© Daniel Page (csdsp@bristol.ac.uk) CS@ UoB

® Remember to register your attendance using the UoB Check-In app. Either

1. download, install, and use the native app” available for Android and iOS, or
2. directly use the web-based app available at

https://check-in.bristol.ac.uk

noting the latter is also linked to via the Attendance menu item on the left-hand side of the Blackboard-based unit
web-site.

® The hardware and software resources located in the MVB Linux lab(s). (e.g., MVB-1.15 or MVB-2.11) are managed
by the Faculty IT Support Team, a subset of IT Services. If you encounter a problem (e.g., a workstation that fails
to boot, an error when you try to use some software, or you just cannot log into your account), they can help: you
can contact them, to report then resolve said problem, via

https://www.bristol.ac.uk/it-support

 The lab. worksheet is written assuming you work in the lab. using UoB-managed and thus supported equipment. If
you need or prefer to use your own equipment, however, various unsupported’ alternatives available: for example,
you could 1) manually install any software dependencies yourself, or 2) use the unit-specific Vagrant® box by
following instructions at

https://cs-uob.github.io/COMS10015/vm

¢ The questions are roughly classified as either C (for core questions, that should be attempted within the lab. slot),
A (for additional questions, that could be attempted within the lab. slot), or R (for revision questions). Keep in
mind that we only expect you to attempt the C-class questions: the other classes are provided purely for your benefit
and/or interest, so there is no problem with nor penalty for totally ignoring them.

¢ There is an associated set of solutions is available, at least for the C-class questions. These solutions are there
for you to learn from (e.g., to provide an explanation or hint, or illustrate a range of different solutions and/or
trade-offs), rather than (purely) to judge your solution against; they often present a solution vs. the solution,
meaning there might be many valid approaches to and solutions for a question.

¢ Keep in mind that various mechanisms exist to get support with and/or feedback on your work; these include
both in-person (e.g., the lab. slot itself) and online (e.g., the unit forum, accessible via the unit web-site) instances.

“https://www.bristol.ac.uk/students/support/it/software-and-online-resources/registering-attendance

bThe implication here is that such alternatives are provided in a best-effort attempt to help you: they are experimental, and so 1o guarantees
about nor support for their use will be offered.

‘https://www.vagrantup.com

git # b282dbb9 @ 2025-09-03 1

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://check-in.bristol.ac.uk
https://www.bristol.ac.uk/it-support
https://cs-uob.github.io/COMS10015/vm
https://www.bristol.ac.uk/students/support/it/software-and-online-resources/registering-attendance
https://www.vagrantup.com

© Daniel Page (csdsp@bristol.ac.uk) CS@ UoB

COMS10015 lab. worksheet #11

During the period of time aligned with this lab. worksheet, there is an active (or open) coursework assignment
for the unit. You could address this fact by dividing your time between them. However, our (strong) suggestion
is to view the former as of secondary importance (or optional, basically), and instead focus on the latter: since it
is credit bearing, the coursework assignment should be viewed as of primary importance. Put another way, focus
exclusively on completing the latter before you invest any time at all in the former.

§1. C-class, or core questions

> Q1[C]. In the lecture slot(s), we studied a simple, Princeton (aka. von Neumann) style computer based loosely
on the Electronic Discrete Variable Automatic Compute (EDVAC); the idea was to introduce the concept of a stored

program architecture. Recall that the design included an accumulator called A, a program counter called PC, a

memory called MEM used to store data and instructions, and an instruction set as follows:

¢ 00nnnn means nop.

* 10nnnn means halt.

® 20nnnn means A « n.

® 21nnnn means MEM[n] « A.

e 22nnnn means A «— MEM[n].

e 30nnnn means A «— A + MEM[n].

® 3lnnnn means A «— A — MEM[n].

e 32nnnn means A «— A & MEM[n].

® 40nnnn means PC < n.

* 41nnnn means PC « n iff. A =0.

