
© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

COMS10015 hand-out: exam-style revision questions

Part I: Mathematical preliminaries

� Q1. We studied representation of unsigned integers using a base-𝑏 positional number system. Which of the

following literals

A: 10101

B: 11111

C: 11120

D: 12200

E: 12345

represents the unsigned decimal integer 123(10) in base-3 (or ternary, digits in which are termed trits).

� Q2. Imagine that two signed, 8-bit integers 𝑥 and 𝑦 are represented using two’s-complement and sign-magnitude

respectively, and both of which have the decimal value 51(10). If the most-significant bit of both 𝑥 and 𝑦 is set to 1,

what are their new (decimal) values?

A:−77(10) and 179(10)
B:−77(10) and −51(10)
C:−51(10) and −77(10)
D: 179(10) and 179(10)
E: 179(10) and −51(10)

� Q3. Imagine that two signed, 16-bit integers 𝑥 and 𝑦 are represented using two’s-complement; their product

𝑟 = 𝑥 · 𝑦 is a signed, 32-bit integer also represented using two’s-complement. What is the largest (i.e., whose

magnitude is greatest) negative value of 𝑟 possible?

A:−0

B:−32768

C:−65535

D:−1073709056

E:−2147483648

� Q4. Imagine you write a C program that defines signed, 16-bit integer variables x and y (of type short) and then

assigns them the decimal values 256(10) and 4852(10) respectively. If x and y are then cast into signed, 8-bit integers

(of type char), which of the following

A: 0 and 12

B: 0 and −12

C:−1 and 256

D:−1 and −52

E: 0 and 52

identifies their decimal value? Or, put another way, which are the result of evaluating the two expressions

(char)(x) and (char)(y)?

� Q5. Consider two signed, 8-bit integer variables x and r (of type char) used in a C program. If x has the decimal

value 9(10) and an assignment

r = (~x << 4) 0x97|

is executed, what is the decimal value of r afterwards?

A:−9(10)

git # b282dbb9 @ 2025-09-03 1

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

B:−1(10)
C: 0(10)
D: 1(10)
E: 9(10)

� Q6. In general, some 𝑥 is a fixed point of a function 𝑓 if 𝑓 (𝑥) equals 𝑥, i.e., if 𝑓 maps 𝑥 to itself. Consider the

following function

int8_t abs(int8_t x) {
int8_t r;

if(x >= 0) {
r = x;

}
else {
r = -x;

}

return r;
}

implemented in C: abs was written in an attempt to compute the absolute value of x, a signed, 8-bit integer

representing using two’s-complement. How many of the 2
8 = 256 possible values of x are fixed points of abs?

A: 0

B: 127

C: 128

D: 129

E: 256

� Q7. Imagine that within a given C function, you declare signed, 8-bit integer variables (i.e., variables whose type

is int8_t) x and r. Assume C represents signed integers using two’s-complement, and the right-shift operator

yields arithmetic (rather than logical) shift: if x has the (decimal) value −10(10) , what (decimal) value does r have

after the assignment

r = ~((x >> 2) ^ 0xF4)

is executed?

A:−10(10)
B: 10(10)
C: 11(10)
D: 54(10)
E: 203(10)

� Q8. Consider two unsigned, 8-bit integer variables, x and y, as declared in some C function by using the type

uint8_t. For how many assignments to these variables will the Hamming weight of their unsigned, 8-bit integer

sum, i.e., x + y, be zero? Put another way, how many elements does the set

{(x, y) | HW(x + y) = 0}

have?

A: 0

B: 1

C: 255

D: 256

E: 65536

� Q9. Consider a literal 𝑥̂ = 10, which represents a value 𝑥 using a base-𝑏 positional number system. Based on

this information alone, which of the following values

git # b282dbb9 @ 2025-09-03 2

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

A: 𝑥 = 1

B: 𝑥 = 2

C: 𝑥 = 𝑏

D: 𝑥 = 10

E: 𝑥 = 16

is correct?

� Q10. Assuming an 𝑛-bit 𝑥 and use of two’s-complement representation for signed integers, which of the following

identities

A: 𝑥 ∧ ¬𝑥 ≡ 0(10)
B: 𝑥 ∨ ¬𝑥 ≡ −1(10)
C: 𝑥 ⊕ ¬𝑥 ≡ −1(10)
D: 𝑥 + ¬𝑥 ≡ −1(10)
E: 𝑥 − ¬𝑥 ≡ −1(10)

is not correct?

� Q11. Classify each of the following statements as either true or false, then explain why using at most a few

sentences.

a If HW(𝑥) and HD(𝑥, 𝑦) denote Hamming weight (of 𝑥) and Hamming distance (between 𝑥 and 𝑦), one can define

HD(𝑥, 𝑦) = HW(𝑥 ⊕ 𝑦).
b If an 𝑛-bit integer 𝑥 is represented using two’s-complement, setting 𝑥 = −1 implies setting each bit in the

representation of 𝑥 to 1.

� Q12. a For the sets 𝐴 = {1, 2, 3}, 𝐵 = {3, 4, 5} and𝒰 = {1, 2, 3, 4, 5, 6, 7, 8}, compute the following:

i |𝐴|.
ii 𝐴 ∪ 𝐵.

iii 𝐴 ∩ 𝐵.

iv 𝐴 − 𝐵.

v 𝐴.

vi {𝑥 | 2 · 𝑥 ∈ 𝒰}.
b For each of the following decimal integers, write down the 8-bit binary representation in sign-magnitude and

two’s-complement:

i +0.

ii −0.

iii +72.

iv −34.

v −8.

vi 240.

� Q13. For some 32-bit integer 𝑥, explain what is meant by the Hamming weight of 𝑥; write a short C function to

compute the Hamming weight of a given 32-bit input.

� Q14. From the following list

A: (𝑥 ∧ 𝑦) ⊕ 𝑧
B: (¬𝑥 ∨ 𝑦) ⊕ 𝑧
C: (𝑥 ∨ ¬𝑦) ⊕ 𝑧
D:¬(𝑥 ∨ 𝑦) ⊕ 𝑧
E:¬¬(𝑥 ∨ 𝑦) ⊕ 𝑧

identify each Boolean expression that evaluates to 1 given the assignment 𝑥 = 0, 𝑦 = 0 and 𝑧 = 1.

git # b282dbb9 @ 2025-09-03 3

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q15. One of the following equivalences

A: (𝑥 ∧ 𝑦) ∧ 𝑧 ≡ 𝑥 ∧ (𝑦 ∧ 𝑧)
B: 𝑥 ∨ 1 ≡ 𝑥
C: 𝑥 ∨ ¬𝑥 ≡ 1

D:¬(𝑥 ∨ 𝑦) ≡ ¬𝑥 ∧ ¬𝑦
E:¬¬𝑥 ≡ 𝑥

is incorrect: identify which.

� Q16. The Boolean expression

(𝑥 ∨ (𝑧 ∨ 𝑦)) ∧ ¬(¬𝑦 ∧ ¬𝑧)

is equivalent to which of the following alternatives?

A: 𝑦 ∨ 𝑧
B: ((𝑥 ∨ 𝑧) ∨ 𝑦)) ∧ (𝑥 ∨ 𝑧)
C: (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)
D: (𝑥 ∨ 𝑦) ∧ ¬(𝑥 ∨ 𝑧)
E: (𝑥 ∧ 𝑧) ∨ (𝑥 ∧ 𝑦)

� Q17. The Boolean expression

(𝑥 ∨ 𝑦) ∨ (𝑥 ∧ 𝑧)

is equivalent to which of the following alternatives?

A: (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)
B: (𝑥 ∨ 𝑦) ∧ 𝑧
C: (𝑥 ∨ 𝑦) ∧ (𝑥 ∧ 𝑧)
D: 𝑥 ∨ 𝑦
E: (𝑥 ∧ 𝑦) ∨ 𝑥

� Q18. A given set of Boolean operators may be termed functionally complete (or universal): this means any Boolean

function can be expressed using a Boolean expression involving elements of the set alone. For example, because

we know the NAND operator is functionally complete, we can also term the sets { ∧ } and {∧,¬} functionally

complete. Noting that . and⇏ denote the inverse of equivalence and implication respectively (i.e., not equivalent,

and does not imply), which of the following sets

A: {⊕,∨}
B: {⇒, .}
C: {⇒,⇏}
D: all of the above

E: none of the above

is/are functionally complete?

� Q19. How many 𝑛-input, 1-output Boolean functions are there?

A: 1

B: 𝑛

C: 2
𝑛

D: 2
2
𝑛

E: 2
2

2
𝑛

git # b282dbb9 @ 2025-09-03 4

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q20. Consider the equivalence

(𝑦 ∧ ¬𝑥) ∨ (𝑥 ∧ ¬𝑦) ≡ (𝑥 ∨ 𝑦) ∧ ¬(𝑥 ∧ 𝑦),

the LHS of which can be manipulated into the RHS by applying the following sequence of Boolean axioms:

identity ; inverse ; distribution ; commutativity ; distribution ; commutativity ; X

The final axiom is missing, i.e., replaced with X: which of the following options for X yields a valid derivation?

A:Absorption

B: Idempotency

C: Implication

D:Null

E: de Morgan

� Q21. One of the following equivalences

A: (𝑥 ∧ 𝑦) ∧ 𝑧 ≡ 𝑥 ∧ (𝑦 ∧ 𝑧)
B: 𝑥 ⇒ 𝑦 ≡ ¬𝑥 ∨ 𝑦
C: 𝑥 ∧ (𝑥 ∨ 𝑦) ≡ 𝑦

D:¬(𝑥 ∨ 𝑦) ≡ ¬𝑥 ∧ ¬𝑦
E: 𝑥 ∨ 0 ≡ 𝑥

is incorrect: identify which.

� Q22. Identify which of the following Boolean expressions

A: 𝑥 ∧ (𝑥 ∨ ¬𝑥)
B: (𝑥 ∨ ¬𝑥) ∧ 𝑥
C: 𝑥

D:¬𝑥
E:¬((¬𝑥 ∨ ¬𝑥) ∧ (¬𝑥 ∨ 𝑥))

is not equivalent to

𝑥 ∧ 𝑥 ∨ 𝑥 ∧ ¬𝑥.

