
© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

• Remember to register your attendance using the UoB Check-In app. Either

1. download, install, and use the native appa available for Android and iOS, or
2. directly use the web-based app available at

https://check-in.bristol.ac.uk

noting the latter is also linked to via the Attendancemenu item on the left-hand side of the Blackboard-based unit
web-site.
• The hardware and software resources located in the MVB Linux lab(s). (e.g., MVB-1.15 or MVB-2.11) are managed
by the Faculty IT Support Team, a subset of IT Services. If you encounter a problem (e.g., a workstation that fails
to boot, an error when you try to use some software, or you just cannot log into your account), they can help: you
can contact them, to report then resolve said problem, via

https://www.bristol.ac.uk/it-support

• The lab. worksheet is written assuming you work in the lab. using UoB-managed and thus supported equipment. If
you need or prefer to use your own equipment, however, various unsupportedb alternatives available: for example,
you could 1) manually install any software dependencies yourself, or 2) use the unit-specific Vagrantc box by
following instructions at

https://cs-uob.github.io/COMS10015/vm

• The questions are roughly classified as either C (for core questions, that should be attempted within the lab. slot),
A (for additional questions, that could be attempted within the lab. slot), or R (for revision questions). Keep in
mind that we only expect you to attempt the C-class questions: the other classes are provided purely for your benefit
and/or interest, so there is no problem with nor penalty for totally ignoring them.
• There is an associated set of solutions is available, at least for the C-class questions. These solutions are there
for you to learn from (e.g., to provide an explanation or hint, or illustrate a range of different solutions and/or
trade-offs), rather than (purely) to judge your solution against; they often present a solution vs. the solution,
meaning there might be many valid approaches to and solutions for a question.
• Keep in mind that various mechanisms exist to get support with and/or feedback on your work; these include
both in-person (e.g., the lab. slot itself) and online (e.g., the unit forum, accessible via the unit web-site) instances.

ahttps://www.bristol.ac.uk/students/support/it/software-and-online-resources/registering-attendance
bThe implication here is that such alternatives are provided in a best-effort attempt to help you: they are experimental, and so no guarantees

about nor support for their use will be offered.
chttps://www.vagrantup.com

git # b282dbb9 @ 2025-09-03 1

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://check-in.bristol.ac.uk
https://www.bristol.ac.uk/it-support
https://cs-uob.github.io/COMS10015/vm
https://www.bristol.ac.uk/students/support/it/software-and-online-resources/registering-attendance
https://www.vagrantup.com


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

COMS10015 lab. worksheet #10

During the period of time aligned with this lab. worksheet, there is an active (or open) coursework assignment
for the unit. You could address this fact by dividing your time between them. However, our (strong) suggestion
is to view the former as of secondary importance (or optional, basically), and instead focus on the latter: since it
is credit bearing, the coursework assignment should be viewed as of primary importance. Put another way, focus
exclusively on completing the latter before you invest any time at all in the former.

Before you start work, download (and, if need be, unarchivea) the file

https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/lab-10_q.tar.gz

somewhere secureb in your file system; from here on, we assume ${ARCHIVE} denotes a path to the resulting,
unarchived content. The archive content is intended to act as a starting point for your work, and will be referred
to in what follows.

aFor example, you could 1) use tar, e.g., by issuing the command tar xvfz lab-10_q.tar.gz in a terminal window, 2) use ark directly: use
the Activities desktop menu item, search for and execute ark, use the Archive→Openmenu item to open lab-10_q.tar.gz, then extract the
contents via the Extract button, or 3) use ark indirectly: use the Activities desktop menu item, search for and execute dolphin, right-click
on lab-10_q.tar.gz, select Open with, select ark, then extract the contents via the Extract button.

bFor example, the Private sub-directory within your home directory (which, by default, cannot be read by another user).

§1. C-class, or core questions

� Q1[C]. In the lecture slot(s), we studied the design of an 𝑟-register counter machine (which is a specific type of
register machine). For completeness, the design presented is reproduced in Figure 1; the associated instruction
set, assuming 𝑟 = 4, is reproduced in Figure 2. The goal of this question is to explore concepts around counter
and register machines, using a practical, hands-on approach which complements the more theoretically focused
lecture slot(s).

The archive includes a LogisimEvo project, and, specifically, an incomplete implementation of the design:
beyond the fact that the implementation is superficially different from the design in certain, minor respects, note
there is no internal implementation of the decoder component.
a Complete the counter machine implementation by implementing the decoder component.
b Use the completed counter machine implementation to execute the example program

L0 : if R2 = 0 then goto L5 else goto L1 ↦→ 010100101(2) = 0𝐴5(16)
L1 : R2 ← R2 − 1 then goto L2 ↦→ 001100000(2) = 060(16)
L2 : R3 ← R3 + 1 then goto L3 ↦→ 000110000(2) = 030(16)
L3 : R1 ← R1 + 1 then goto L4 ↦→ 000010000(2) = 010(16)
L4 : if R0 = 0 then goto L0 else goto L5 ↦→ 010000000(2) = 080(16)
L5 : if R1 = 0 then goto L9 else goto L6 ↦→ 010011001(2) = 099(16)
L6 : R1 ← R1 − 1 then goto L7 ↦→ 001010000(2) = 050(16)
L7 : R2 ← R2 + 1 then goto L8 ↦→ 000100000(2) = 020(16)
L8 : if R0 = 0 then goto L5 else goto L9 ↦→ 010000101(2) = 085(16)
L9 : halt ↦→ 011000000(2) = 0𝐶0(16)

which has been pre-loaded into the memory (i.e., ROM) component:

• Use the Simulate→Reset Simulation menu item to reset the counter machine, which sets each R𝑖 = 0 and
PC = 0.

