
© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

COMS10015 lab. worksheet #9

Although some questions have a written solution below, for others it will be more useful to experiment in a
hands-on manner (e.g., using a concrete implementation). The file

https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/lab-09_s.tar.gz

supports such cases.

§1. C-class, or core questions

� S1[C]. An associated solution, i.e., a (documented) implementation, for this question can be found in the archive
provided.

� S2[C]. An associated solution, i.e., a (documented) implementation, for this question can be found in the archive
provided. However, understanding that solution demands explaination of the underlying strategy involved:
a Per the description in the lecture slot(s), the combinatorial design is relatively simple: it represents a trade-off

that means higher area but lower latency, and is (arguably) easier to implement and test. The implementation
directly mirrors the design on paper, in the sense it consists of three layers:

• The left-hand layer is comprised of 𝑛 groups of 𝑛 AND gates: since the 𝑖-th such group computes 𝑥 𝑗 ∧ 𝑦𝑖 for
0 ≤ 𝑗 < 𝑛, the output is either 0 if 𝑦𝑖 = 0 or 𝑥 if 𝑦𝑖 = 1.

• The middle layer is comprised of 𝑛 left-shift components: since the 𝑖-th such component shifts by a distance
of 𝑖 bits, the output is either 0 if 𝑦𝑖 = 0, or 𝑥 · 2𝑖 if 𝑦𝑖 = 1.

• The right-hand layer is a balanced, binary tree of adder components: since these accumulate the partial
products resulting from the middle layer, the output is

𝑟 =

𝑛−1∑
𝑖=0

𝑦𝑖 · 𝑥 · 2𝑖 = 𝑦 · 𝑥

as required.

Imagine we want to compute 𝑟 = 𝑥 · 𝑦 for 𝑥 = 8(10) and 𝑦 = 14(10) = 00001110(2). Abusing notation a little with
respect to AND, we find that the first two layers combine to compute

𝑝0 = (𝑥 ∧ 𝑦0) ≪ 0 = (00001000(2) ∧ 00000000(2)) ≪ 0 = 00000000(2)
𝑝1 = (𝑥 ∧ 𝑦1) ≪ 1 = (00001000(2) ∧ 11111111(2)) ≪ 1 = 00010000(2)
𝑝2 = (𝑥 ∧ 𝑦2) ≪ 2 = (00001000(2) ∧ 11111111(2)) ≪ 2 = 00100000(2)
𝑝3 = (𝑥 ∧ 𝑦3) ≪ 3 = (00001000(2) ∧ 11111111(2)) ≪ 3 = 01000000(2)
𝑝4 = (𝑥 ∧ 𝑦4) ≪ 4 = (00001000(2) ∧ 00000000(2)) ≪ 4 = 00000000(2)
𝑝5 = (𝑥 ∧ 𝑦5) ≪ 5 = (00001000(2) ∧ 00000000(2)) ≪ 5 = 00000000(2)
𝑝6 = (𝑥 ∧ 𝑦6) ≪ 6 = (00001000(2) ∧ 00000000(2)) ≪ 6 = 00000000(2)
𝑝7 = (𝑥 ∧ 𝑦7) ≪ 7 = (00001000(2) ∧ 00000000(2)) ≪ 7 = 00000000(2)

after which the final layer computes

𝑟 = ((𝑝0 + 𝑝1) + (𝑝2 + 𝑝3))+
((𝑝4 + 𝑝5) + (𝑝6 + 𝑝7))

= ((00000000(2) + 00010000(2)) + (00000000(2) + 00000000(2)))+
((00000000(2) + 00000000(2)) + (00000000(2) + 00000000(2)))

= ((0(10) + 16(10)) + (32(10) + 64(10)))+
((0(10) + 0(10)) + (0(10) + 0(10)))

= 112(10)

with parentheses denoting the adder instances.
b Per the description in the lecture slot(s), the sequential, iterative design is relatively complex: it represents a

trade-off that means lower area but higher latency, and is (arguably) harder to implement and test.
The implementation is of Algorithm 1, which captures the left-to-right, bit-serial multiplication approach; recall
that it processes 𝑦 the from most- to least-significant bit. By design, the loop counter component from the

git # b282dbb9 @ 2025-09-03 1

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/lab-09_s.tar.gz


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

Input: Two unsigned, 𝑛-bit, base-2 integers 𝑥 and 𝑦
Output: An unsigned, 2𝑛-bit, base-2 integer 𝑟 = 𝑦 · 𝑥

1 𝑟 ← 0
2 for 𝑖 = 𝑛 − 1 downto 0 step −1 do
3 𝑟 ← 2 · 𝑟
4 if 𝑦𝑖 = 1 then
5 𝑟 ← 𝑟 + 𝑥
6 end
7 end
8 return 𝑟

Algorithm 1: An algorithm for left-to-right, bit-serial integer multiplication.

