© Daniel Page (csdsp@bristol.ac.uk) CS@ UoB

COMS10015 lab. worksheet #11

Although some questions have a written solution below, for others it will be more useful to experiment in a
hands-on manner (e.g., using a concrete implementation). The file

https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/lab-11_s.tar.gz

supports such cases.

§1. C-class, or core questions

> S1[C]. a The archive provided includes source code for an example emulator implementation, the design of
which is fairly simple: it uses the variable MEM to represent the memory MEM, A to represent the accumulator
A, PC to represent the program counter PC, and an additional variable IR to represent the instruction register.
When the emulator is executed the state is first “reset”, e.g., by setting PC = 0 and initialising the memory
content. Then, a do loop emulates one fetch-decode-execute cycle per iteration:

¢ the next instruction is loaded from MEM using the address in PC, then PC is incremented,
e the instruction in IR is “decoded” into 1) an opcode held in opcode, and 2) an operand held in n,

e the instruction is executed by applying the semantics which opcode implies; if opcode = 21, for example, this
means we need to apply the semantics MEM[n] = A, i.e,, store the accumulator A into memory at address n.

Note that the loop terminates when a halt instruction is executed, and that the memory content is dumped
before and after the loop (in the latter case, allowing inspection of any output).

b As an example, imagine n = 8 and m = 13: the array X has eight elements, which occupy MEM[13] to MEM[20]
inclusive.
If n is known before we write the program, the easiest way to to compute r is to use n — 1 addition instructions
to accumulate the result into A, then store it into memory, e.g., at MEM[12]. This is demonstrated in Figure 1.
However, if n is unknown before we write the program then we need another approach: we cannot unroll the
loop as above, because we do not know how many addition instructions to use. The obvious approach is to use
a loop, which iterates n times over a body of instructions each i-th of which adds X; to A. This is demonstrated
in Figure 2, which employs self-modifying code to implement the loop.

e instructions #0 to #2 load and accumulate X; into A,

¢ instructions #3 to #5 self-modify instruction #0 which loads X;: the change means that in the next iteration,
the instruction will load X1,

* instructions #6 to #8 control the loop by loading the loop bound from MEM[11] and comparing it with MEM[0]:
if the result is negative, further iterations are required,

e finally instruction #9 halts the program if enough iterations have been completed.
§2. R-class, or revision questions
> S2[R]. There is a set of solutions available at

https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_s.pdf

§3. A-class, or additional questions

> S3[A]. There is no associated solution for this question, because it is somewhat open-ended with respect to 1) the
goal or challenge presented, and/or 2) the assumptions and decisions you make, and therefore the design space
of viable solutions.

> S4[A]. There is no associated solution for this question, because it is somewhat open-ended with respect to 1) the
goal or challenge presented, and/or 2) the assumptions and decisions you make, and therefore the design space
of viable solutions.

git # b282dbb9 @ 2025-09-03 1

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/lab-11_s.tar.gz
https://assets.phoo.org/COMS10015_2025_TB-4/csdsp/sheet/misc-revision_s.pdf

© Daniel Page (csdsp@bristol.ac.uk)

CS@UoB

Address | Content Meaning
0 220013 — A «— MEM[13]
1 300014 +— A «— A+ MEM[14]
2 300015 +— A« A+ MEM[15]
3 300016 +— A «— A+MEM[16]
4 300017 +— A «— A+MEM[17]
5 300018 +— A «— A+ MEM[18]
6 300019 +— A «— A+ MEM[19]
7 300020 — A «— A+ MEM[20]
8 210012 +— MEM[12] «— A
9 100000 + halt
10
11
12 0
13 X[0]
14 X[1]
15 X[2]
16 X[3]
17 X[4]
18 X[5]
19 X[6]
20 X[7]

Figure 1: Computing the sum of all integers X; for 0 < i < n using a straight-line sequence of additions.

Figure 2: Computing the sum of all integers X; for 0 < i < n using a self-modifying loop structure.

Address | Content Meaning
0 220013 +— A < MEM[13]
1 300012 — A« A+MEM[12]
2 210012 +— MEM[12] < A
3 220000 +— A «— MEM[0]
4 300010 +— A« A+ MEM[10]
5 210000 +— MEM[0] < A
6 220000 +— A < MEM[0]
7 310011 — A« A-MEM[11]
8 800000 +— PC 0 iff A#0
9 100000 +~ halt
10 1
11 200021
12 0
13 X[0]
14 X[1]
15 X[2]
16 X[3]
17 X[4]
18 X[5]
19 X[6]
20 X[7]

git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