� Q23. Consider the following truth table, which describes a Boolean function 𝑓 :

𝑤 𝑥 𝑦 𝑧 𝑓 (𝑤, 𝑥, 𝑦, 𝑧)
0 0 0 0 1

0 0 0 1 0

0 0 1 0 1

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

Which of the Karnaugh maps shown in Figure 1 will yield the most efficient (in terms of the number of operators

involved), correct Boolean expression for 𝑓 ?

git # b282dbb9 @ 2025-09-03 5

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

00 01 11 10

0

1

𝑦

𝑤

𝑥

1
0

0
1

0
2

0
3

1
4

1
5

1
6

0
7

00 01 11 10

00

01

11

10

𝑦

𝑤

𝑧

𝑥

1
0

0
1

0
2

0
3

1
4

1
5

0
6

0
7

1
8

0
9

0
10

0
11

1
12

0
13

0
14

0
15

A B

00 01 11 10

00

01

11

10

𝑦

𝑤

𝑧

𝑥

1
0

0
1

0
2

0
3

1
4

1
5

1
6

0
7

1
8

0
9

0
10

0
11

1
12

0
13

0
14

0
15

00 01 11 10

00

01

11

10

𝑦

𝑤

𝑧

𝑥

1
0

0
1

0
2

0
3

1
4

1
5

1
6

0
7

1
8

0
9

0
10

0
11

1
12

0
13

0
14

0
15

C D

00 01 11 10

00

01

11

10

𝑦

𝑤

𝑧

𝑥

1
0

0
1

0
2

0
3

1
4

1
5

1
6

0
7

1
8

0
9

0
10

0
11

1
12

0
13

0
14

0
15

E

Figure 1: A set of 5 different Karnaugh maps, captioned with an associated option.

� Q24. Identify which of the following Boolean expressions

A: 𝑥 ∧ 𝑦
B: 𝑥 ∧ 𝑧
C: 𝑦 ∧ 𝑧
D: 𝑥 ∧ 𝑦 ∧ 𝑧
E: 1

is equivalent to

𝑥 ∧ 𝑦 ∨ 𝑥 ∧ 𝑦 ∧ 𝑧.

� Q25. Consider a Boolean function 𝑓 with 𝑛 = 1 input 𝑥. How many such functions are not idempotent, i.e., how

many 𝑓 exist such that ∀𝑥 ∈ {0, 1}, 𝑓 (𝑓 (𝑥)) = 𝑓 (𝑥) does not hold?

A: 0

B: 1

C: 2

D: 3

E: 4

� Q26. Consider a Boolean function 𝑓 with 𝑛 = 2 inputs 𝑥 and 𝑦. How many such functions are symmetric, i.e.,

how many 𝑓 exist such that ∀𝑥, 𝑦 ∈ {0, 1}, 𝑓 (𝑥, 𝑦) = 𝑓 (𝑦, 𝑥) holds?

A: 0

git # b282dbb9 @ 2025-09-03 6

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

B: 1

C: 2

D: 8

E: 16

� Q27. Which of the following Boolean expressions

A: 𝑥 ∧ ¬𝑥 ∨ 𝑦 ∧ (1 ∨ 𝑥)
B: 0 ∨ 𝑥 ∧ 𝑦 ∨ 𝑦
C: 𝑥 ∧ 𝑦
D: 𝑦

E:¬((¬𝑥 ∨ (𝑥 ∧ ¬𝑦)) ∧ ¬𝑦)

is not equivalent to

𝑥 ∧ (¬𝑥 ∨ 𝑦) ∨ 𝑦.

� Q28. Which of the following Boolean expressions

A:¬𝑥
B: 𝑥

C:¬𝑦
D: 𝑦

E: 0

is equivalent to

(𝑥 ∨ 𝑦) ∧ (𝑥 ∨ ¬𝑦).

� Q29. Classify each of the following statements as either true or false, then explain why using at most a few

sentences.

a A Boolean function 𝑓 : {0, 1}2 → {0, 1} will require at least 1 Boolean operator to implement it.

b Consider the concepts of disjunction and conjunction in Boolean algebra (i.e., that involving truth values);

said concepts are analogous to those of addition and multiplication in elementary algebra (i.e., that involving

numerical values).

� Q30. a Write out a truth table for the Boolean function

𝑓 (𝑎, 𝑏, 𝑐) = (𝑎 ∧ 𝑏 ∧ ¬𝑐) ∨ (𝑎 ∧ ¬𝑏 ∧ 𝑐) ∨ (¬𝑎 ∧ ¬𝑏 ∧ 𝑐),

then decide how many

i input combinations, and

ii outputs where 𝑓 (𝑎, 𝑏, 𝑐) = 1

exist in it.

b Consider the Boolean function

𝑓 (𝑎, 𝑏, 𝑐, 𝑑) = ¬𝑎 ∧ 𝑏 ∧ ¬𝑐 ∧ 𝑑.
Which of the following assignments

i 𝑎 = 0, 𝑏 = 0, 𝑐 = 0 and 𝑑 = 1,

ii 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1,

iii 𝑎 = 1, 𝑏 = 1, 𝑐 = 1 and 𝑑 = 1,

iv 𝑎 = 0, 𝑏 = 0, 𝑐 = 1 and 𝑑 = 0.

produces the output 𝑓 (𝑎, 𝑏, 𝑐, 𝑑) = 1?

c Which of the following Boolean expressions

i (𝑎 ∨ 𝑏 ∨ 𝑑) ∧ (¬𝑐 ∨ 𝑑),
ii (𝑎 ∧ 𝑏 ∧ 𝑑) ∨ (¬𝑐 ∧ 𝑑),

git # b282dbb9 @ 2025-09-03 7

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

iii (𝑎 ∨ 𝑏 ∨ 𝑑) ∨ (¬𝑐 ∨ 𝑑).
is in Sum-of-Products (SoP) standard form?

d Identify each equivalence that is correct:

i 𝑎 ∨ 1 ≡ 𝑎.

ii 𝑎 ⊕ 1 ≡ ¬𝑎.
iii 𝑎 ∧ 1 ≡ 𝑎.

iv ¬(𝑎 ∧ 𝑏) ≡ ¬𝑎 ∨ ¬𝑏.
e Identify each equivalence that is correct:

i ¬¬𝑎 ≡ 𝑎.

ii ¬(𝑎 ∧ 𝑏) ≡ ¬𝑎 ∨ ¬𝑏.
iii ¬𝑎 ∧ 𝑏 ≡ 𝑎 ∧ ¬𝑏.
iv ¬𝑎 ≡ 𝑎 ⊕ 𝑎.

� Q31. a The OR form of the null axiom is 𝑥 ∨ 1 ≡ 1. Which of the following options

i 𝑥 ∧ 1 ≡ 1,

ii 𝑥 ∧ 0 ≡ 0,

iii 𝑥 ∨ 0 ≡ 0,

iv 𝑥 ∧ 𝑥 ≡ 𝑥,

is the dual of this axiom?

b Given the Boolean equation

𝑓 = ¬𝑎 ∧ ¬𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∨ ¬𝑒 ,
which of the following

i ¬ 𝑓 = 𝑎 ∨ 𝑏 ∨ 𝑐 ∨ 𝑑 ∨ 𝑒,
ii ¬ 𝑓 = 𝑎 ∧ 𝑏 ∧ 𝑐 ∧ 𝑑 ∧ 𝑒,
iii ¬ 𝑓 = 𝑎 ∧ 𝑏 ∧ (𝑐 ∨ 𝑑 ∨ 𝑒),
iv ¬ 𝑓 = 𝑎 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∨ ¬𝑒,
v ¬ 𝑓 = (𝑎 ∨ 𝑏) ∧ 𝑐 ∧ 𝑑 ∧ 𝑒
is correct?

c If we write the de Morgan axiom in English, which of the following

i NOR is equivalent to AND if each input to AND is complemented,

ii NAND is equivalent to OR if each input to OR is complemented,

iii AND is equivalent to NOR if each input to NOR is complemented, or

iv NOR is equivalent to NAND if each input to NAND is complemented.

describes the correct equivalence?

� Q32. a Identify which one of these Boolean expressions

i 𝑐 ∨ 𝑑 ∨ 𝑒
ii ¬𝑐 ∧ ¬𝑑 ∧ ¬𝑒
iii ¬𝑎 ∧ ¬𝑏
iv ¬𝑎 ∧ ¬𝑏 ∧ ¬𝑐 ∧ ¬𝑑 ∧ ¬𝑒
is the correct result of simplifying

(¬(𝑎 ∨ 𝑏) ∧ ¬(𝑐 ∨ 𝑑 ∨ 𝑒)) ∨ ¬(𝑎 ∨ 𝑏).

b If you simplify the Boolean expression

(𝑎 ∨ 𝑏 ∨ 𝑐) ∧ ¬(𝑑 ∨ 𝑒) ∨ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑑 ∨ 𝑒)

into a form that contains the fewest operators possible, which of the following options

i 𝑎 ∨ 𝑏 ∨ 𝑐,

git # b282dbb9 @ 2025-09-03 8

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

ii ¬𝑎 ∧ ¬𝑏 ∧ ¬𝑐,
iii 𝑑 ∨ 𝑒,
iv ¬𝑑 ∧ ¬𝑒,
v none of the above

do you end up with and why?

c If you simplify the Boolean expression

𝑎 ∧ 𝑐 ∨ 𝑐 ∧ (¬𝑎 ∨ 𝑎 ∧ 𝑏)
into a form that contains the fewest operators possible, which of the following options

i (𝑏 ∧ 𝑐) ∨ 𝑐,
ii 𝑐 ∨ (𝑎 ∧ 𝑏 ∧ 𝑐),
iii 𝑎 ∧ 𝑐,
iv 𝑎 ∨ (𝑏 ∧ 𝑐),
v none of the above

do you end up with and why?

d Consider the Boolean expression

𝑎 ∧ 𝑏 ∨ 𝑎 ∧ 𝑏 ∧ 𝑐 ∨ 𝑎 ∧ 𝑏 ∧ 𝑐 ∧ 𝑑 ∨ 𝑎 ∧ 𝑏 ∧ 𝑐 ∧ 𝑑 ∧ 𝑒 ∨ 𝑎 ∧ 𝑏 ∧ 𝑐 ∧ 𝑑 ∧ 𝑒 ∧ 𝑓 .