previous question can control the loop. Since the loop iterates downward in this case, it may seem we need to
alter the counter to suit. Although it is possible to do so, the only use of 𝑖 in the 𝑖-th iteration is to inspect the 𝑦𝑖 :
provided we inspect the correct 𝑦𝑖 in each iteration, and perform 𝑛 iterations overall, we can actually leave the
counter as it is therefore. Instead of inspecting 𝑦𝑖 based on 𝑖, we shift the 𝑖-th bit of 𝑦 into a fixed index instead.
That is, we update 𝑦 via 𝑦′ ← 𝑦 ≪ 1, i.e., left-shift it, after each iteration; this allows us to inspect the 7-th bit
of 𝑦 in every iteration, because in each successive 𝑖-th iteration it will hold the 𝑖-th bit. So, overall we need a
data-path that includes

• combinatorial logic to compute

– 𝑟′← 2 · 𝑟 + 𝑦𝑖 · 𝑥, and
– 𝑦′← 𝑦 ≪ 1,

and
• a pair of input and output registers to store 𝑡 and 𝑦, plus an input register to store 𝑥 (which is not updated, so

requires no output register).

in addition to the counter. Crucially, as discussed in the lecture slot(s),

• 2 · 𝑟 can be realised using a left-shift (i.e., 2 · 𝑟 ≡ 𝑟 ≪ 1) and
• 𝑦𝑖 · 𝑥 can be realised using a multiplexer (since 𝑦𝑖 ∈ {0, 1}, 𝑦𝑖 · 𝑥 evaluates to 0 or 𝑥).

Having first implemented said data-path and then connected it to the control-path (i.e., the counter), imagine
we want to compute 𝑟 = 𝑥 · 𝑦 for 𝑥 = 8(10) and 𝑦 = 14(10) = 00001110(2). We initiate the computation by first
setting 𝑥 and 𝑦, then 𝑟𝑒𝑞 = 1 to signal a request. The multiplier steps through the following

𝑖 𝑟 𝑦 𝑦7 𝑟′ 𝑦′

0
0 0 00001110(2) 0 0 0001110(2) 𝑟′← 2 · 𝑟
1 0 00011100(2) 0 0 0011100(2) 𝑟′← 2 · 𝑟
2 0 00111000(2) 0 0 0111000(2) 𝑟′← 2 · 𝑟
3 0 01110000(2) 0 0 1110000(2) 𝑟′← 2 · 𝑟
4 0 11100000(2) 1 8 1100000(2) 𝑟′← 2 · 𝑟 + 𝑥
5 8 11000000(2) 1 24 1000000(2) 𝑟′← 2 · 𝑟 + 𝑥
6 24 10000000(2) 1 56 0000000(2) 𝑟′← 2 · 𝑟 + 𝑥
7 56 00000000(2) 0 112 0000000(2) 𝑟′← 2 · 𝑟

112

at which point it sets 𝑎𝑐𝑘 = 1 to signal computation is complete; we have the result 𝑟 = 112(10), so can set 𝑟𝑒𝑞 = 1
at which point the multiplier sets 𝑎𝑐𝑘 = 0 and is ready for any subsequent computation.

§2. R-class, or revision questions

� S3[R]. There is a set of solutions available at

https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_s.pdf

§3. A-class, or additional questions

� S4[A]. The archive provided includes a LogisimEvo implementation of a “limited” (versus real) HP-35, focused
more on what could be done (to help you learn about a given topic) than on what should be done: within what

git # b282dbb9 @ 2025-09-03 2

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_s.pdf


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

is a large design space, the implementation represents a solution rather than the solution. Along those lines, we
compromise via simplifications that include

• operating in binary, rather than Binary Coded Decimal (BCD),
• using small 8-bit integers, rather than 14-word, 56-bit BCD-based floating-point,
• limiting the control and arithmetic keys available, and therefore the types of operation possible, and
• avoiding the issue of micro-code, and hence arithmetic operations (e.g., sin and cos) implemented using an

algorithm rather than a circuit.

So, the real HP-35 clearly offers more complex functionality supported by a more complex internal design.
However, the limited implementation satisfies the goal of demonstrating we can design and implement a device
capable of recognisable, useful forms of computation. Although a gap clearly remains between it and a modern
micro-processor, for example, conceptual similarities are also evident; understanding of the former clearly provides
a good stepping stone toward understanding of the latter, therefore.