• Use the poke1 tool to set R2 = 2, noting that PC = 0; you should be able to observe the initial configuration is
𝒞0 = (0, 0, 0, 2, 0).

• Use either theSimulate→Ticks Enabledmenu item to automatically toggle the clock signals, or theSimulate→Tick
Once menu item to manually toggle the clock signals. Doing so will force the counter machine to proceed
through fetch-decode-execute cycles: you can concretely observe, e.g., each R𝑖 and PC being updated in line
with the (more abstract, “on paper”) trace of computation presented in the lecture slot(s).

• Eventually the counter machine halts: you should be able to observe the final configuration is 𝒞20 =

(9, 0, 0, 2, 2).
1How to do so is not that obvious, but the idea is that you 1) select the poke tool, 2) click on the latch (to give it focus), then 3) type the value

it should be updated to store.

git # b282dbb9 @ 2025-09-03 2

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/lab-10_q.tar.gz


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

R
0

R
1

R
r−

1

Q

rs
t

D
en

Q

rs
t

D
en

Q

rs
t

D
en

Q

rs
t

D
en

R
′Q

rs
t

D
en

0
+

1
−

1
? =

0

rs
t

rs
t

ex
ec

ut
e∧
¬

ha
lt
∧
Φ

1

ex
ec

ut
e∧
¬

ha
lt
∧
Φ

2

ad
dr

al
u

ad
dr

cm
p

w
r

P
C

M
E

M
IR

Q

rs
t

D
en

Q

rs
t

D
en

ad
dr

da
ta

P
C
′

Q

rs
t

D
en

+
1

de
co

de
r

in
st

al
u

w
r

ad
dr

ta
rg

et
jm

p
ha

lt

rs
t

rs
t

fe
tc

h
∧
¬

ha
lt
∧
Φ

1
ex

ec
ut

e∧
¬

ha
lt
∧
Φ

1

rs
t

ex
ec

ut
e∧
¬

ha
lt
∧
Φ

2

jm
p
∧

cm
p

ta
rg

et

SQ

rs
t

D
en

S
′Q

rs
t

D
en

+
1

? =
0

? =
1

? =
2

fe
tc

h
de

co
de

ex
ec

ut
e

rs
t
Φ

2

rs
t
Φ

1

Figure 1: A design for a 𝑟-register counter machine.

git # b282dbb9 @ 2025-09-03 3

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

§2. R-class, or revision questions

� Q2[R]. There is a set of questions available at

https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_q.pdf

Using pencil-and-paper, each asks you to solve a problem relating to Boolean algebra. There are too many for the
lab. session(s) alone, but, in the longer term, the idea is simple: attempt to answer the questions, applying theory
covered in the lecture(s) to do so, as a means of revising and thereby ensuring you understand the material.

§3. A-class, or additional questions

� Q3[A]. Upgrade the counter machine implementation:
a Force execution to halt (rather than simply continuing, potentially meaning undefined or unintended behaviour)

if/when decoding an instruction indicates it is invalid.
b Add support for a clear instruction, i.e., an instruction with the semantics

L𝑖 : R𝑎𝑑𝑑𝑟 ← 0 then goto L𝑖+1.

c Add support for an unconditional branch instruction, i.e., an instruction with the semantics

L𝑖 : goto L𝑡𝑎𝑟𝑔𝑒𝑡 .

In each case, demonstrate that the upgrade functions correctly by writing and executing a short program.

� Q4[A]. Write a program which adds the value in R1 to that in R2, storing the result in R3.

git # b282dbb9 @ 2025-09-03 4

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_q.pdf


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

L𝑖 : R𝑎𝑑𝑑𝑟 ← R𝑎𝑑𝑑𝑟 + 1 then goto L𝑖+1 ↦→
012345678

000 𝑎𝑑𝑑𝑟 0000

L𝑖 : R𝑎𝑑𝑑𝑟 ← R𝑎𝑑𝑑𝑟 − 1 then goto L𝑖+1 ↦→
012345678

001 𝑎𝑑𝑑𝑟 0000

L𝑖 : if R𝑎𝑑𝑑𝑟 = 0 then goto L𝑡𝑎𝑟𝑔𝑒𝑡 else goto L𝑖+1 ↦→
012345678

010 𝑎𝑑𝑑𝑟 𝑡𝑎𝑟𝑔𝑒𝑡

L𝑖 : halt ↦→
012345678

011 00 0000

Figure 2: An instruction set for a 4-register counter machine.

git # b282dbb9 @ 2025-09-03 5

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