Which of the following simplifications

i 𝑎 ∧ 𝑏 ∧ 𝑐 ∧ 𝑑 ∧ 𝑒 ∧ 𝑓 ,
ii 𝑎 ∧ 𝑏 ∨ 𝑐 ∧ 𝑑 ∨ 𝑒 ∧ 𝑓 ,
iii 𝑎 ∨ 𝑏 ∨ 𝑐 ∨ 𝑑 ∨ 𝑒 ∨ 𝑓 ,
iv 𝑎 ∧ 𝑏,
v 𝑐 ∧ 𝑑,

vi 𝑒 ∧ 𝑓 ,
vii 𝑎 ∨ 𝑏 ∧ (𝑐 ∨ 𝑑 ∧ (𝑒 ∨ 𝑓))
viii ((𝑎 ∨ 𝑏) ∧ 𝑐) ∨ 𝑑 ∧ 𝑒 ∨ 𝑓
is correct?

e Given the options

i 1,

ii 2,

iii 3,

iv 4,

decide which is the least number of operator required to compute the same result as

𝑓 (𝑎, 𝑏, 𝑐) = (𝑎 ∧ 𝑏) ∨ 𝑎 ∧ (𝑎 ∨ 𝑐) ∨ 𝑏 ∧ (𝑎 ∨ 𝑐).

Show how you arrived at your decision.

f Prove that

(¬𝑥 ∧ 𝑦) ∨ (¬𝑦 ∧ 𝑥) ∨ (¬𝑥 ∧ ¬𝑦) ≡ ¬𝑥 ∨ ¬𝑦.

g Prove that

(𝑥 ∧ 𝑦) ∨ (𝑦 ∧ 𝑧 ∧ (𝑦 ∨ 𝑧)) ≡ 𝑦 ∧ (𝑥 ∨ 𝑧).

h Simplify the Boolean expression

¬(𝑎 ∨ 𝑏) ∧ ¬(¬𝑎 ∨ ¬𝑏)
into a form which contains the fewest operators possible.

Part II: Basics of digital logic: general

� Q33. From the following list

A: has N-type semiconductor terminals and P-type body

git # b282dbb9 @ 2025-09-03 9

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

B: has P-type semiconductor terminals and N-type body

C: is paired with another N-MOSFET to form a CMOS cell

D: has a threshold voltage above which the transistor is deemed active

identify each statement that correctly describes an N-MOSFET.

� Q34. Consider the following implementation of a 2-input NAND gate:

x

y

r

Vss

Vdd

From the following list

A: two inputs 𝑥 and 𝑦, and one output 𝑟

B: a pull-up network of P-MOSFET transistors

C: a pull-down network of BJT transistors

D: two power rails supplying different voltage levels

E: a flux capacitor

identify each component evident in the implementation?

� Q35. Consider the following organisation of MOSFET transistors

git # b282dbb9 @ 2025-09-03 10

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝑥

𝑧

𝑦

𝑟

𝑉𝑑𝑑

𝑉𝑠𝑠

which implements a 3-input Boolean function 𝑟 = 𝑓 (𝑥, 𝑦, 𝑧). Which function, from the following, do you think it

matches?

A: 𝑟 = 𝑥 ∧ 𝑦 ∧ 𝑧
B: 𝑟 = 𝑥

C: 𝑟 = ¬(𝑥 ∧ (𝑦 ∨ 𝑧))
D: 𝑟 = 𝑥 ∧ (𝑦 ∨ 𝑧)
E: 𝑟 = 𝑥 ∨ 𝑦 ∨ 𝑧

� Q36. Recall that a 2-input XOR operator can be described via the following truth table:

𝑥 𝑦 𝑟

0 0 0

0 1 1

1 0 1

1 1 0

An implementation of this operator is realised by combining logic gate instances, e.g., for NOT, NAND, AND,

NOR, and OR, while attempting to minimise the total number of underlying MOSFET-based transistors. How

many such transistors do you think it uses?

A: 14

B: 16

C: 18

D: 20

E: 22

git # b282dbb9 @ 2025-09-03 11

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q37. A buffer can be described as a “pass through” logic gate: although it performs no computation (i.e., the

output 𝑟 matches the input 𝑥, so 𝑟 = 𝑥), it does impose a delay (often roughly the same as a NOT gate). It may be

termed a non-inverting buffer (cf. an inverting buffer, or NOT gate) because of this.

You are asked to implement a buffer, using an unconstrained organisation of N- and P-MOSFET transistors

alone. Assuming you attempt to minimise the number used, how many transistors do you need?

A: 0

B: 2

C: 4

D: 6

E: 8

� Q38. Recalling that ? denotes don’t-care, the following truth table

𝑓

𝑥 𝑦 𝑧 𝑟

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 ?
1 1 1 1

describes a 3-input, 1-output Boolean function 𝑓 st. 𝑟 = 𝑓 (𝑥, 𝑦, 𝑧). Which of the following Boolean expressions

A: (¬𝑥 ⊕ ¬𝑦) ∧ 𝑧
B: (¬𝑥 ⊕ ¬𝑦) ∨ 𝑧
C: (¬𝑥 ∧ ¬𝑦) ∧ 𝑧
D: (¬𝑥 ∧ ¬𝑦) ∨ 𝑧
E: (¬𝑥 ∨ ¬𝑦) ∧ 𝑧

correctly realises 𝑓 ?

� Q39. Imagine you want to design an 8-input, 8-bit multiplexer. Rather than do so from scratch, you intend to

form the design using multiple instances of an existing 2-input, 1-bit multiplexer component. How many do you

need?

A: 1

B: 8

C: 24

D: 40

E: 56

� Q40. The following diagram

𝑐𝑜

𝑠

𝑐𝑖
𝑥
𝑦

𝑐𝑜

𝑠

𝑐𝑖
𝑥
𝑦

𝑐𝑜

𝑠

𝑐𝑖
𝑥
𝑦

𝑐𝑜

𝑠

𝑐𝑖
𝑥
𝑦

𝑦0𝑥0 𝑟0 𝑦1𝑥1 𝑟1 𝑦2𝑥2 𝑟2 𝑦3𝑥3 𝑟3

𝑐𝑖 𝑐𝑜

illustrates a 4-bit ripple-carry adder circuit, constructed using 4 full-adder instances: it computes the sum 𝑟 =

𝑥 + 𝑦 + 𝑐𝑖, given two operands 𝑥 and 𝑦 and a carry-in 𝑐𝑖, and an associated carry-out 𝑐𝑜. Given the propagation

delay of NOT, AND, OR and XOR gates is 10ns, 20ns, 20ns and 60ns respectively, which of the following

A: 120ns

git # b282dbb9 @ 2025-09-03 12

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

B: 180ns

C: 240ns

D: 280ns

E: 480ns

most accurately reflects the critical path of the entire circuit?

� Q41. Imagine you use the ripple-carry adder in the previous question to compute an unsigned addition within

some larger circuit. Having seen your design, your friend suggests they can optimise it: they claim that replacing

each full-adder instance with a half-adder instance will halve the total number of logic gates required. However,

they admit the optimisation does have a disadvantage. Specifically, although any value of 𝑥 can be accommodated

the optimised circuit can only produce the correct output for some values of 𝑦. Which of the following values of 𝑦

A:−1

B: 0

C: 1

D: any 2 ≤ 𝑦 < 8

E: any 8 ≤ 𝑦 < 16

will produce the correct output?

� Q42. Consider the following combinatorial circuit

𝑥0

𝑥1

𝑥2

𝑥3

𝑟3

𝑟2

𝑟1

𝑟0

with a 4-bit input 𝑥 and a 4-bit output 𝑟. Which of the following best describes the purpose of this circuit?

A: it computes the Hamming weight of 𝑥

B: it computes the parity of 𝑥

C: it swaps the most-significant 2-bit half of 𝑥 with the least-significant 2-bit half of 𝑥

D: it adds the most-significant 2-bit half of 𝑥 to the least-significant 2-bit half of 𝑥 (treating it as an unsigned, 4-bit

integer)

E: it negates 𝑥 (treating it as a signed, 4-bit integer represented using two’s-complement)

� Q43. Recalling that ? denotes don’t-care, consider the truth table shown in Figure 2.

a Construction of a Karnaugh map for 𝑓 demands formation of a set of groups; these (collectively) cover of all 1

entries. Assuming the most efficient approach is adopted when forming said groups, how many are required?

A: 1

B: 2

C: 3

D: 4

E: 6

git # b282dbb9 @ 2025-09-03 13

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝑤 𝑥 𝑦 𝑧 𝑟 = 𝑓 (𝑤, 𝑥, 𝑦, 𝑧)
0 0 0 0 0

0 0 0 1 1

0 0 1 0 ?
0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

Figure 2: A truth table for the 4-input Boolean function 𝑓 .

b Using the Karnaugh map above (plus any subsequent optimisation steps you deem necessary), derive a Boolean

expression for 𝑓 that minimises the number of operators required. How many operators remain in said

expression?

A: 1

B: 4

C: 5

D: 11

E: 12

� Q44. Consider the following waveform

𝑥

𝑦

𝑧

which details the behaviour of three signals labelled 𝑥, 𝑦 and 𝑧. Which of the following components could the

behaviour illustrated relate to?

A: an SR-type flip-flop

B: an SR-type latch

C: a D-type flip-flop

D: a D-type latch

E: a T-type flip-flop

� Q45. The following diagram

S

R

¬Q

Q

git # b282dbb9 @ 2025-09-03 14

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

illustrates a preliminary NAND-based SR-latch design, in the sense it currently lacks an enable signal. If 𝑄 and

𝑄′ denote the current and next state respectively, which of the following excitation tables

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑁𝑒𝑥𝑡
𝑆 𝑅 𝑄 ¬𝑄 𝑄′ ¬𝑄′

A


0 0 0 1 0 1

0 0 1 0 1 0

0 1 ? ? 0 1

1 0 ? ? 1 0

1 1 ? ? 0 0

B


0 0 ? ? 1 1

0 1 ? ? 1 0

1 0 ? ? 0 1

1 1 0 1 0 1

1 1 1 0 1 0

C

{
0 0 ? ? 0 1

1 1 ? ? 1 0

D

{
0 ? ? ? 0 1

1 ? ? ? 1 0

E

{
? 0 ? ? 0 1

? 1 ? ? 1 0

correctly captures the behaviour of this circuit?

� Q46. Although perhaps unusual, the following diagram

𝑐

𝑥

𝑦
𝑟

𝑐

𝑥

𝑦
𝑟

𝑎

𝑏

𝑐

illustrates a circuit with well defined behaviour. Based on analysis of this behaviour, which of the following

components

A: a flip-flop

B: a latch

C: a RAM cell

D: a ROM cell

E: a clock multiplier

does the circuit implement?