A limited HP-35: design

Figure 1 presents some (internal and external) photographs of a real HP-35. From the perspective of a user,
operation of the HP-35 is prećised by Figure 1b: the rear casing essentially provides an instruction manual, or
more formally a set of semantics for each key press, which dictates the internal design and implementation to
some extent. For example, it is clear the HP-35 maintains four internal registers (or accumulators) named 𝑋, 𝑌,
𝑍 and 𝑇, plus a fifth storage register 𝑆 which we might colloquially term “memory”; the value of 𝑋 is displayed
on the LED display. Said registers are manipulated by pressing the control and arithmetic keys, each of which
invokes a specific operation. Using 𝑅′ to denote the next value of some register 𝑅 ∈ {𝑋,𝑌, 𝑍, 𝑇, 𝑆} for example,
we can translate pertinent operations into

a ‘𝑉’ for 𝑉 ∈ {0, 1, . . . 9}
• 𝑋′← 10 · 𝑋 +𝑉

b ‘⊙’ for ⊙ ∈ {+,−,×}
• 𝑋′← 𝑌 ⊙ 𝑋, 𝑌′← 𝑍, 𝑍′← 𝑇, 𝑇′← 𝑇

c ‘𝐶𝐿𝑅’ (or “clear”)
• 𝑋′← 0, 𝑌′← 0, 𝑍′← 0, 𝑇′← 0

d ‘𝑆𝑇𝑂’ (or “store”)
• 𝑆′← 𝑋

e ‘𝑅𝐶𝐿’ (or “recall”)
• 𝑋′← 𝑆

f ‘↑’ (or “enter”)
• 𝑋′← 𝑋, 𝑌′← 𝑋, 𝑍′← 𝑌, 𝑇′← 𝑍

noting that we only support this sub-set in the limited HP-35; you can find a complete manual namedhp35-manual.pdf
in the archive provided.

Some of those semantics might seem counter-intuitive: why compute 𝑌 ⊙ 𝑋 rather than 𝑋 ⊙ 𝑌 for instance?
In many cases, they are designed to support evaluation of expressions in Reverse Polish Notation (RPN) form.
Considering the use of in-fix operators per

(19 − 5) × (1 + 2),

RPN simply uses post-fix operators to specify the same result via

19 5 − 1 2 + ×.

This form is advantageous for a variety of reasons, including that fact that expressions can be specified unambigu-
ously without adding parentheses. Even more useful, at least with respect to implementation, an expression can
be evaluated using a stack: by reading an RPN expression left-to-right, the idea is that

• each time we read an operand we push it onto the stack, and
• each time we read an operator we pop operands from the stack, perform the associated operation then push a

result onto the stack

Once this process is complete, the evaluated result is the single remaining entry on the stack. The HP-35 uses a

git # b282dbb9 @ 2025-09-03 3

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

(a) The calculator outer casing, keypad and LED display.

(b) An overview of semantics (or instructions) presented on a label attached to the rear of the casing.

LED elements
LED controller

Key-pad contactsC&T unit

ROM unit

A&R unit
2-phase

clock

(c) An annotated photograph of the two main internal HP-35 circuit boards.

Figure 1: Photographs of a real HP-35 calculator.

git # b282dbb9 @ 2025-09-03 4

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

(slight) variation, which implies the expression above would be evaluated using the following key presses

Key-press
1 9 ↑ 5 − 1 ↑ 2 + ×

Re
gi

st
er 𝑋 0 1 19 19 5 14 1 1 2 3 42

𝑌 0 0 0 19 19 0 14 1 1 14 0
𝑍 0 0 0 0 0 0 0 14 14 0 0
𝑇 0 0 0 0 0 0 0 0 0 0 0

to yield the result (19− 5) × (1+ 2) = 42. The difference versus pure RPN is basically use of the ‘↑’ key: this signals
the end of a multi-digit operand, allowing a new operand to be entered into 𝑋. Either way, notice how 𝑋, 𝑌, 𝑍 and
𝑇 are used as an evaluation stack, growing downward as operands are pushed and upward as they are popped
(and used by a given operation).

A limited HP-35: implementation

Figure 1c illustrates the major sub-components, namely
• a 2-phase clock generator,
• a Read Only Memory (ROM) unit,
• an Arithmetic and Register (A&R) unit,
• a Control and Timing (C&T) unit,
• a keypad to provide input, and
• an LED-based display to provide output,
which are spread over two Printed Circuit Boards (PCBs); roughly the same top-level organisation is reproduced
by the LogisimEvo implementation.
• A keypad provides input: the state of each key forms 1 bit within a 32-bit keypad state 𝑝𝑎𝑑 via the following

mapping
‘0’ ↦→ 00000(2)
‘1’ ↦→ 00001(2)
‘2’ ↦→ 00010(2)
‘3’ ↦→ 00011(2)
‘4’ ↦→ 00100(2)
‘5’ ↦→ 00101(2)
‘6’ ↦→ 00110(2)
‘7’ ↦→ 00111(2)
‘8’ ↦→ 01000(2)
‘9’ ↦→ 01001(2)

‘+’ ↦→ 10000(2)
‘−’ ↦→ 10001(2)
‘×’ ↦→ 10010(2)

‘𝐶𝐿𝑅’ ↦→ 10100(2)
‘𝑆𝑇𝑂’ ↦→ 10101(2)
‘𝑅𝐶𝐿’ ↦→ 10110(2)

‘↑’ ↦→ 10111(2)

The idea is that the key listed on the left-hand side is connected to the bit in 𝑝𝑎𝑑 which is listed on the right-hand
side: the ‘9’ key is connected to 𝑝𝑎𝑑9, 9-th bit of 𝑝𝑎𝑑, for example. The right-hand side acts as a 5-bit key-code
𝑐𝑜𝑑𝑒 for each key on the left-hand side. Some by-design features in the mapping make this key-code useful.
Notice, for example that 𝑐𝑜𝑑𝑒4 determine whether the key pressed is numeric; if it is, 𝑐𝑜𝑑𝑒3...0 then gives the
associated (unsigned, 4-bit) integer key-value.

