
© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

COMS10015 lab. worksheet #10

Although some questions have a written solution below, for others it will be more useful to experiment in a
hands-on manner (e.g., using a concrete implementation). The file

https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/lab-10_s.tar.gz

supports such cases.

§1. C-class, or core questions

� S1[C]. A theme throughout this question is the increased level of design required, versus implementation: you
will need to think more about how to produce a solution, rather than just reproduce one from, e.g., the lecture slot(s).
Keep in mind that there is an associated, and intentional design space of valid solutions. What is presented here is
therefore one approach, which emphasises clarity and ease of understanding, among many: do not automatically
assume that some other, different approach is invalid.

Figure 1 describes the decoder implementation; an associated LogisimEvo implementation is reproduced
within the archive provided.
• The 𝑎𝑙𝑢 signal controls a multiplexer towards the top of the data-path. The multiplexer output is connected to

the input (or next value) of R′, meaning the multiplexer selects the operation applied to an input 𝑥, e.g., 𝑥 = R𝑖 ,
to produce an output 𝑟: by inspection, we can see that one of the following cases

𝑎𝑙𝑢 =


0 ⇒ 𝑟 = 0 (hard-wired to constant)
1 ⇒ 𝑟 = 𝑥 + 1 (computed via adder component)
2 ⇒ 𝑟 = 𝑥 − 1 (computed via subtractor component)
3 ⇒ 𝑟 = undefined

will apply depending on 𝑎𝑙𝑢. Within the decoder, 𝑎𝑙𝑢 is the output of a multiplexer whose control signal
is 𝑖𝑛𝑠𝑡8,7,6, i.e., the opcode field in the encoded instruction: basically, the idea is that we connect each 𝑖-th
multiplexer input to whatever we want 𝑎𝑙𝑢 to be when 𝑖𝑛𝑠𝑡8,7,6 = 𝑖. So, for example:

– if 𝑖𝑛𝑠𝑡8,7,6 = 000(2) = 0(10), this is an increment instruction: we want 𝑎𝑙𝑢 = 1 such that 𝑟 = 𝑥 + 1 is produced as
output, so connect the 0-th multiplexer input to 1,

– if 𝑖𝑛𝑠𝑡8,7,6 = 001(2) = 1(10), this is an decrement instruction: we want 𝑎𝑙𝑢 = 2 such that 𝑟 = 𝑥 − 1 is produced
as output, so connect the 1-st multiplexer input to 2,

– in all other cases, we do not use 𝑟: we want 𝑎𝑙𝑢 = 0 such that 𝑟 = 0 is produced as a default (or placeholder)
output, so connect the 𝑖-th multiplexer input to 0 for each 𝑖 ∈ {2, 3, 4, 5, 6, 7}.

• The 𝑤𝑟 signal controls a demultiplexer towards the bottom of the data-path. Each 𝑖-th demultiplexer output
is connected to the enable input of R𝑖 , meaning the demultiplexer allows (if 𝑤𝑟 = 1) or disallows (if 𝑤𝑟 = 0)
update of (or write-back of a value into) that register. Within the decoder, 𝑤𝑟 is the output of a multiplexer
whose control signal is 𝑖𝑛𝑠𝑡8,7,6, i.e., the opcode field in the encoded instruction: basically, the idea is that we
connect each 𝑖-th multiplexer input to whatever we want 𝑤𝑟 to be when 𝑖𝑛𝑠𝑡8,7,6 = 𝑖. So, for example:

– if 𝑖𝑛𝑠𝑡8,7,6 = 000(2) = 0(10), this is an increment instruction: we want 𝑤𝑟 = 1 such that a write-back occurs, so
connect the 0-th multiplexer input to 1,

– if 𝑖𝑛𝑠𝑡8,7,6 = 001(2) = 1(10), this is an decrement instruction: we want 𝑤𝑟 = 1 such that a write-back occurs, so
connect the 1-st multiplexer input to 1,

– in all other cases, we want no write-back to occur: we want 𝑤𝑟 = 0, so connect the 𝑖-th multiplexer input to 0
for each 𝑖 ∈ {2, 3, 4, 5, 6, 7}.

