COMS10015 quick(ish) reference hand-out: Boolean algebra

Truth tables

Standard

x	y	$\neg x$	$x \wedge y$	$x \vee y$	$x \oplus y$	$x \Rightarrow y$	$x \equiv y$
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

Negative

\boldsymbol{x}	y	$x \wedge y$	$x \vee y$	$x \oplus y$
0	0	1	1	1
0	1	1	0	0
1	0	1	0	0
1	1	0	0	1

Axioms

Axioms in AND-form

commutativity association		=	$y \wedge x \\ x \wedge (y \wedge z)$
distribution	$x \wedge (y \vee z)$	≡	$(x \wedge y) \vee (x \wedge z)$
identity	$x \wedge 1$	\equiv	x
null	$x \wedge 0$	≡	0
idempotency	$x \wedge x$	\equiv	X
inverse	$x \wedge \neg x$	≡	0
absorption	$x \wedge (x \vee y)$	\equiv	X
de Morgan	$\neg(x \land y)$	≡	$\neg x \lor \neg y$

Axioms in OR-form

Misc

equivalence
$$x \equiv y \equiv (x \Rightarrow y) \land (y \Rightarrow x)$$

implication $x \Rightarrow y \equiv \neg x \lor y$
involution $\neg \neg x \equiv x$

Universality in NAND-form

Universality in NOR-form

Transformations and standard forms

Definition 1. The fact there are AND and OR forms of most axioms hints at a more general underlying **principle of duality**. Consider a Boolean expression e: the **dual expression** e^D is formed by

- 1. leaving each variable as is,
- 2. swapping each \land with \lor and vice versa, and
- 3. swapping each 0 with 1 and vice versa.

Definition 2. The de Morgan axiom can be generalised into a **principle of complements**. Consider a Boolean expression e: the **complement expression** e is formed by

- 1. swapping each variable x with the complement $\neg x$,
- 2. swapping each \land with \lor and vice versa, and
- 3. swapping each 0 with 1 and vice versa.

Definition 3. Consider a Boolean function f with n inputs. When the expression for f is written as a sum (i.e., OR) of terms which each comprise the product (i.e., AND) of a number of inputs, it is said to be in **disjunctive normal form** or **Sum of Products (SoP)** form; the terms in this expression are called the **minterms**. For example,

$$\underbrace{(a \wedge b \wedge c)}_{minterm} \lor (d \wedge e \wedge f),$$

is in SoP form. Note that each variable can exist as-is or complemented using NOT, meaning

$$\underbrace{(\neg a \land b \land c)}_{minterm} \lor (d \land \neg e \land f),$$

is also a valid SoP expression.

Conversely, when the expression for f is written as a product (i.e., AND) of terms which each comprise the sum (i.e., OR) of a number of inputs, it is said to be in **conjunctive normal form** or **Product of Sums (PoS)** form; the terms in this expression are called the **maxterms**. For example,

$$\underbrace{(a \lor b \lor c)}_{maxterm} \land (d \lor e \lor f),$$

is in PoS form. As above, each variable can exist as-is or complemented using NOT.