• A set of output pins reflects the values held by registers 𝑋, 𝑌, 𝑍, 𝑇, and 𝑆. Although the real HP-35 displays the
value of 𝑋 only (using the LED display), including them all 1) makes the internal state clearer, meaning 2) it is
easier to understand (and debug) internal behaviour.

The Control and Timing (C&T) unit

The C&T unit acts as the control-path: it accepts
• 𝑝𝑎𝑑, a 32-bit keypad state,
• Φ1 and Φ2, two 1-bit, 2-phase clock signals, and
• 𝑟𝑠𝑡, a 1-bit reset signal,
as input, and produces
• 𝑐𝑜𝑑𝑒, a 5-bit key-code,
• 𝑣𝑎𝑙𝑢𝑒, a 8-bit key-value,
• 𝑎𝑝𝑝𝑒𝑛𝑑 and 𝑟𝑎𝑖𝑠𝑒, two 1-bit control signals, and
• 𝑒𝑛1 and 𝑒𝑛2, two 1-bit enable signals,

git # b282dbb9 @ 2025-09-03 5

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

Latch based
register(s)

δ

ω

Latch based
register(s)

Input

Output

Φ1

Φ2

Q

Q

Q′

Q′

Figure 2: A generic FSM framework (for a 2-phase clocking strategy) into which one can place implementations of the state,
𝛿 (the transition function) and 𝜔 (the output function).

𝛿 𝜔
𝑄 𝑄′ 𝑒𝑛2 𝑒𝑛1

𝑝𝑟𝑒𝑠𝑠 = 0 𝑝𝑟𝑒𝑠𝑠 = 1
𝑆𝑤𝑎𝑖𝑡 𝑆𝑤𝑎𝑖𝑡 𝑆𝑠𝑡𝑒𝑝 0 0
𝑆𝑠𝑡𝑒𝑝 𝑆𝑤𝑎𝑖𝑡 𝑆𝑑𝑜𝑛𝑒 1 0
𝑆𝑑𝑜𝑛𝑒 𝑆𝑤𝑎𝑖𝑡 𝑆𝑑𝑜𝑛𝑒 0 1

(a) A tabular description.

Swait

startstart

Sstep

Sdone

press = 1

press = 0

press = 1
press = 0

press = 1
press = 0

(b) A diagrammatic description.

Figure 3: An overview of components in the C&T unit.

as output. There are two main (sub-)components within the unit:
• The keypad state 𝑘𝑒𝑦𝑝𝑎𝑑 is used by a priority encoder which is tasked with translating a press of the 𝑖-th key,

meaning 𝑘𝑒𝑦𝑝𝑎𝑑𝑖 = 1 and 𝑘𝑒𝑦𝑝𝑎𝑑 𝑗 = 0 for 𝑖 ≠ 𝑗, into the key-code 𝑐𝑜𝑑𝑒 and key value 𝑣𝑎𝑙𝑢𝑒; in doing so it
produces

𝑝𝑟𝑒𝑠𝑠 =

𝑖<32∨
𝑖=0

𝑘𝑒𝑦𝑝𝑎𝑑𝑖

which is 1 iff. any key is currently being pressed.
Note that both the current and the previous key-codes are stored, using two 5-bit registers; the former is enabled
by 𝑝𝑟𝑒𝑠𝑠, meaning 1) it is latched automatically as soon as a key is pressed, and 2) will remain valid even if that
key is unpressed while being processed. The purpose of storing both is to deal with the “stack is automatically
raised” aspect of the semantics listed in Figure 1b. Given the limited set of operations available (and hence
control and arithmetic keys), we simplify the real semantics as follows:

– The 𝑟𝑎𝑖𝑠𝑒 signal determines whether we need to raise the stack (which is like a push operation); 𝑟𝑎𝑖𝑠𝑒 = 1 iff.
the previous key pressed was a control or arithmetic key other than ‘𝑆𝑇𝑂’ or ‘↑’.

– The 𝑎𝑝𝑝𝑒𝑛𝑑 signal determines whether we are forming a multi-digit value in 𝑋, appending a digit specified
by the current key-press; 𝑎𝑝𝑝𝑒𝑛𝑑 = 1 iff. the previous key pressed was a numeric key.