• The 𝑎𝑑𝑑𝑟 signal controls a multiplexer towards the middle of the data-path. Each 𝑖-th multiplexer input is
connected to the output (or current value) of R𝑖 , meaning the multiplexer selects a register to operate on. Within
the decoder, 𝑎𝑑𝑑𝑟 is extracted directly from the corresponding field in the encoded instruction. That is, we have
𝑎𝑑𝑑𝑟 = 𝑖𝑛𝑠𝑡5,4.

• The 𝑡𝑎𝑟𝑔𝑒𝑡 signal acts as an input to a multiplexer towards the middle of the control-path. The multiplexer
output is connected to the input (or next value) of PC′, meaning the multiplexer makes control-flow decisions:
by inspection, we can see that one of the following cases

𝑗𝑚𝑝 ∧ 𝑐𝑚𝑝 =

{
1 ⇒ PC′ = 𝑡𝑎𝑟𝑔𝑒𝑡 (hard-wired to signal)
0 ⇒ PC′ = PC + 1 (computed via adder component)

git # b282dbb9 @ 2025-09-03 1

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/lab-10_s.tar.gz


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

in
st

0

in
st

1

in
st

2

in
st

3

in
st

4

in
st

5

in
st

6

in
st

7

in
st

8

1
2

0
0

0
0

0
0

m
er

geinst8,...,6

al
u

1
1

0
0

0
0

0
0

m
er

geinst8,...,6

gj

w
r

gj

m
er

geinst5,...,4

gj

ad
dr

gj

m
er

geinst3,...,0

gj

ta
rg

et

gj
gj

jm
p

gj
gj

ha
lt

gj

Figure 1: The decoder implementation for an example 4-register counter machine.

git # b282dbb9 @ 2025-09-03 2

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

will apply depending on 𝑗𝑚𝑝 and 𝑐𝑚𝑝. Put another way, the next instruction is fetched from either PC + 1
(if a branch is not required, i.e., either 𝑗𝑚𝑝 = 0 or 𝑐𝑚𝑝 = 0) or 𝑡𝑎𝑟𝑔𝑒𝑡 (if a branch is required, i.e., both
𝑗𝑚𝑝 = 1 and 𝑐𝑚𝑝 = 1). Within the decoder, 𝑡𝑎𝑟𝑔𝑒𝑡 is extracted directly from the corresponding field in
the encoded instruction. That is, we have 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑖𝑛𝑠𝑡3,2,1,0. In contrast, we can see by inspection that
𝑗𝑚𝑝 = ¬𝑖𝑛𝑠𝑡8 ∧ 𝑖𝑛𝑠𝑡7 ∧ ¬𝑖𝑛𝑠𝑡6 , or, if you prefer,

𝑗𝑚𝑝 =

{
1 if 𝑖𝑛𝑠𝑡8,7,6 = 010(2), i.e., this is a branch instruction
0 otherwise, i.e., this is not a branch instruction

Note that 𝑐𝑚𝑝 is produced as output from the comparator component within the data-path, not by the decoder:
basically,

𝑐𝑚𝑝 =

{
1 if R𝑎𝑑𝑑𝑟 = 0, i.e., the branch condition is satisfied
0 if R𝑎𝑑𝑑𝑟 ≠ 0, i.e., the branch condition is not satisfied

• The ℎ𝑎𝑙𝑡 signal is combined with, or, more specifically, gates the clock signals Φ1 and Φ2 towards the right-hand
side of the data-path. The idea is that once a halt instruction is executed, the clock signals are disabled; if
ℎ𝑎𝑙𝑡 = 1, we gate Φ1 and Φ1 meaning, for example, that subsequent register updates are then disallowed.
Within the decoder, we can see by inspection that ℎ𝑎𝑙𝑡 = ¬𝑖𝑛𝑠𝑡8 ∧ 𝑖𝑛𝑠𝑡7 ∧ 𝑖𝑛𝑠𝑡6 , or, if you prefer,