� Q47. A 𝑚-output, 1-bit demultiplexer connects a 1-bit input 𝑥 to one of 𝑚 separate 1-bit outputs (say 𝑟𝑖 for

0 ≤ 𝑖 < 𝑚). The output is selected using an 𝑙-bit control signal 𝑐 (or, equivalently, 𝑐 is a collection of 𝑙 separate

1-bit control signals). If 𝑚 = 5, what is the minimum value of 𝑙 required?

A: 0

B: 1

C: 2

D: 3

E: 4

� Q48. Figure 3 describes the implementation of two components denoted𝐶0 and𝐶1. Each component𝐶𝑖 produces

one output 𝑟𝑖 given two inputs 𝑥 and 𝑦, and has been implemented using MOSFET transistors.

git # b282dbb9 @ 2025-09-03 15

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝑥

𝑦

𝑟0

𝑉𝑑𝑑

𝑉𝑠𝑠

(a) 𝐶
0

(using P-type MOSFETs).

𝑥

𝑦

𝑟1

𝑉𝑠𝑠

𝑉𝑑𝑑

(b) 𝐶
1

(using N-type MOSFETs).

Figure 3: MOSFET-based implementations of 𝐶0 and 𝐶1.

a The truth table below includes 5 possibilities for outputs 𝑟0 and 𝑟1 (stemming from instances of 𝐶0 and 𝐶1),

given 𝑥 and 𝑦. Recall that 𝑉𝑠𝑠 and 𝑉𝑑𝑑 are used to represent 0 and 1 respectively: which option is correct?

A. B. C. D. E.︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷
𝑥 𝑦 𝑟0 𝑟1 𝑟0 𝑟1 𝑟0 𝑟1 𝑟0 𝑟1 𝑟0 𝑟1
0 0 1 0 0 0 1 0 Z 0 1 Z
0 1 1 1 0 0 0 0 Z Z Z Z
1 0 1 1 0 0 0 0 Z Z Z Z
1 1 0 1 1 0 0 0 1 Z Z 0

b The vendor of these components claims they can be used to implement any Boolean function; their reasoning

is based on the fact that a NAND gate can be implemented using instances of 𝐶0 and 𝐶1. Imagine you adhere

to a design strategy where any given wire is driven by at most one non-Z value at any given time, and want to

minimise the number of 𝐶0 and 𝐶1 instances used: how many of each do you need to implement a NAND gate?

A. B. C. D. E.︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
𝐶0 𝐶1 𝐶0 𝐶1 𝐶0 𝐶1 𝐶0 𝐶1 𝐶0 𝐶1

1 1 5 3 3 5 3 3 5 5

� Q49. Moore’s Law is an observation about the number of transistors which can be fabricated within some fixed

unit of area: it observes that this number doubles roughly every two years. Which of the following properties of

MOSFET-based transistors act as a constraint with respect to Moore’s Law?

A: Feature size

B: Power consumption

C:Heat dissipation

D:All of the above

E:None of the above

� Q50. Figure 4 shows an implementation of a full-adder cell. It uses three 1-bit inputs denoted 𝑥, 𝑦, and 𝑐𝑖 (the

carry-in), to compute two 1-bit outputs denoted 𝑠 (the sum) and 𝑐𝑜 (the carry-out); several other intermediate

wires, namely 𝑡0, 𝑡1, 𝑡2, and 𝑡3, are labelled for reference. Let

(𝑥, 𝑦, 𝑐𝑖) → (𝑥′, 𝑦′, 𝑐𝑖′)

denote a change in said inputs: the LHS captures current values, whereas the RHS captures next (or new) values.

For example,

(0, 0, 0) → (1, 0, 0)
toggles 𝑥 from 0 to 1, while both 𝑦 and 𝑐𝑖 remain 0. Which of the following options will cause 𝑠 to toggle in the

shortest period of time (i.e., with the shortest delay)?

git # b282dbb9 @ 2025-09-03 16

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝑥𝑦𝑐𝑖

𝑐𝑜

𝑠

𝑡0

𝑡1

𝑡2 𝑡3

Figure 4: An implementation of a full-adder cell.

A: (0, 0, 0) → (0, 0, 1)
B: (0, 0, 1) → (0, 1, 1)
C: (0, 1, 1) → (0, 0, 1)
D: (1, 1, 1) → (1, 1, 0)
E: (1, 0, 1) → (0, 1, 1)

� Q51. Figure 5 shows an implementation of a cyclic 𝑛-bit counter. While the counter is operational (i.e., while not

reset, and given a clock signal), each 𝑟𝑖 will transition between 0 and 1 at a different frequency. For the concrete

case of 𝑛 = 4, which does so at the lowest frequency?

A: 𝑟4
B: 𝑟3
C: 𝑟2
D: 𝑟1
E: 𝑟0

� Q52. Consider a 16-bit register, constructed from CMOS-based D-type latches. Based on high-level reasoning

about this component alone, if the initial value stored is 𝐷𝐸𝐴𝐷(16) then overwriting it with which of the following

A: 𝐵𝐸𝐸𝐹(16)
B: 𝐹00𝐷(16)
C: 1234(16)
D: 𝐹𝐹𝐹𝐹(16)
E: 0000(16)

might you expect to consume the most power?

� Q53. You are tasked with implementing the Boolean function

𝑟 = 𝑓 (𝑥, 𝑦, 𝑧) = (¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨ (𝑦 ∧ ¬𝑧) ∨ (𝑦 ∧ 𝑧).

Each of the five options (i.e., columns) in the table below

A B C D E
1. × ✓ × × ✓
2. × × ✓ × ✓
3. × × × ✓ ✓

states whether 𝑓 can (a tick) or cannot (a cross) be implemented using a given set of components (i.e., row), namely

git # b282dbb9 @ 2025-09-03 17

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

co s

ci x y

co s

ci x y

co s

ci x y

co s

ci x y

enD
Q

¬
Q

enD
Q

¬
Q

enD
Q

¬
Q

enD
Q

¬
Q

enD
Q

¬
Q

enD
Q

¬
Q

enD
Q

¬
Q

enD
Q

¬
Q

0

Φ
1

Φ
2

1

0

0

0

r0

r1

rn−1

rs
t

Figure 5: An implementation of a cyclic 𝑛-bit counter.

git # b282dbb9 @ 2025-09-03 18

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

a an 8-input, 1-bit multiplexer,

b a 4-input, 1-bit multiplexer,

c a 2-input, 1-bit multiplexer, an OR gate, and a NOT gate,

plus the constant values 0 and 1. For example, option C states that 𝑓 can be implemented by using component set

2 but not 1 or 3. Which option do you think is correct?

� Q54. Consider the fact that

𝑥 𝑟 ≡
𝑐

𝑥

𝑦
𝑟

1

0

𝑟

𝑥

i.e., that one can implement a NOT gate using one instance of a 2-input, 1-bit multiplexer component. Assuming

you want to minimise the number of multiplexer instances, identify how many are required to implement the

expression

(𝑥 ∧ 𝑦) ∨ 𝑧.

A: 1

B: 2

C: 3

D: 6

E: 8

𝑚1

𝑚0

𝑚2

𝑚3

𝑚6

𝑚7

𝑚5

𝑚4

𝑚8

𝑚9

𝑥 𝑦 𝑧

𝑟

𝑉𝑠𝑠

𝑉𝑑𝑑

𝑡0

𝑡1

Figure 6: A combinatorial logic design, described using N-type and P-type MOSFET transistors.

� Q55. Consider the combinatorial logic design as shown in Figure 6, which is described using N-type and P-type

MOSFET transistors. Within the design, three inputs (i.e., 𝑥, 𝑦, and 𝑧) and one output (i.e., 𝑟) can be identified;

note that several transistors (e.g., 𝑚0) and intermediate signals (e.g., 𝑡0) are annotated for reference. Which of the

following Boolean expressions

git # b282dbb9 @ 2025-09-03 19

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

A:¬𝑥
B:¬((𝑥 ∨ 𝑦) ∧ 𝑧)
C: (¬(𝑥 ∨ 𝑦)) ∧ 𝑧
D:¬(𝑥 ∧ 𝑦 ∧ ¬𝑧)
E:¬(𝑥 ∨ 𝑦 ∨ ¬𝑧)

does the design implement?

𝑒𝑛

𝐷 𝑄

¬𝑄
𝑒𝑛

𝐷 𝑄

¬𝑄

1

𝑐𝑙𝑘

𝑟

𝑡0 𝑡1 𝑡2 𝑡3

Figure 7: A sequential logic design, containing two D-type flip-flops.

� Q56. Consider the sequential logic design as shown in Figure 7, which contains two D-type flip-flops. Within

the design, one output (i.e., 𝑟) can be identified; note that several intermediate signals (e.g., 𝑡0) are annotated for

reference. If the clock signal 𝑐𝑙𝑘 has a frequency of 400MHz, what is the frequency of 𝑟?

A: 100MHz

B: 200MHz

C: 400MHz

D: 800MHz

E: 1600MHz

� Q57. Consider the following combinatorial logic design

𝑐

𝑥

𝑦
𝑟

𝑝

𝑞

𝑟

which is described using a 2-input, 1-bit multiplexer. Within the design, two inputs (i.e., 𝑝 and 𝑞) and one output

(i.e., 𝑟) can be identified. Which of the following Boolean expressions

A: 𝑟 = ¬𝑝
B: 𝑟 = 𝑝 ∧ 𝑞
C: 𝑟 = ¬(𝑝 ∧ 𝑞)
D: 𝑟 = 𝑝 ⊕ 𝑞
E: 𝑟 = ¬(𝑝 ⊕ 𝑞)

correctly reflects the relationship between inputs and output?

� Q58. A NAND-based SR latch implementation can be realised as follows: The following

S

R

¬Q

Q

git # b282dbb9 @ 2025-09-03 20

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝑚1

𝑚0

𝑚2 𝑚3

𝑚4

𝑦

𝑥

𝑧

𝑟

𝑉𝑑𝑑

𝑉𝑠𝑠

pull-down network

𝑡0

Figure 8: A combinatorial logic design, described using N-type and P-type MOSFET transistors; note that the pull-down
network is (partially) missing.

Imagine that the two NAND gates have a non-zero, but unequal gate delay associated with them, i.e., the top gate

has the delay 𝑥 whereas the bottom gate has the delay 𝑥 ± 𝛿 for some 𝑥 and 𝛿 > 0. If the current input 𝑆 = 𝑅 = 0

is changed instantaneously to 𝑆 = 𝑅 = 1, what will the outputs be?