Both signals are produced by a decoder using the previous key-code as input.
• An FSM is tasked with managing step-by-step processing of key presses. As always, Figure 2 shows the design

at a high-level; our goal is basically to instantiate the constituent blocks to suit the problem at hand.
The description in Figure 3 should read fairly intuitively for 𝛿: we start by waiting until a key press is available,
then take action to process it, before again waiting for the key to then be unpressed (to avoid repeated processing

git # b282dbb9 @ 2025-09-03 6

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

if the key is held down). This is achieved using 3 states with the abstract labels 𝑆𝑤𝑎𝑖𝑡 , 𝑆𝑠𝑡𝑒𝑝 , and 𝑆𝑑𝑜𝑛𝑒 . Since
22 = 4 > 3, we can represent both the current and next states as 2-bit integers, i.e.,𝑄 = ⟨𝑄0 , 𝑄1⟩ and𝑄′ = ⟨𝑄′0 , 𝑄′1⟩
respectively, where

𝑆𝑤𝑎𝑖𝑡 ↦→ ⟨0, 0⟩
𝑆𝑠𝑡𝑒𝑝 ↦→ ⟨0, 1⟩
𝑆𝑑𝑜𝑛𝑒 ↦→ ⟨1, 0⟩

Expanding the description in Figure 3 into a concrete truth table

𝛿 𝜔
𝑝𝑟𝑒𝑠𝑠 𝑄1 𝑄0 𝑄′1 𝑄′0 𝑒𝑛2 𝑒𝑛1

0 0 0 0 0 0 0
0 0 1 0 0 1 0
0 1 0 0 0 0 1
0 1 1 ? ? ? ?
1 0 0 0 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1
1 1 1 ? ? ? ?

means we can form a set of Karnaugh maps

00 01 11 10

0

1

Q′1

Q1

press

Q0

0
0

0
1

0
2

1
3

0
4

?
5

1
6

?
7

00 01 11 10

0

1

Q′0

Q1

press

Q0

0
0

0
1

1
2

0
3

0
4

?
5

0
6

?
7

and hence write the following Boolean expressions

𝑄′1 = ( 𝑝𝑟𝑒𝑠𝑠 ∧ 𝑄0 ) ∨
( 𝑝𝑟𝑒𝑠𝑠 ∧ 𝑄1 )

𝑄′0 = ( 𝑝𝑟𝑒𝑠𝑠 ∧ ¬𝑄1 ∧ ¬𝑄0 )

for 𝑄′1 and 𝑄′0.
In contrast, 𝜔 needs some explanation. The idea is that rather than using clock signals Φ1 and Φ2, 𝑒𝑛1 and 𝑒𝑛2
will explicitly control latches in the A&R unit. Put simply, when the FSM is in the 𝑆𝑠𝑡𝑒𝑝 state, 𝑒𝑛2 = 1 meaning
the output latches in the A&R unit are enabled; this means they store the next value of each register (e.g., 𝑋).
In the 𝑆𝑑𝑜𝑛𝑒 state, however, 𝑒𝑛1 = 1 meaning the input latches are enabled; this means the value stored in each
output latch is fed back around, and stored in the associated input latch, ready to cope with the next key press.
Generating 𝑒𝑛2 and 𝑒𝑛1 is simple: by using the same truth table above, we form

00 01 11 10

0

1

en2

Q1

press

Q0

0
0

1
1

0
2

1
3

0
4

?
5

0
6

?
7

00 01 11 10

0

1

en1

Q1

press

Q0

0
0

0
1

0
2

0
3

1
4

?
5

1
6

?
7

and can hence write
𝑒𝑛2 = 𝑄0
𝑒𝑛1 = 𝑄1

The Arithmetic and Register (A&R) unit

The A&R unit acts as the data-path: it accepts
• 𝑐𝑡𝑟𝑙𝑋 , 𝑐𝑡𝑟𝑙𝑌 , 𝑐𝑡𝑟𝑙𝑍 , 𝑐𝑡𝑟𝑙𝑇 , and 𝑐𝑡𝑟𝑙𝑆, five 3-bit control signals for the 𝑋, 𝑌, 𝑍, 𝑇 and 𝑆 multiplexers,
• 𝑐𝑡𝑟𝑙𝐴𝐿𝑈 , a 3-bit control signal for the ALU,
• 𝑒𝑛1 and 𝑒𝑛2, two 1-bit enable signals,
• 𝑣𝑎𝑙𝑢𝑒, the 8-bit current key-value,
as input, and produces
• 𝑋, 𝑌, 𝑍, 𝑇, and 𝑆, five 8-bit register values,

git # b282dbb9 @ 2025-09-03 7

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

+ − × +
w x y z

r

c

x y
r

10 Y X value

ctrlALU
2

ctrlALU
1

ctrlALU
0

result

(a) The Arithmetic and Logic Unit (ALU).

X′

X

X

Φ1

Φ2

STZYX
re

su
lt

va
lu

e0

ctrlX0
ctrlX1
ctrlX2

Y′

Y

Y

Φ1

Φ2

STZYX
re

su
lt

va
lu

e0

ctrlY0
ctrlY1
ctrlY2

Φ1

Φ2
STZYX

re
su

lt
va

lu
e0

S′

S

S

Φ1

Φ2

STZYX
re

su
lt

va
lu

e0

ctrlS0
ctrlS1
ctrlS2

(b) The register file.