ℎ𝑎𝑙𝑡 =

{
1 if 𝑖𝑛𝑠𝑡8,7,6 = 011(2), i.e., this is a halt instruction
0 otherwise, i.e., this is not a halt instruction

§2. R-class, or revision questions

� S2[R]. There is a set of solutions available at

https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_s.pdf

§3. A-class, or additional questions

� S3[A]. A solution for the first part can be localised to the decoder. The idea is that we want to set ℎ𝑎𝑙𝑡 = 1 either
1) when a halt instruction is decoded, or 2) when an invalid instruction is decoded. Put another way, we

ℎ𝑎𝑙𝑡 =



0 if 𝑖𝑛𝑠𝑡8,7,6 = 000(2) = 0(10)
0 if 𝑖𝑛𝑠𝑡8,7,6 = 001(2) = 1(10)
0 if 𝑖𝑛𝑠𝑡8,7,6 = 010(2) = 2(10)
1 if 𝑖𝑛𝑠𝑡8,7,6 = 011(2) = 3(10)
1 if 𝑖𝑛𝑠𝑡8,7,6 = 100(2) = 4(10)
1 if 𝑖𝑛𝑠𝑡8,7,6 = 101(2) = 5(10)
1 if 𝑖𝑛𝑠𝑡8,7,6 = 110(2) = 6(10)
1 if 𝑖𝑛𝑠𝑡8,7,6 = 111(2) = 7(10)

There are various ways to implement this, but arguably the simplest would be to use the expression

ℎ𝑎𝑙𝑡 = (¬𝑖𝑛𝑠𝑡8 ∧ 𝑖𝑛𝑠𝑡7 ∧ 𝑖𝑛𝑠𝑡6) ∨ (𝑖𝑛𝑠𝑡8)

to capture the two cases: the left-hand sub-expression identifies a halt instruction and the right-hand sub-
expression identifies an invalid instruction. However, this would need to be updated to reflect the additional
instructions that stem from other parts of the question. Doing so is arguably easier by adopting a multiplexer-
based approach, in a similar way to, e.g., the 𝑎𝑙𝑢 signal: doing so means using 𝑖𝑛𝑠𝑡8,7,6 as a control signal with the
multiplexer selecting between 8 inputs, one for each possible opcode, which reflect the value of ℎ𝑎𝑙𝑡 required for
an associated instruction.

At a high level, “adding support for an instruction” involves (at least) two steps: 1) defining the semantics and
encoding for the instruction, then 2) implementing changes to the control- and data-path that allow execution of
instruction instances within a program. As such, we can approach the latter parts of this question using the same
steps for each instruction type.
• The first step is arguably less difficult, in part because the instruction semantics are already defined; the

remaining task is therefore to define an encoding for each instruction. Although we have some degree of
freedom, the encoding must satisfy some required requirements and will ideally satisfy some further optional

git # b282dbb9 @ 2025-09-03 3

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_s.pdf


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

0𝐵3(16) = 010110011(2) ↦→ L0 : if R3 = 0 then goto L3 else goto L1
070(16) = 001110000(2) ↦→ L1 : R3 ← R3 − 1 then goto L2
080(16) = 010000000(2) ↦→ L2 : if R0 = 0 then goto L0 else goto L3
097(16) = 010010111(2) ↦→ L3 : if R1 = 0 then goto L7 else goto L4
030(16) = 000110000(2) ↦→ L4 : R3 ← R3 + 1 then goto L5
050(16) = 001010000(2) ↦→ L5 : R1 ← R1 − 1 then goto L6
083(16) = 010000011(2) ↦→ L6 : if R0 = 0 then goto L3 else goto L7

0𝐴𝐵(16) = 010101011(2) ↦→ L7 : if R2 = 0 then goto L11 else goto L8
030(16) = 000110000(2) ↦→ L8 : R3 ← R3 + 1 then goto L9
060(16) = 001100000(2) ↦→ L9 : R2 ← R2 − 1 then goto L10
087(16) = 010000111(2) ↦→ L10 : if R0 = 0 then goto L7 else goto L11
0𝐶0(16) = 011000000(2) ↦→ L11 : halt