A:𝑄 = 1, ¬𝑄 = 1

B: either 𝑄 = 0, ¬𝑄 = 1 or 𝑄 = 1, ¬𝑄 = 0

C: either 𝑄 = 1, ¬𝑄 = 1 or 𝑄 = 0, ¬𝑄 = 0

D:𝑄 = 0, ¬𝑄 = 0

E:None of the above

� Q59. Consider the combinatorial logic design as shown in Figure 8, which is described using N-type and P-type

MOSFET transistors. Within the design, three inputs (i.e., 𝑥, 𝑦, and 𝑧) and one output (i.e., 𝑟) can be identified;

note that several transistors (e.g., 𝑚0) and intermediate signals (e.g., 𝑡0) are annotated for reference. Despite the

fact that the pull-down network is (partially) missing, it is still possible to infer how the design works: which of

the following Boolean expressions

A: 𝑟 = 𝑥 ⊕ 𝑦
B: 𝑟 = (¬𝑥 ∧ ¬𝑦) ∨ ¬𝑧
C: 𝑟 = (¬𝑥 ∨ ¬𝑦) ∧ ¬𝑧
D: 𝑟 = (𝑥 ∧ 𝑦) ∨ 𝑧
E: 𝑟 = (𝑥 ∨ 𝑦) ∧ 𝑧

correctly reflects the relationship between inputs and output?

� Q60. Consider the following MOSFET transistor

𝑥 𝑟

𝑒𝑛

If 𝑥 ∈ {0, 1} and 𝑒𝑛 ∈ {0, 1}, how many different values can 𝑟 potentially take?

git # b282dbb9 @ 2025-09-03 21

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

A: 1

B: 2

C: 3

D: 4

E: 5

� Q61. Consider a combinatorial logic component defined by

𝑟 = 𝑓 (𝑥, 𝑦) =
{

1 𝑥 > 𝑦
0 otherwise

For how many combinations of the unsigned, 2-bit inputs 𝑥 and 𝑦 is the output 𝑟 = 1?

A: 1

B: 2

C: 4

D: 6

E: 8

� Q62. Consider a micro-processor which is compatible with the ARMv7-A ISA. During execution of an instruction,

the fetch stage of the fetch-decode-execute cycle computes PC+4,which (potentially) forms the program counter in

the next cycle. In an initial implementation of the micro-processor, PC+4 is computed by using a general-purpose

ripple-carry adder. Said adder is subsequently optimised, however, by capitalising on the special-purpose for of

computation: ARMv7-A demands that PC is word-aligned, for example.

Assuming that logic gates for NOT, AND, OR, and XOR require 1, 2, 2, and 4 units of area respectively, the

general-purpose solution requires

32 · (2 · XOR + 2 ·AND + 1 ·OR) = 32 · (2 · 4 + 2 · 2 + 1 · 2) = 448

units of area due to the use of 32 full-adder cells. If the optimisation aims to minimise area, which of the following

options

A: 2.00

B: 2.31

C: 2.33

D: 2.52

E: 3.14

most accurately reflects the improvement factor offered by the special-purpose solution?

� Q63. Binary-Coded Decimal (BCD) is a representation for decimal integers, where each decimal digit in some 𝑥
is represented independently by a 4-bit binary sequence in 𝑟. For example,

𝑥 = 123(10) ↦→ ⟨0011(2) , 0010(2) , 0001(2)⟩ = 𝑟.

Note that because each 0 ≤ 𝑥𝑖 < 10 and 2
4 = 16 > 10, some values of the associated BCD-encoded digit 𝑟𝑖 are

impossible.

Imagine you are asked to implement a 4-input Boolean function 𝑓 using combinatorial logic, which will be

used to process BCD-encoded digits. Select an option to complete blanks in the sentence “a Karnaugh map cell which
contains a can be treated as either or in order to the resulting term” , so that it correctly

describes how you might deal with an impossible BCD-encoded digit.

A: don’t care, AND, OR, eliminate

B: duplicate, 1, 0, verify

C: unknown, 1, 0, simplify

D: don’t care, 1, 0, simplify

E: unknown, 0, 1, optimise

git # b282dbb9 @ 2025-09-03 22

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

⊙

⊙

𝑆

𝑅

𝑄

¬𝑄

Figure 9: An SR-latch, described in terms of placeholder components labelled ⊙.

𝑆

𝑅

𝑄

¬𝑄

𝑒𝑛

𝑃

𝐶

Figure 10: An SR-latch variant, which includes additional inputs 𝑃, 𝐶, and 𝑒𝑛.

� Q64. The block diagram in Figure 9, describes a sequential logic component, or, more specifically, an SR-type

latch: it does so using two placeholder components labelled ⊙. If the associated excitation table is as follows

𝑆 𝑅 𝑄 ¬𝑄 𝑄′ ¬𝑄′
1 1 0 1 0 1

1 1 1 0 1 0

1 0 ? ? 0 1

0 1 ? ? 1 0

0 0 ? ? ? ?

which of the following gate types

A:XOR

B:AND

C:OR

D:NAND

E:NOR

has been used to instantiate the placeholder components (i.e., replace each ⊙)?

� Q65. Figure 10, describes a sequential logic component, or, more specifically, a variant of the SR-latch: in addition

to 𝑆 and 𝑅, it also includes the inputs labelled 𝑃, 𝐶, and 𝑒𝑛.

a Which of the following options

𝑆 and 𝑅 𝑃 and 𝐶
A synchronous synchronous

B synchronous asynchronous

C asynchronous synchronous

D asynchronous asynchronous

most accurately classifies the inputs?

b Which of the following options

git # b282dbb9 @ 2025-09-03 23

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝑆 and 𝑅 𝑃 and 𝐶
A active low active low

B active low active high

C active high active low

D active high active high

most accurately classifies the inputs?

� Q66. Abstractly, any functionality implemented using combinatorial logic can be viewed as an 𝑛-input,𝑚-output

Boolean function 𝑓 : {0, 1}𝑛 → {0, 1}𝑚 , i.e., a block

𝑓

𝑥0

𝑥1

𝑥𝑛−1

𝑟0

𝑟1

𝑟𝑚−1

with 𝑛 1-bit input and 𝑚 1-bit output wires.

a Which of the following

A: 𝑛 = 4, 𝑚 = 1

B: 𝑛 = 5, 𝑚 = 1

C: 𝑛 = 16, 𝑚 = 4

D: 𝑛 = 18, 𝑚 = 1

E: 𝑛 = 18, 𝑚 = 4

lists the correct values of 𝑛 and 𝑚 for a multiplexer that selects between four 4-bit values?

b Which of the following statements

A: For a half-adder 𝑛 = 2, 𝑚 = 1; for a full-adder 𝑛 = 4, 𝑚 = 2

B: For a half-adder 𝑛 = 2, 𝑚 = 1; for a full-adder 𝑛 = 3, 𝑚 = 1

C: For a half-adder 𝑛 = 2, 𝑚 = 2; for a full-adder 𝑛 = 3, 𝑚 = 2

D: For a half-adder 𝑛 = 3, 𝑚 = 1; for a full-adder 𝑛 = 2, 𝑚 = 2

E: For a half-adder 𝑛 = 3, 𝑚 = 2; for a full-adder 𝑛 = 2, 𝑚 = 2

is correct?

� Q67. Classify each of the following statements as either true or false, then explain why using at most a few

sentences.

a Consider the following symbols

𝑟𝑥 𝑟𝑥

𝑑

𝑠

𝑔

𝑑

𝑠

𝑔

which, from left-to-right, describe a buffer, a NOT gate, an N-type MOSFET, and a P-type MOSFET respectively.

One could argue the NOT gate (𝑟 = ¬𝑥) is an “inverting version” of the buffer (𝑟 = 𝑥), a fact illustrated by an

“inversion bubble” on the output; a similar argument could be made of the N-type MOSFET and the P-type

MOSFET.

b The organisation of N- and P-type MOSFET transistors shown in Figure 11 implements the Boolean expression

𝑟 = (𝑥 ∧ ¬𝑐) ∨ (𝑦 ∧ 𝑐), i.e., that reflecting a 2-input, 1-bit multiplexer.

c Assuming 𝑚 > 1, a combinatorial logic component with 𝑛 inputs and 𝑚 outputs can always be decomposed

into 𝑚 separate (potentially simpler) components.

git # b282dbb9 @ 2025-09-03 24

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝑥 𝑦

𝑐 ¬𝑐

¬𝑐 𝑐

𝑥 𝑦

𝑟

𝑉𝑑𝑑

𝑉𝑠𝑠

Figure 11: A design that uses MOSFET-based transistors, with three inputs (labelled 𝑐, 𝑥, and 𝑦) and one output (labelled
𝑟).

d Application of the Karnaugh map technique to a truth table describing a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1}𝑚
will always yield the optimal implementation of said function.

e A full-adder is functionally complete (or universal), in the sense that one can realise all standard Boolean

operators (i.e., NOT, AND, and OR) and therefore any Boolean expression using instances of it alone.

f A 4-input, 1-bit multiplexer can be implemented by using 13 or fewer standard logic gates (i.e., NOT gates, and

2-input AND and OR gates).

� Q68. Write the simplest (i.e., with fewest operators) possible Boolean expression that implements the Boolean

function

𝑟 = 𝑓 (𝑥, 𝑦, 𝑧)

described by

𝑓

𝑥 𝑦 𝑧 𝑟

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 ?
1 0 0 1

1 0 1 0

1 1 0 ?
1 1 1 1

where ? denotes don’t care.

� Q69. Take the Boolean expression

¬(𝑥 ∨ 𝑦)

and draw a gate-level circuit diagram that computes an equivalent resulting using only 2-input NAND gates.

git # b282dbb9 @ 2025-09-03 25

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q70. Recall that an SR latch has two inputs 𝑆 (or set) and 𝑅 (or reset); if 𝑆 = 𝑅 = 1, the two outputs𝑄 and ¬𝑄 are

undefined. This issue can be resolved by using a reset-dominate latch: the alternative design has the same inputs

and outputs, but resets the latch (i.e., has 𝑄 = 0 and ¬𝑄 = 1) whenever 𝑆 = 𝑅 = 1.

Using a gate-level circuit diagram, describe how a reset-dominate latch can be implemented using only NOR

gates and at most one AND gate.

� Q71. The quality of the design for some hardware component is often judged by measuring efficiency, for example

how quickly it can produce output on average. Name two other metrics that might be considered.

� Q72. a Describe how𝑁-type and 𝑃-type MOSFET transistors are constructed using silicon and how they operate

as switches.

b Draw a diagram to show how 𝑁-type and 𝑃-type MOSFET transistors can be used to implement a NAND gate.