Figure 4: An overview of components in the A&R unit.

git # b282dbb9 @ 2025-09-03 8

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

as output. There are two main (sub-)components within the unit:

• A fairly simple Arithmetic and Logic Unit (ALU) is used to 1) compute any result associated with pressing an
arithmetic key (e.g., add 𝑌 and 𝑋 when ‘+’ is pressed), and also 2) update the 𝑋 register when a numeric key
is pressed. Figure 4a illustrates the design, with the precise behaviour dictated both by the numerical inputs
(namely the value of registers 𝑌 and 𝑋, plus key-value 𝑣𝑎𝑙𝑢𝑒) and the 3-bit control signal 𝑐𝑡𝑟𝑙𝐴𝐿𝑈 .
There are four arithmetic components in the center of the ALU, each of whose inputs are controlled by 𝑐𝑡𝑟𝑙𝐴𝐿𝑈

2
(via a multiplexer towards the left): specifically, we have that

𝑥 =

{
10 if 𝑐𝑡𝑟𝑙𝐴𝐿𝑈

2 = 0
𝑌 if 𝑐𝑡𝑟𝑙𝐴𝐿𝑈

2 = 1

𝑦 = 𝑋 and 𝑧 = 𝑣𝑎𝑙𝑢𝑒. Each arithmetic component is combinatorial, so continuously computes an output from
𝑥, 𝑦 and 𝑧. One output is selected as the ALU output 𝑟𝑒𝑠𝑢𝑙𝑡 using 𝑐𝑡𝑟𝑙𝐴𝐿𝑈

1...0 (via a multiplexer towards the right);
basically we get

𝑟𝑒𝑠𝑢𝑙𝑡 =


𝑥 + 𝑦 if 𝑐𝑡𝑟𝑙𝐴𝐿𝑈

1...0 = 00(2)
𝑥 − 𝑦 if 𝑐𝑡𝑟𝑙𝐴𝐿𝑈

1...0 = 01(2)
𝑥 · 𝑦 if 𝑐𝑡𝑟𝑙𝐴𝐿𝑈

1...0 = 10(2)
𝑥 · 𝑦 + 𝑧 if 𝑐𝑡𝑟𝑙𝐴𝐿𝑈

1...0 = 11(2)

Putting everything together, we find that

– 𝑐𝑡𝑟𝑙𝐴𝐿𝑈 = 000(2) means 𝑟𝑒𝑠𝑢𝑙𝑡 = 10 + 𝑋,
– 𝑐𝑡𝑟𝑙𝐴𝐿𝑈 = 001(2) means 𝑟𝑒𝑠𝑢𝑙𝑡 = 10 − 𝑋,
– 𝑐𝑡𝑟𝑙𝐴𝐿𝑈 = 010(2) means 𝑟𝑒𝑠𝑢𝑙𝑡 = 10 · 𝑋,
– 𝑐𝑡𝑟𝑙𝐴𝐿𝑈 = 011(2) means 𝑟𝑒𝑠𝑢𝑙𝑡 = 10 · 𝑋 + 𝑣𝑎𝑙𝑢𝑒,
– 𝑐𝑡𝑟𝑙𝐴𝐿𝑈 = 100(2) means 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑌 + 𝑋,
– 𝑐𝑡𝑟𝑙𝐴𝐿𝑈 = 101(2) means 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑌 − 𝑋,
– 𝑐𝑡𝑟𝑙𝐴𝐿𝑈 = 110(2) means 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑌 · 𝑋, and
– 𝑐𝑡𝑟𝑙𝐴𝐿𝑈 = 111(2) means 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑌 · 𝑋 + 𝑣𝑎𝑙𝑢𝑒.

Clearly only some of these combinations are useful (e.g., 𝑟𝑒𝑠𝑢𝑙𝑡 = 10+𝑋 is not), but the point is that all operations
required by our semantics can be computed: we just need to set 𝑐𝑡𝑟𝑙𝐴𝐿𝑈 appropriately.

• The state of the calculator, with respect to expression evaluation, is maintained by a set set of registers: recall
that these are used as an evaluation stack to realise semantics outlined in the Section above. Although there
is a simplified illustration in Figure 4b, the implementation itself may look complex. Keep in mind that it just
replicates the same structure for each each register 𝑅 ∈ {𝑋,𝑌, 𝑍, 𝑇, 𝑆}. Specifically,

– there is an input latch 𝑅 and an output latch 𝑅′ which store the current and next values respectively,
– the input latch is enabled by 𝑒𝑛1, whereas the output latch is enabled by 𝑒𝑛2; this means the output latch is

enabled when the C&T unit FSM is in the 𝑆𝑠𝑡𝑒𝑝 state, whereas the input latch is enabled in the 𝑆𝑑𝑜𝑛𝑒 state, and
– a multiplexer is used to select the next value based on the 3-bit control signal 𝑐𝑡𝑟𝑙𝑅:

* 𝑐𝑡𝑟𝑙𝑅 = 000(2) selects the constant 0,
* 𝑐𝑡𝑟𝑙𝑅 = 001(2) selects the key-value 𝑣𝑎𝑙𝑢𝑒,
* 𝑐𝑡𝑟𝑙𝑅 = 010(2) selects the ALU output 𝑟𝑒𝑠𝑢𝑙𝑡,
* 𝑐𝑡𝑟𝑙𝑅 = 011(2) selects the value of 𝑋,
* 𝑐𝑡𝑟𝑙𝑅 = 100(2) selects the value of 𝑌,
* 𝑐𝑡𝑟𝑙𝑅 = 101(2) selects the value of 𝑍,
* 𝑐𝑡𝑟𝑙𝑅 = 110(2) selects the value of 𝑇, and
* 𝑐𝑡𝑟𝑙𝑅 = 111(2) selects the value of 𝑆.

So to implement the original semantics, we just need to set 𝑐𝑡𝑟𝑙𝑅 to correctly select the next value for each
register. Based on the the latched current key-code 𝑐𝑜𝑑𝑒, plus the 𝑟𝑎𝑖𝑠𝑒 and 𝑎𝑝𝑝𝑒𝑛𝑑 control signals, we can be

git # b282dbb9 @ 2025-09-03 9

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

more exact about what this means:

𝐶 𝑟𝑎𝑖𝑠𝑒 𝑎𝑝𝑝𝑒𝑛𝑑 𝑋′ 𝑌′ 𝑍′ 𝑇′ 𝑆′

‘𝑉’ for 𝑉 ∈ {‘0’, ‘1’, . . . ‘9’} 0 ? 𝑋 𝑌 𝑍 𝑆
‘𝑉’ for 𝑉 ∈ {‘0’, ‘1’, . . . ‘9’} 1 ? 𝑌 𝑍 𝑇 𝑆
‘𝑉’ for 𝑉 ∈ {‘0’, ‘1’, . . . ‘9’} ? 0 𝑉
‘𝑉’ for 𝑉 ∈ {‘0’, ‘1’, . . . ‘9’} ? 1 10 · 𝑋 +𝑉

‘⊙’ for ⊙ ∈ {‘+’,−,×} ? ? 𝑌 ⊙ 𝑋 𝑍 𝑇 𝑇 𝑆
‘𝐶𝐿𝑅’ ? ? 0 0 0 0 0
‘𝑆𝑇𝑂’ ? ? 𝑋 𝑌 𝑍 𝑇 𝑋
‘𝑅𝐶𝐿’ ? ? 𝑆 𝑌 𝑍 𝑇 𝑆

‘↑’ ? ? 𝑋 𝑋 𝑌 𝑍 𝑆

So, for instance, if the ‘↑’ key is pressed we want 𝑋′← 𝑋, 𝑌′← 𝑋, 𝑍′← 𝑌, 𝑇′← 𝑍, and 𝑆′← 𝑆; this means we
must set 𝑐𝑡𝑟𝑙𝑋 = 011(2), 𝑐𝑡𝑟𝑙𝑌 = 011(2), 𝑐𝑡𝑟𝑙𝑍 = 100(2), 𝑐𝑡𝑟𝑙𝑇 = 101(2), and 𝑐𝑡𝑟𝑙𝑆 = 111(2) in order to select the next
value correctly for each case.

The ROM unit

The ROM unit is tasked with generating control signals for the A&R unit: it accepts
• 𝑐𝑜𝑑𝑒, a 5-bit key-code,
• 𝑎𝑝𝑝𝑒𝑛𝑑 and 𝑟𝑎𝑖𝑠𝑒, two 1-bit control signals,
as input, and produces
• 𝑐𝑡𝑟𝑙𝑋 , 𝑐𝑡𝑟𝑙𝑌 , 𝑐𝑡𝑟𝑙𝑍 , 𝑐𝑡𝑟𝑙𝑇 , and 𝑐𝑡𝑟𝑙𝑆, five 3-bit control signals for the 𝑋, 𝑌, 𝑍, 𝑇 and 𝑆 multiplexers,
• 𝑐𝑡𝑟𝑙𝐴𝐿𝑈 , a 3-bit control signal for the ALU,
as output.

ROM as a look-up table for control signals: the basic concept

If you think about it, a ROM is just a (fixed) look-up table: by using an 𝑛′-bit address 𝑥, each load yields a 𝑤-bit
word 𝑟 = MEM = 𝑓 (𝑥) where the function 𝑓 is determined by the ROM content. Put simply, one can encode any
Boolean function

B𝑛
′ → B𝑤

using the ROM. This idea is used to avoid having to design and implement complicated Boolean functions to
control the A&R unit.