Figure 2: A program for an example 4-register counter machine, which sets R3 equal to R1 + R2.

requirements. For example, it must allow instructions to be decoded unambiguously; ideally, it will also allow
efficient decoding, use existing instruction formats, etc. So, for example, we could settle on

L𝑖 : R𝑎𝑑𝑑𝑟 ← 0 then goto L𝑖+1 ↦→
012345678

100 𝑎𝑑𝑑𝑟 0000

L𝑖 : goto L𝑡𝑎𝑟𝑔𝑒𝑡 ↦→
012345678

101 0000 𝑡𝑎𝑟𝑔𝑒𝑡

for the clear (top) and unconditional branch (bottom) instructions respectively.
• The second step is arguably more difficult, in part because the approach required is strongly dependent on

1) the instruction semantics, and 2) the control- and data-path used to support them; there is no generic
approach to follow, for example. We focus on the approach itself in what follows, presenting an overview of the
implementations only.
For the clear instruction, the implementation is straightforward. The multiplexer towards the top of the data-
path controlled by 𝑜𝑝 already allows selection of the value then written-back into a given register; this value is
already 0 if 𝑜𝑝 = 0. Noting that for this instruction we have 𝑖𝑛𝑠𝑡8,7,6 = 100(2) = 4(10), we make two changes within
the decoder. First, for the multiplexer that outputs 𝑜𝑝, we connect the 4-th input to 0 so the value written-back
into R𝑎𝑑𝑑𝑟 is selected to be 0. Second, for the multiplexer that outputs 𝑤𝑟, we connect the 4-th input to 1 so
write-back into R𝑎𝑑𝑑𝑟 is enabled.
For the unconditional branch instruction, the goal is to alter how control-flow decisions are made, i.e., to
accommodate both (existing) conditional and (new) unconditional cases. Conceptually, the implementation is
straightforward although more involved than for the clear instruction: control-flow decisions are made using
a multiplexer towards the middle of the control-path, so implementation of unconditional branch instruction
basically means altering the associated control signal. Within the control-path, we change the multiplexer
control signal 𝑗𝑚𝑝∧ 𝑐𝑚𝑝 to 𝑗𝑚𝑝∧(𝑐𝑚𝑝∨𝑢𝑛𝑐𝑜𝑛𝑑). This means 𝑢𝑛𝑐𝑜𝑛𝑑 can “override” 𝑐𝑚𝑝: provided 𝑗𝑚𝑝 = 1,
i.e., this is a branch instruction, then whenever 𝑢𝑛𝑐𝑜𝑛𝑑 = 1 said branch will be taken irrespective of 𝑐𝑚𝑝. Noting
that for this instruction we have 𝑖𝑛𝑠𝑡8,7,6 = 101(2) = 5(10), we make two changes within the decoder. First, we
update the logic that produces 𝑗𝑚𝑝 so that 𝑗𝑚𝑝 = 1 for both the conditional and unconditional branches. We
could do so by implementing the expression

𝑗𝑚𝑝 = (¬𝑖𝑛𝑠𝑡8 ∧ 𝑖𝑛𝑠𝑡7 ∧ ¬𝑖𝑛𝑠𝑡6) ∨ (𝑖𝑛𝑠𝑡8 ∧ ¬𝑖𝑛𝑠𝑡7 ∧ 𝑖𝑛𝑠𝑡6),

or, more radically, via a similar per-instruction multiplexer style approach as used for 𝑜𝑝 and 𝑤𝑟. Second, we
introduce the new output 𝑢𝑛𝑐𝑜𝑛𝑑: the easiest way to do so would be to simply set

𝑢𝑛𝑐𝑜𝑛𝑑 = 𝑖𝑛𝑠𝑡8 ∧ ¬𝑖𝑛𝑠𝑡7 ∧ 𝑖𝑛𝑠𝑡6 ,

meaning 𝑢𝑛𝑐𝑜𝑛𝑑 = 1 for the unconditional branch instruction only.