Show your design works by describing the transistor states for each input combination.

� Q73. The following diagram

x

y

r

Vss

Vdd

details a 2-input NAND gate comprised of two P-MOSFET transistors (top) and two N-MOSFET transistors

(bottom). Draw a similar diagram for a 3-input NAND gate.

� Q74. Moore’s Law predicts the number of CMOS-based transistors we can manufacture within a fixed sized area

will double roughly every two years; this is often interpreted as doubling computational efficiency over the same

period. Briefly explain two limits which mean this trend cannot be sustained indefinitely.

� Q75. Given that ? is the don’t care state, consider the following truth table which describes a function 𝑝 with

four inputs (𝑎, 𝑏, 𝑐 and 𝑑) and two outputs (𝑒 and 𝑓):

𝑝

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

0 0 0 0 0 0

0 0 0 1 0 1

0 0 1 0 1 0

0 0 1 1 ? ?
0 1 0 0 0 1

0 1 0 1 1 0

0 1 1 0 0 0

0 1 1 1 ? ?
1 0 0 0 1 0

1 0 0 1 0 0

1 0 1 0 0 1

1 0 1 1 ? ?
1 1 0 0 ? ?
1 1 0 1 ? ?
1 1 1 0 ? ?
1 1 1 1 ? ?

git # b282dbb9 @ 2025-09-03 26

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

a From the truth table above, write down the corresponding Sum of Products (SoP) equations for 𝑒 and 𝑓 .

b Simplify the two SoP equations so that they use the minimum number of logic gates possible. You can assume

the two equations can share logic.

� Q76. Using a Karnaugh map, derive a Boolean expression for the function

𝑟 = 𝑓 (𝑥, 𝑦, 𝑧)

described by the truth table

𝑓

𝑥 𝑦 𝑧 𝑟

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 ?

where ? denotes don’t care.

� Q77. NAND is a universal logic gate in the sense that the behaviour of NOT, AND and OR gates can be

implemented using only NAND. Show how this is possible using a truth table to demonstrate your solution.

� Q78. Both NAND and NOR gates are described as universal because any other Boolean gate (i.e., AND, OR, NOT)

can be constructed using them. Imagine your friend suggests a 4-input, 1-bit multiplexer (that selects between

four 1-bit inputs using two 1-bit control signals to produce a 1-bit output) is also universal: state whether or not

you believe them, and explain why.

� Q79. Consider the following circuit where the propagation delay of logic gates in the circuit are 10ns for NOT,

20ns for AND, 20ns for OR and 60ns for XOR:

𝑐

𝑏

𝑑

𝑏

𝑑

𝑑

𝑐

𝑎

𝑎

𝑐

𝑒

a Draw a Karnaugh map for this circuit and derive a Sum of Products (SoP) expression for the result.

b Describe advantages and disadvantages of your SoP expression and the dynamic behaviour it produces.

git # b282dbb9 @ 2025-09-03 27

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

c If the circuit is used as combinatorial logic within a clocked system, what is the maximum clock speed of the

system?

� Q80. A game uses nine LEDs to display the result of rolling a six-sided dice; the 𝑖-th LED, say 𝐿𝑖 for 0 ≤ 𝑖 < 9, is

driven with 1 or 0 to turn it on or off respectively. A 3-bit register 𝐷 represents the dice as an unsigned integer.

a The LEDs are arranged as follows,

𝐿0 𝐿3 𝐿6

𝐿1 𝐿4 𝐿7

𝐿2 𝐿5 𝐿8

and the required mapping between dice and LEDs, given a filled dot means an LED is on, is

𝐷 = 1 𝐷 = 2 𝐷 = 3 𝐷 = 4 𝐷 = 5 𝐷 = 6

↓ ↓ ↓ ↓ ↓ ↓

Using Karnaugh maps as appropriate, write a simplified Boolean expression for each LED (i.e., for each 𝐿𝑖 in

terms of 𝐷).

b The 2-input XOR, AND, OR and NOT gates used to implement your expressions have propagation delays of 40,

20, 20 and 10 nanoseconds respectively. Calculate how many times per-second the dice can be rolled, i.e., 𝐷 can

be updated, if the LEDs are to provide the correct output.

c The results of individual dice throws will be summed using a ripple-carry adder circuit, to give a total; each

3-bit output 𝐷 will be added to and stored in an 𝑛-bit accumulator register 𝐴.

i Using a high-level block diagram, show how an 𝑛-bit ripple-carry adder circuit is constructed from full-adder

cells.

ii If 𝑚 = 8 throws of the dice are to be summed, what value for 𝑛 should be selected?

iii Imagine that instead of 𝐷, we want to add 2 ·𝐷 to 𝐴. Doubling 𝐷 can be achieved by computing either 𝐷 +𝐷
or 𝐷 ≪ 1 (i.e., a left-shift of 𝐷 by 1 bit). Carefully state which method is preferable, and why.

� Q81. Consider a simple component called 𝐶 that compares two inputs 𝑥 and 𝑦 (both are unsigned 8-bit integers)

in order to produce their maximum and minimum as two outputs:

𝐶𝑥

𝑦

min(𝑥, 𝑦)

max(𝑥, 𝑦)

- -

?

?

Instances of 𝐶 can be connected in a mesh to sort integers: the input is fed into the top and left-hand edges of the

mesh, the sorted output appears on the bottom and right-hand edges. An example is given below:

git # b282dbb9 @ 2025-09-03 28

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

7 6 5 4

7 𝐶 𝐶 𝐶 𝐶 3

6 𝐶 𝐶 𝐶 𝐶 2

2 𝐶 𝐶 𝐶 𝐶 2

3 𝐶 𝐶 𝐶 𝐶 1

5 2 4 1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

6 5 4

5 3 3

2 2 2

3 2 2

6

5

5

5

3

3

4

4

4

3

2

2

a Using standard building blocks (e.g., adder, multiplexer etc.) rather than individual logic gates, draw a block
diagram that implements the component 𝐶.

b Imagine that an 𝑛 × 𝑛 mesh of components is created. Based on your design for 𝐶 and clearly stating any

assumptions you need to make, write down an expression for the critical path of such a mesh.

c Algorithms for sorting integers can clearly be implemented on a general-purpose processor. Explain two
advantages and two disadvantages of using such a processor versus using a mesh like that above.

� Q82. Imagine you are working for a company developing the “Pee”, a portable games console. The user interface

is a fancy controller that has

• three fire buttons represented by the 1-bit inputs 𝐹0, 𝐹1 and 𝐹2, and

• a 8-direction D-pad represented by the 3-bit input 𝐷

and you are charged with designing some aspects of it.

a The fire button inputs are described as level triggered and active high; explain what this means (in comparison

to the alternatives in each case).

b Some customers want an “autofire” feature that will automatically and repeatedly press the 𝐹0 fire button for

them. The autofire can operate in four modes, selected by a switch called 𝑀: off (where the fire button 𝐹0 works

as normal), slow, fast or very fast (where the fire button 𝐹0 is turned on and off repeatedly at the selected speed).

Stating any assumptions and showing your working where appropriate, design a circuit that implements such

a feature.

c In an attempt to prevent counterfeiting, each controller can only be used with the console it was sold with. This

protocol is used:

𝒫 𝒞

𝑐
$←− {0, 1}3

𝑐−→
𝑟 = 𝑇(𝑐)

𝑟←−
𝑟

?

= 𝑇(𝑐)

which, in words, means that

• the console generates a random 3-bit number 𝑐 and sends it to the controller,

• the controller computes a 3-bit result 𝑟 = 𝑇(𝑐) and sends it to the console,

• the console checks that 𝑟 matches 𝑇(𝑐) and assumes the controller is valid if so.

i There is some debate as to whether the protocol should be synchronous or asynchronous; explain what your

recommendation would be and why.

git # b282dbb9 @ 2025-09-03 29

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

ii The function 𝑇 is simply a look-up table. For example

𝑇(𝑥) =


2 if 𝑥 = 0 4 if 𝑥 = 4

6 if 𝑥 = 1 0 if 𝑥 = 5

7 if 𝑥 = 2 5 if 𝑥 = 6

1 if 𝑥 = 3 3 if 𝑥 = 7

Each pair of console and controller has such a 𝑇 fixed inside them during the manufacturing process. Stating

any assumptions and showing your working where appropriate, explain how this 𝑇 might be implemented

as a circuit.

� Q83. Imagine you have three Boolean values 𝑥, 𝑦, and 𝑧. Given access to as many AND and OR gates as you

want but only two NOT gates, write a set of Boolean expressions to compute all three results ¬𝑥, ¬𝑦 and ¬𝑧.

� Q84. SAT is the problem of finding an assignment to 𝑛 Boolean variables which means a given Boolean expression

is satisfied, i.e., evaluates to 1. For example, given 𝑛 = 3 and the expression

(𝑥 ∧ 𝑦) ∨ ¬𝑧,

𝑥 = 1, 𝑦 = 1, 𝑧 = 0 is one assignment (amongst several) which solves the associated SAT problem.

The ability to solve SAT can be used to test whether or not two 𝑛-input, 1-output combinatorial circuits 𝐶1 and

𝐶2 are equivalent. Show how this is possible.

� Q85. Consider the following combinatorial circuit, which is the composition of four parts (labelled 𝐴, 𝐵, 𝐶 and

𝑅𝐸𝐺): each part is annotated with a name and an associated critical path. The circuit computes an output 𝑟 = 𝑓 (𝑥)
from the corresponding input 𝑥.

𝐴
10ns

𝐵
30ns

𝐶
20ns

𝑅𝐸𝐺
10ns

𝑥 𝑟 = 𝑓 (𝑥)

With respect to this circuit,

a first define the terms latency and throughput, then

b explain how and why you would expect use of pipelining to influence both metrics.

� Q86. The figure below shows a block of combinatorial logic built from seven parts; the name and latency of each

part is displayed inside it. Note that the last part is a register which stores the result:

𝐴
40ns

𝐵
10ns

𝐶
30ns

𝐷
10ns

𝐸
50ns

𝐹
10ns

𝑅𝐸𝐺
10ns

𝑥 𝑟 = 𝑓 (𝑥)

It is proposed to pipeline the block of logic using two stages such that there is a pipeline register in between parts

D and E:

𝐴
40ns

𝐵
10ns

𝐶
30ns

𝐷
10ns

𝑅𝐸𝐺
10ns

𝐸
50ns

𝐹
10ns

𝑅𝐸𝐺
10ns

𝑥 𝑟 = 𝑓 (𝑥)

a Explain the terms latency and throughput in relation to the idea of pipelining.

b Calculate the overall latency and throughput of the initial circuit described above.

c Calculate the overall latency and throughput of the circuit after the proposed change.

d Calculate the number of extra pipeline registers required to maximise the circuit throughput; state this new

throughput and the associated latency. Explain the advantages and disadvantages of this change.