Consider the top-most ROM, for example, as used to produce the ALU control signal 𝑐𝑡𝑟𝑙𝐴𝐿𝑈 ; it has a total of
32 words, each of 3 bits. The 𝑛′ = 5 bit address used to access content is simply 𝑥 = 𝑐𝑜𝑑𝑒, i.e., the current key-code,
which yields a 𝑤 = 3 bit word 𝑐𝑡𝑟𝑙𝐴𝐿𝑈 = MEM. Given 𝑐𝑡𝑟𝑙𝐴𝐿𝑈

2 and 𝑐𝑡𝑟𝑙𝐴𝐿𝑈
1...0 are used to select the ALU input and

operation respectively, we get the following behaviour

𝐶 𝑐𝐴𝐿𝑈 = MEM
00000(2) 011(2) ; 𝐶 = ‘0’, 𝑉 = 0, ALU computes 10 · 𝑋 + 0
00001(2) 011(2) ; 𝐶 = ‘1’, 𝑉 = 1, ALU computes 10 · 𝑋 + 1
00010(2) 011(2) ; 𝐶 = ‘2’, 𝑉 = 2, ALU computes 10 · 𝑋 + 2
00011(2) 011(2) ; 𝐶 = ‘3’, 𝑉 = 3, ALU computes 10 · 𝑋 + 3
00100(2) 011(2) ; 𝐶 = ‘4’, 𝑉 = 4, ALU computes 10 · 𝑋 + 4
00101(2) 011(2) ; 𝐶 = ‘5’, 𝑉 = 5, ALU computes 10 · 𝑋 + 5
00110(2) 011(2) ; 𝐶 = ‘6’, 𝑉 = 6, ALU computes 10 · 𝑋 + 6
00111(2) 011(2) ; 𝐶 = ‘7’, 𝑉 = 7, ALU computes 10 · 𝑋 + 7
01000(2) 011(2) ; 𝐶 = ‘8’, 𝑉 = 8, ALU computes 10 · 𝑋 + 8
01001(2) 011(2) ; 𝐶 = ‘9’, 𝑉 = 9, ALU computes 10 · 𝑋 + 9

...
...

10000(2) 100(2) ; 𝐶 = ‘+’, ALU computes 𝑌 + 𝑋
10001(2) 101(2) ; 𝐶 = ‘-’, ALU computes 𝑌 − 𝑋
10010(2) 110(2) ; 𝐶 = ‘×’, ALU computes 𝑌 · 𝑋

...
...

which is, of course, what we want. The point is that as long as the ROM is populated with the correct content,
we can avoid use of combinatorial logic to compute 𝑐𝑡𝑟𝑙𝐴𝐿𝑈 from 𝑐𝑜𝑑𝑒: we simply look it up in the ROM, which
essentially provides a physical truth table.

git # b282dbb9 @ 2025-09-03 10

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

The same strategy is used for the control signals associated with each of the registers, e.g., 𝑐𝑡𝑟𝑙𝑋 , housed in the
A&R unit. In each case we also need to consider 𝑟𝑎𝑖𝑠𝑒 and 𝑎𝑝𝑝𝑒𝑛𝑑, meaning each ROM has 128 words, each of 3
bits; we form an 𝑛′ = 7 bit address as

𝑥 = 𝑟𝑎𝑖𝑠𝑒 ∥ 𝑎𝑝𝑝𝑒𝑛𝑑 ∥ 𝐶

and look-up 𝑐𝑡𝑟𝑙𝑋 = MEM in the same way.

Easing the pain of ROM content specification

convert.py, found within the support archive, can be used to convert a human-readable ROM description (includ-
ing don’t-care states in either the input or output) into a form suitable for use by a LogisimEvo ROM component.
Doing so by hand is tedious and error prone, so using the program makes the process a lot easier. As an example,
and following the above, consider hp35-rom_alu.txt which is converted into hp35-rom_alu.bin and used to
populate the ROM associated with ALU control signals. Each line starting with ‘#’ is a comment, but beyond this:
• The first (non-comment) line states the number of input and output bits: here we have a 5-bit input and 3-bit

output.
• Each subsequent line has three fields:

– a label (which is otherwise unused),
– an address (or input, i.e., 𝑥), and
– a value (or output, i.e., 𝑟 = MEM).

For example, the line
ADD 10000 100

implies that given 𝑥 = 10000(2), MEM = 100(2). Looking again at the Section above, this should make sense. The
fact that

𝑥 = 𝐶 = 10000(2)

implies ‘+’ is being pressed. To process this, we want the ALU to compute 𝑌 + 𝑋, i.e., 𝑐𝑡𝑟𝑙𝐴𝐿𝑈
2 should be set to

1(2) (to select 𝑌 as an input) and 𝑐𝑡𝑟𝑙𝐴𝐿𝑈
1...0 should be set to 00(2) (to select an addition operation); this is exactly

what happens, because
𝑐𝑡𝑟𝑙𝐴𝐿𝑈 = MEM = 100(2).

git # b282dbb9 @ 2025-09-03 11

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