* 42nnnn means PC « n iff. A # 0.

a Making appropriate assumptions as required, write a C program which emulates the behaviour (i.e., performs
the fetch-decode-execute cycle) of this design: use example programs from the lecture slot(s) in order to verify
your implementation functions correctly.

b Using your emulator, write a program (i.e., specify the initial memory content) to compute the sum of n elements
held in an array X. That is, compute

=

n—
r =)(i

i

Il
[}

for some known n where X is located at some known address, say m.

§2. R-class, or revision questions

> Q2[R]. There is a set of questions available at
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_qg.pdf

Using pencil-and-paper, each asks you to solve a problem relating to Boolean algebra. There are too many for the
lab. session(s) alone, but, in the longer term, the idea is simple: attempt to answer the questions, applying theory
covered in the lecture(s) to do so, as a means of revising and thereby ensuring you understand the material.

§3. A-class, or additional questions

> Q3[A]. Later in the unit, we study the topic of assembly language' and assemblers. In essence, (an) assembly
language is a low-level programming language that allows the programmer to express individual instructions;
an assembler is a tool that processes an assembly language input program, and, e.g., produces machine code as
output. Use of assembly language, and so an assembler, can be attractive, because it 1) can permit greater control
than, e.g., a high-level programming language (because the translation from assembly language to machine code
is more direct), and 2) reduce the effort required to manually write machine code programs.

a Design an assembly language for the instruction set presented in Question 1. That is, invent a human-oriented
syntax (or format) which allows the programmer to express each instruction.

lThttps://en.wikipedia.org/wiki/Assembly_language

git # b282dbb9 @ 2025-09-03 2

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_q.pdf
https://en.wikipedia.org/wiki/Assembly_language

© Daniel Page (csdsp@bristol.ac.uk) CS@ UoB

b Implement an assembler for your assembly language: reading from stdin and writing to stdout for example,
it should accept a assembly language program as input and produce a machine code program as output. Doing
so implies translating, or encoding each human-oriented instruction description (assuming, e.g., one instruction
per line) in the former into the corresponding machine-oriented instruction description (i.e., machine code) in
the latter.

Although each challenge above is open-ended, consider an example that acts as a starting point:

human-oriented machine-oriented
—_——

A <- A + MEM[10] 300010 = A« A+MEM[10]

syntax semantics

form function

The idea is that the left-hand side is an assembly language description of some instruction, whereas the right-hand
side is a machine code description of that instruction the programmer writes the former as part of an assembly
language program, and uses an assembler to translate it into the latter.

> Q4[A]. The term instruction set simulator? is often used as a more formal description of the emulator you
implemented as part of Question 1. The by-design focus of such a tool represents a trade-off, so that, e.g.,
it 1) allows easy experimentation with an instruction set, and programs written against it, but 2) focuses on
functional correctness and so abstracts various details of a concrete implementation (therefore contrasting with a
micro-architecture simulator® which, e.g., models cycle accurate execution latency).

a Consider the fact that, typically, the number of instructions executed is correlated with execution latency and
therefore efficiency (with respect to time): focused on the goal of reducing the number of instructions executed
to realise some functionality, design an extension for the instruction set presented in Question 1, i.e., define and
implement support for some addition instructions you think will be useful. One potential starting point is the
concept of an addressing mode*, of which the existing instruction set supports one, simple instance.

b How can you evaluate your instruction set extension. What metrics are relevant, for example, and how does
your design compare (with respect to those metrics) with any viable alternatives?

2https://en.wikipedia.org/wiki/Instruction_set_simulator
Shttps://en.wikipedia.org/wiki/Microarchitecture_simulation
4https://en.wikipedia.org/wiki/Addressing_mode

git # b282dbb9 @ 2025-09-03 3

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://en.wikipedia.org/wiki/Instruction_set_simulator
https://en.wikipedia.org/wiki/Microarchitecture_simulation
https://en.wikipedia.org/wiki/Addressing_mode