Part III: Basics of digital logic: minimisation via Karnaugh maps

This is a (large) set of example Boolean minimisation questions: each asks you to transform some truth table

describing an 𝑛-input Boolean function into a Boolean expression. Each solution includes

git # b282dbb9 @ 2025-09-03 30

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

1. a reference implementation (produced by forming a SoP expression with a full term for each minterm, i.e., row

where 𝑟 = 1), and

2. a Karnaugh map annotated with sensible groups, and an optimised implementation based on those groups.

The goal is to focus on producing the latter, since the former is somewhat easier. Keep in mind and take care wrt.

the following:

• There are 2
2
𝑛

Boolean functions with 𝑛 inputs (or 3
2
𝑛

if you include don’t-care as a valid output); whereas for

small 𝑛 a complete set of functions is included, but for large 𝑛 there is only a random sub-set.

• No real effort is made to order the questions, and only minor effort to avoid duplicates. That said, there should

be no trivial (in the sense 𝑟 = 1 or 𝑟 = 0 for all inputs, e.g., tautological) cases.

• The questions and solutions are generated automatically, meaning a small but real chance of bugs in the

associated implementation!

� Q87.
𝑦 𝑧 𝑟

0 0 1

0 1 1

1 0 0

1 1 1

� Q88.
𝑦 𝑧 𝑟

0 0 1

0 1 0

1 0 1

1 1 1

� Q89.
𝑦 𝑧 𝑟

0 0 1

0 1 1

1 0 0

1 1 0

� Q90.
𝑦 𝑧 𝑟

0 0 0

0 1 1

1 0 1

1 1 1

� Q91.
𝑦 𝑧 𝑟

0 0 0

0 1 1

1 0 0

1 1 1

� Q92.
𝑦 𝑧 𝑟

0 0 0

0 1 0

1 0 1

1 1 0

git # b282dbb9 @ 2025-09-03 31

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q93.
𝑦 𝑧 𝑟

0 0 0

0 1 1

1 0 1

1 1 0

� Q94.
𝑦 𝑧 𝑟

0 0 1

0 1 0

1 0 1

1 1 0

� Q95.
𝑦 𝑧 𝑟

0 0 0

0 1 0

1 0 0

1 1 1

� Q96.
𝑦 𝑧 𝑟

0 0 1

0 1 0

1 0 0

1 1 0

� Q97.
𝑦 𝑧 𝑟

0 0 0

0 1 ?

1 0 ?

1 1 1

� Q98.
𝑦 𝑧 𝑟

0 0 0

0 1 1

1 0 ?

1 1 1

� Q99.
𝑦 𝑧 𝑟

0 0 1

0 1 1

1 0 1

1 1 0

� Q100.
𝑦 𝑧 𝑟

0 0 0

0 1 0

1 0 1

1 1 ?

git # b282dbb9 @ 2025-09-03 32

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q101.
𝑥 𝑦 𝑧 𝑟

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

� Q102.
𝑥 𝑦 𝑧 𝑟

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

� Q103.
𝑥 𝑦 𝑧 𝑟

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

� Q104.
𝑥 𝑦 𝑧 𝑟

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

� Q105.
𝑥 𝑦 𝑧 𝑟

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

git # b282dbb9 @ 2025-09-03 33

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q106.
𝑥 𝑦 𝑧 𝑟

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

� Q107.
𝑥 𝑦 𝑧 𝑟

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

� Q108.
𝑥 𝑦 𝑧 𝑟

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

� Q109.
𝑥 𝑦 𝑧 𝑟

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

� Q110.
𝑥 𝑦 𝑧 𝑟

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

git # b282dbb9 @ 2025-09-03 34

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q111.
𝑥 𝑦 𝑧 𝑟

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

� Q112.
𝑥 𝑦 𝑧 𝑟

0 0 0 ?

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 ?

1 0 1 1

1 1 0 1

1 1 1 0

� Q113.
𝑥 𝑦 𝑧 𝑟

0 0 0 0

0 0 1 ?

0 1 0 0

0 1 1 ?

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

� Q114.
𝑥 𝑦 𝑧 𝑟

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 ?

1 0 0 1

1 0 1 1

1 1 0 ?

1 1 1 1

� Q115.
𝑥 𝑦 𝑧 𝑟

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 ?

1 0 0 ?

1 0 1 ?

1 1 0 0

1 1 1 ?

git # b282dbb9 @ 2025-09-03 35

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q116.
𝑥 𝑦 𝑧 𝑟

0 0 0 ?

0 0 1 0

0 1 0 ?

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 ?

� Q117.
𝑥 𝑦 𝑧 𝑟

0 0 0 1

0 0 1 0

0 1 0 ?

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 ?

� Q118.
𝑥 𝑦 𝑧 𝑟

0 0 0 ?

0 0 1 ?

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 ?

1 1 1 0

� Q119.
𝑥 𝑦 𝑧 𝑟

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 ?

1 1 1 ?

� Q120.
𝑥 𝑦 𝑧 𝑟

0 0 0 1

0 0 1 0

0 1 0 ?

0 1 1 ?

1 0 0 1

1 0 1 ?

1 1 0 0

1 1 1 0

git # b282dbb9 @ 2025-09-03 36

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q121.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

� Q122.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

� Q123.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 0

git # b282dbb9 @ 2025-09-03 37

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q124.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

� Q125.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

� Q126.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

git # b282dbb9 @ 2025-09-03 38

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q127.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 0

1 1 1 1 1

� Q128.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 1

1 0 0 1 0

1 0 1 0 1

1 0 1 1 0

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

� Q129.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 0

1 1 1 1 0

git # b282dbb9 @ 2025-09-03 39

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q130.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 1

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

� Q131.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 ?

0 0 0 1 ?

0 0 1 0 0

0 0 1 1 1

0 1 0 0 ?

0 1 0 1 0

0 1 1 0 ?

0 1 1 1 ?

1 0 0 0 ?

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 0

1 1 1 1 ?

� Q132.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 1

0 0 0 1 ?

0 0 1 0 1

0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 0

0 1 1 1 ?

1 0 0 0 1

1 0 0 1 ?

1 0 1 0 0

1 0 1 1 ?

1 1 0 0 ?

1 1 0 1 ?

1 1 1 0 ?

1 1 1 1 ?

git # b282dbb9 @ 2025-09-03 40

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q133.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 ?

0 0 0 1 0

0 0 1 0 0

0 0 1 1 ?

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 ?

1 1 1 0 0

1 1 1 1 1

� Q134.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 1

0 0 0 1 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 ?

0 1 0 1 0

0 1 1 0 1

0 1 1 1 1

1 0 0 0 ?

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 ?

1 1 1 0 ?

1 1 1 1 0

� Q135.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 ?

0 0 0 1 0

0 0 1 0 ?

0 0 1 1 0

0 1 0 0 0

0 1 0 1 ?

0 1 1 0 ?

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 1 1

1 1 0 0 ?

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

git # b282dbb9 @ 2025-09-03 41

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q136.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 ?

0 0 0 1 0

0 0 1 0 1

0 0 1 1 ?

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 0

1 0 0 0 ?

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 ?

1 1 1 0 ?

1 1 1 1 ?

� Q137.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 0

0 0 0 1 ?

0 0 1 0 1

0 0 1 1 1

0 1 0 0 1

0 1 0 1 0

0 1 1 0 1

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 ?

� Q138.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 ?

0 0 0 1 0

0 0 1 0 ?

0 0 1 1 1

0 1 0 0 1

0 1 0 1 0

0 1 1 0 ?

0 1 1 1 ?

1 0 0 0 1

1 0 0 1 0

1 0 1 0 ?

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 ?

1 1 1 1 ?

git # b282dbb9 @ 2025-09-03 42

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q139.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 ?

0 0 0 1 1

0 0 1 0 ?

0 0 1 1 0

0 1 0 0 ?

0 1 0 1 1

0 1 1 0 ?

0 1 1 1 1

1 0 0 0 ?

1 0 0 1 0

1 0 1 0 0

1 0 1 1 ?

1 1 0 0 1

1 1 0 1 ?

1 1 1 0 ?

1 1 1 1 1

� Q140.
𝑤 𝑥 𝑦 𝑧 𝑟

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 ?

0 1 0 0 ?

0 1 0 1 ?

0 1 1 0 ?

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 ?

1 1 0 1 ?

1 1 1 0 1

1 1 1 1 0

Part IV: Basics of computer arithmetic

� Q141. Mike Rowchip was an engineer, working on an ALU design for a new processor: he had completed the

design and implementation of most but not all modules, before he was, unfortunately, run over by a bus. You have

been tasked with completing the missing modules.

Mike first prototyped each module in software, using C functions, which he then used as a specification for

(and reference for testing) the associated hardware implementation. The prototype for one of the missing modules

is

uint8_t f(uint8_t x, uint8_t y) {
uint8_t m = 1;

while(x & m) {
x = x & ~m;
m = m << 1;

}

return x | m;
}

However, Mike left no documentation beyond this. Thanks Mike. What do you think it does?

A: add x to y

B: compute the Hamming weight of x

git # b282dbb9 @ 2025-09-03 43

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

C: left-rotate x by 1 bit

D: increment x

E: decrement x

� Q142. Consider the following conditional statement written in C

if(c) {
...

}

wherein c is a placeholder for the condition expression; the statement body (i.e., the continuation dots) is executed

iff. evaluating the condition expression yields a non-zero result. C represents signed integers using two’s-

complement: for an unsigned, 32-bit integer x, imagine we want to execute the statement body if either every bit of

x is 0 or every bit of x is 1. Which of the following choices for the condition expression would achieve this?

