you could 1) use tar, e.g., by issuing the command tar xvfz lab-09_qg.tar.gz ina terminal window, 2) use ark directly: use
the Activities desktop menu item, search for and execute ark, use the Archive—Open menu item to open 1ab-089_g. tar.gz, then extract the
contents via the Extract button, or 3) use ark indirectly: use the Activities desktop menu item, search for and execute dolphin, right-click
on lab-09_q.tar.gz, select Open with, select ark, then extract the contents via the Extract button.

bFor example, the Private sub-directory within your home directory (which, by default, cannot be read by another user).

§1. C-class, or core questions

> Q1[C]. In the lecture slot(s), we studied the design of a component whose behaviour models the loop counter
used by a C-style for loop. Assuming n = 4, use LogisimEvo to implement and simulate a variant of this design
based on

a latches, or

b flip-flops.

The (strong) recommendation is to make use of built-in components provided by LogisimEvo, and adopt a step-

by-step approach:

¢ implement the data-path, then test it by manually controlling all the inputs (e.g., ensure it can increment and
compare i as required),

¢ implement the control-path, then test it by manually controlling all of the inputs (e.g., ensure it transitions
between states correctly),

* integrate the two halves, then test the whole implementation using an automatically controlled clock,

* package your implementation as a sub-component to allow easy reuse.

> Q2[C]. Given unsigned n-bit operands x and y, an (n X n)-bit multiplication yields an unsigned 2n-bit product
r = x - y. However, it can be useful to truncate r, leaving just the least-significant n-bit half (whose size then
matches x and y). Assuming n = 8, use LogisimEvo to implement and simulate

a a combinatorial tree multiplier, then
b an iterative bit-serial multiplier

which can compute a truncated 8-bit product r from 8-bit x and y.

For the latter, use the counter implementation from the previous question as a starting point: since the design
is iterative, it should compute r under control of the counter and hence the associated control protocol. Exploring
bit-serial multiplication using a C-based reference implementation might help before or during development of
your LogisimEvo implementation: doing so might help to improve your understanding, for example, and also act
as a means of generating a trace of intermediate values to compare against. Figure 1 provides such a reference
implementation, noting that the BITSOF macro matches lab. worksheet #2: it computes the number of bits used to
represent y without relying on the data-type.

git # b282dbb9 @ 2025-09-03 2


mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/lab-09_q.tar.gz

© Daniel Page (csdsp@bristol.ac.uk) CS@ UoB

uint8_t mul( uint8_t x, uint8_t y ) {
uint8_t t = 0;

for( int i = ( BITSOF(Cy ) - 1); i >=0; i-- ) {
t =t << 1;

ifC Cy> i) &1) {
t =1t + x;

}
}

return t;

}

Figure 1: A C-based software implementation of left-to-right, bit-serial multiplication.

§2. R-class, or revision questions
> Q3[R]. There is a set of questions available at
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_q.pdf

Using pencil-and-paper, each asks you to solve a problem relating to Boolean algebra. There are too many for the
lab. session(s) alone, but, in the longer term, the idea is simple: attempt to answer the questions, applying theory
covered in the lecture(s) to do so, as a means of revising and thereby ensuring you understand the material.

§3. A-class, or additional questions

> Q4[A]. Within the lecture slot(s), the HP-35 calculator was used as an example to demonstrate of two points: 1)
the application of techniques and components within a real-world (versus “toy”) challenge, and 2) the conceptual
relationship between this (or any) calculator and a micro-processor. This question has two options:

* you could attempt to design and implement a LogisimEvo-based HP-35 calculator yourself, or
* you could inspect and use the LogisimEvo-based HP-35 calculator implementation provided.

Note that the former option will take much longer to complete, and that you cannot assume enough information
provided by the lecture slot(s) alone (meaning research of your own will be required). For either option, the over-
arching goal is to offer insight and understanding: doing so is difficult using an on-paper, theoretical presentation,
but arguably easier via hands-on, practical exploration. More concretely, one idea is to evaluate an expression
such as

(19-5)x(1+2),

and confirm, on a component-by-component, step-by-step basis, that you understand how the implementation is
doing so.

git # b282dbb9 @ 2025-09-03 3


mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_q.pdf

© Daniel Page (csdsp@bristol.ac.uk) CS@ UoB

A Frequently Asked Questions (FAQs)

I'm confused by the recommended use of built-in components: what do you mean? First, why. The recommen-
dation is simply to limit dependencies between lab. worksheets, plus the volume of work required: it is possible
to rely on user-defined components instead, but doing so will probably complicates your solution in the sense
you will naturally focus less on the central goal(s). Second, which and how:

¢ The built-in Memory—Register component can be useful as a way to store n-bit values. However, it is
important to take care re. at least 3 points. First, the value of # is controlled by the data bits property. Second,
note that this component is based on flip-flops, and so will be edge-triggered by default; changing the trigger
property allows it to alternatively support, e.g., level-triggered latch. Third, this component has inputs and
outputs which need explanation:

— on the left-hand edge, there is a clock input: this represents what we referred to as enable or en,

— on the left-hand edge, there is a Write Enable (WE) input: this should set (or simply fixed) to 1, otherwise
the en input will be ignored,

— on the bottom edge, there is a clear input: this allows the stored value to be cleared, or reset; this can be
useful, but, equally, can be ignored if not.

® The built-in Plexers—Multiplexer component can be parameterised to select between m different n-bit
operands: the data bits property directly controls 1, whereas the select bits property indirectly controls m (in
the sense it directly controls log, m, which is the number of control signals required).

® The built-in Arithmetic—Comparator component can be useful as a way to compare two n-bit operands,
e.g., to signal whether one is greater-than, equal-to, or less-than the other. However, keep in mind that it will
interpret the operands as signed integers represented using two’s-complement by default: the numeric type
property allows this to be changed, e.g., to support unsigned comparison instead.

¢ The built-in Input/Output—Button component can be useful as a way to model, e.g., reset or rst: it actsin a
similar way to an input pin, but is automatically “unpressed” after being “pressed” using the poke tool.

git # b282dbb9 @ 2025-09-03 4


mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

	Frequently Asked Questions (FAQs)