� S4[A]. Figure 2 describes the program implementation, which can be thought of as three parts: L0 to L2 clear
(or zero) R3, L3 to L6 add R1 to R3, L7 to L10 add R2 to R3. Also note that it depends on having R0 = 0, allowing
the construction of unconditional branches in L2, L6, and L10. That is, it does not utilise the additional clear and
unconditional branch instructions considered above.

git # b282dbb9 @ 2025-09-03 4

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝒞0 = (0, 0, 3, 2, 1)
L0 ; if R3 = 0 then goto L3 else goto L1
𝒞1 = (1, 0, 3, 2, 1)
L1 ; R3 ← R3 − 1 then goto L2
𝒞2 = (2, 0, 3, 2, 0)
L2 ; if R0 = 0 then goto L0 else goto L3
𝒞3 = (0, 0, 3, 2, 0)
L0 ; if R3 = 0 then goto L3 else goto L1
𝒞4 = (3, 0, 3, 2, 0)
L3 ; if R1 = 0 then goto L7 else goto L4
𝒞5 = (4, 0, 3, 2, 0)
L4 ; R3 ← R3 + 1 then goto L5
𝒞6 = (5, 0, 3, 2, 1)
L5 ; R1 ← R1 − 1 then goto L6
𝒞7 = (6, 0, 2, 2, 1)
L6 ; if R0 = 0 then goto L3 else goto L7
𝒞8 = (3, 0, 2, 2, 1)
L3 ; if R1 = 0 then goto L7 else goto L4
𝒞9 = (4, 0, 2, 2, 1)
L4 ; R3 ← R3 + 1 then goto L5
𝒞10 = (5, 0, 2, 2, 2)
L5 ; R1 ← R1 − 1 then goto L6
𝒞11 = (6, 0, 1, 2, 2)
L6 ; if R0 = 0 then goto L3 else goto L7
𝒞12 = (3, 0, 1, 2, 2)
L3 ; if R1 = 0 then goto L7 else goto L4
𝒞13 = (4, 0, 1, 2, 2)
L4 ; R3 ← R3 + 1 then goto L5
𝒞14 = (5, 0, 1, 2, 3)
L5 ; R1 ← R1 − 1 then goto L6
𝒞15 = (6, 0, 0, 2, 3)
L6 ; if R0 = 0 then goto L3 else goto L7
𝒞16 = (3, 0, 0, 2, 3)
L3 ; if R1 = 0 then goto L7 else goto L4
𝒞17 = (7, 0, 0, 2, 3)
L7 ; if R2 = 0 then goto L11 else goto L8
𝒞18 = (8, 0, 0, 2, 3)
L8 ; R3 ← R3 + 1 then goto L9
𝒞19 = (9, 0, 0, 2, 4)
L9 ; R2 ← R2 − 1 then goto L10
𝒞20 = (10, 0, 0, 1, 4)
L10 ; if R0 = 0 then goto L7 else goto L11
𝒞21 = (7, 0, 0, 1, 4)
L7 ; if R2 = 0 then goto L11 else goto L8
𝒞22 = (8, 0, 0, 1, 4)
L8 ; R3 ← R3 + 1 then goto L9
𝒞23 = (9, 0, 0, 1, 5)
L9 ; R2 ← R2 − 1 then goto L10
𝒞24 = (10, 0, 0, 0, 5)
L10 ; if R0 = 0 then goto L7 else goto L11
𝒞25 = (7, 0, 0, 0, 5)
L7 ; if R2 = 0 then goto L11 else goto L8
𝒞26 = (11, 0, 0, 0, 5)
L11 ; halt

Figure 3: An example trace of the program described in Figure ??.

git # b282dbb9 @ 2025-09-03 5

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

We can demonstrate that the program computes the correct result by producing an example trace of execution.
Starting with the initial configuration

𝒞0 = (𝑙 = 0, 𝑣0 = 0, 𝑣1 = 3, 𝑣2 = 2, 𝑣3 = 1),

Figure 3 describes such a trace. Note that initially R1 = 3 and R2 = 2, and the final configuration halts execution
with R3 = 3 + 2 = 5 as expected.

git # b282dbb9 @ 2025-09-03 6

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