A: (x == 0)| (x == -1)|

B: !x| !(x)|

C: (x + 1) < 2

D:All of the above

E:None of the above

� Q143. Figure ?? captures the design of an 𝑛-bit ripple-carry adder, constructed using 𝑛 full-adder instances

connected by a carry chain denoted 𝑐. If 𝑐0 = 𝑐𝑖 (the carry-in) and 𝑐𝑛 = 𝑐𝑜 (the carry-out), then 𝑐𝑖 would more

generally denote the carry into the 𝑖-th full-adder instance. If 𝑛 = 4 and 𝑐𝑖 = 0, which of the following options

A 𝑥 = 0000(2) 𝑦 = 0000(2)
B 𝑥 = 1100(2) 𝑦 = 0001(2)
C 𝑥 = 0100(2) 𝑦 = 0100(2)
D 𝑥 = 1011(2) 𝑦 = 1001(2)
E 𝑥 = 0110(2) 𝑦 = 0101(2)

would produce 𝑐2 = 1?

� Q144. Consider two integers 𝑥 and 𝑦, whose sum 𝑟 = 𝑥 + 𝑦 is computed using a ripple-carry adder; 𝑥, 𝑦, and 𝑟
are all 8-bit signed integers, represented using two’s-complement. The associated flag

𝑓 =

{
0 if 𝑥 + 𝑦 did not overflow

1 if 𝑥 + 𝑦 did overflow

is used to signal whether an overflow occurred during computation of 𝑟. Which of the following

A: 𝑓 = 𝑟8

B: 𝑓 = (𝑥7 ∧ 𝑦7 ∧ ¬𝑟7) ∨ (¬𝑥7 ∧ ¬𝑦7 ∧ 𝑟7)
C: 𝑓 = (𝑥7 ∨ 𝑦7 ∨ ¬𝑟7) ∧ (¬𝑥7 ∨ ¬𝑦7 ∨ 𝑟7)
D: 𝑓 = 𝑥7 ∧ 𝑦7 ∧ 𝑟7
E: 𝑓 = 𝑥7 ⊕ 𝑦7 ⊕ 𝑟7

is the correct Boolean expression for 𝑓 ?

� Q145. Classify each of the following statements as either true or false, then explain why using at most a few

sentences.

a The MIPS instruction set includes instructions for logical left-shift, logical right-shift, and arithmetic right-shift,

but not arithmetic left-shift. The reason is that arithmetic left-shift is simply not useful.

b Consider a C program, in which an 8-bit, unsigned integer x is defined using the type uint8_t: the expression

(x >> 2) (x « 6)| right-rotates x by a distance of 2 bits.

git # b282dbb9 @ 2025-09-03 44

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q146. An 𝑛-bit ripple-carry adder has a critical path that can be described as𝑂(𝑛) gate delays. Explain intuitively

why this is the case, and name an alternative whose critical path is shorter.

� Q147. Give a single-line C expression to test if a non-zero integer 𝑥 is an exact power-of-two; i.e., if 𝑥 = 2
𝑛

for

some 𝑛 then the expression should evaluate to a non-zero value, otherwise it evaluates to zero.

� Q148. Imagine you are writing a C program that includes a variable called x. If x has the type char and a current

value of 127, what is the new value after

a decrementing (i.e., subtracting 1 from it), or

b incrementing (i.e., adding 1 to it)

the variable?

� Q149. Imagine 𝑥 represents a two’s-complement, signed integer using 4 bits; 𝑥𝑖 denotes the 𝑖-th bit of 𝑥. Write a

human-readable description (i.e., the meaning) of what the Boolean function

𝑓 (𝑥) = ¬𝑥3 ∧ (𝑥2 ∨ 𝑥1 ∨ 𝑥0)

computes arithmetically.

� Q150. Given an 𝑛-bit input 𝑥, draw a block diagram of an efficient (i.e., with a short critical path) combinatorial

circuit that can compute 𝑟 = 7 · 𝑥 (i.e., multiply 𝑥 by the constant 7). Take care to label each component, and the

size (in bits) of each input and output.

� Q151. Let 𝑥𝑖 and 𝑦𝑖 denote the 𝑖-th bit of two unsigned, 2-bit integers 𝑥 and 𝑦 (meaning that 0 ≤ 𝑖 < 2). Design

a (2 × 2)-bit combinatorial multiplier circuit that can compute the 4-bit product 𝑟 = 𝑥 · 𝑦.

� Q152. a Comparison operations for a given processor take two 16-bit operands and return zero if the comparison

is false or non-zero if it is true. By constructing some of the comparisons using combinations of other operations,

show that implementing all of =,≠, <, ≤, > and ≥ is wasteful. State the smallest set of comparisons that need

dedicated hardware such that all the standard comparisons can be executed.

b The ALU in the same processor design does not include a multiply instruction. So that programmers can still

multiply numbers, write an efficient C function to multiply two 16-bit inputs together and return the 16-bit lower

half of the result. You can assume the inputs are always positive.

c The population count or Hamming weight of 𝑥, denoted by HW(𝑥) say, is the number of bits in the binary

expansion of 𝑥 that equal one. Some processors have a dedicated instruction to do this but the proposed one

does not; write an efficient C function to compute the population count of 16-bit inputs.

� Q153. Imagine we want to compute the result of multiplying two 𝑛-bit numbers 𝑥 and 𝑦 together, i.e., 𝑟 = 𝑥 · 𝑦,

where 𝑛 is even. One can adopt a divide-and-conquer approach to this computation by splitting 𝑥 and 𝑦 into two

parts each of size 𝑛/2 bits

𝑥 = 𝑥1 · 2𝑛/2 + 𝑥0

𝑦 = 𝑦1 · 2𝑛/2 + 𝑦0

and then computing the full result

𝑟 = 𝑟2 · 2𝑛 + 𝑟1 · 2𝑛/2 + 𝑟0
via the parts

𝑟2 = 𝑥1 · 𝑦1

𝑟1 = 𝑥1 · 𝑦0 + 𝑥0 · 𝑦1

𝑟0 = 𝑥0 · 𝑦0.

The naive approach above uses four multiplications of (𝑛/2)-bit values. The Karatsuba-Ofman method reduces

this to three multiplications (and some extra low-cost operations); show how this is achieved.

� Q154. Assume that unsigned integers are represented in 4 bits.

a What is the result of using a normal 4-bit adder circuit to compute the sum 10 + 12?

git # b282dbb9 @ 2025-09-03 45

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

DRAM
MT4C4001J

MT4C4001J
Rev. 2.3 03/10

Micross Components reserves the right to change products or specifi cations without notice.

2

GENERAL DESCRIPTION (cont.)
cycle is always initiated with a row address strobe-in by RAS\
followed by a column address strobed-in by CAS\. CAS\ may
be toggled-in by holding RAS\ LOW and strobing-in differ-
ent column addresses, thus executing faster memory cycles.
Returning RAS\ HIGH terminates the FAST PAGE MODE
operation.
 Returning RAS\ and CAS\ HIGH terminates a memory cycle
and decreases chip current to a reduced standby level. Also,
the chip is preconditioned for the next cycle during the RAS\

HIGH time. Memory cell data is retained in its corrected stated
by maintaining power and executing any RAS\ cycle (READ,
WRITE, RAS\-ONLY, CAS\-BEFORE-RAS\, or HIDDEN
REFRESH) so that all 1,024 combinations of RAS\ addresses
(A0-A9) are executed at least every 16ms, regardless of se-
quence. The CBR REFRESH cycle will invoke the internal
refresh counter for automatic RAS\ addressing.

FUNCTIONAL BLOCK DIAGRAM
FAST PAGE MODE

WE\ DQ1
CAS\ DQ2

DQ3
DQ4

OE\

Vcc
A0 Vss
A1
A2
A3
A4
A5
A6
A7
A8
A9

RAS\

NO. 2 CLOCK
GENERATOR

NO. 1 CLOCK
GENERATOR

COLUMN
ADDRESS
BUFFER

REFRESH
CONTROLLER

REFRESH
COUNTER

ROW ADDRESS
BUFFERS (10)

*EARLY-WRITE
DETECTION CIRCUIT

DATA IN
BUFFER

DATA OUT
BUFFER

COLUMN
DECODER

SENSE AMPLIFIERS
I/O GATING

MEMORY
ARRAYR

O
W

D
E

C
O

D
E

R

1024

1024 x 4

1024

4

4

4

4

10

10

10

10

10

NOTE: WE\ LOW prior to CAS\ LOW, EW detection circuit output is a HIGH (EARLY-WRITE)
 CAS\ LOW prior to WE\ LOW, EW detection circuit output is a LOW (LATE-WRITE)

𝛼

𝛽

𝛾

𝛿

Figure 12: A 4Mbit DRAM block diagram (source: http://www.micross.com/pdf/MT4C4001J.pdf).

b A saturating (or clamped) adder is such that if an overflow occurs, i.e., the result does not fit into 4 bits, the

highest possible result is returned instead. With a clamped 4-bit addition denoted by⊎, we have that 10⊎12 = 15

for example. In general, for an 𝑛-bit clamped adder

𝑥 ⊎ 𝑦 =

{
𝑥 + 𝑦 if 𝑥 + 𝑦 < 2

𝑛

2
𝑛 − 1 otherwise

Design a circuit that implements a 4-bit adder of this type.

� Q155. A software application needs 8-bit, unsigned modular multiplication, i.e., it needs to compute

𝑥 · 𝑦 (mod 𝑁)

which is the same as

𝑡 − (𝑁 · ⌊𝑡/𝑁⌋)

where 𝑡 = 𝑥 · 𝑦. You have been asked to extend an existing ALU to support this operation. The high cost of a

dedicated circuit for division rules out that option; using standard building blocks (e.g., adder, multiplexer) rather

than individual logic gates, draw a block diagram of an alternative solution.

Part V: Basics of memory technology

� Q156. Figure 12 illustrates the design of a DRAM memory. The labels on four components in the block diagram

git # b282dbb9 @ 2025-09-03 46

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
http://www.micross.com/pdf/MT4C4001J.pdf

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

have been blanked-out, then replaced with the symbols 𝛼, 𝛽, 𝛾, and 𝛿: which of the following mappings

A


𝛼 ↦→ row address buffer

𝛽 ↦→ row address decoder

𝛾 ↦→ column address buffer

𝛿 ↦→ column address decoder

B


𝛼 ↦→ row address buffer

𝛽 ↦→ column address buffer

𝛾 ↦→ row address decoder

𝛿 ↦→ column address decoder

C


𝛼 ↦→ column address buffer

𝛽 ↦→ row address buffer

𝛾 ↦→ column address decoder

𝛿 ↦→ row address decoder

D


𝛼 ↦→ row address decoder

𝛽 ↦→ column address decoder

𝛾 ↦→ row address buffer

𝛿 ↦→ column address buffer

E


𝛼 ↦→ column address decoder

𝛽 ↦→ row address decoder

𝛾 ↦→ column address buffer

𝛿 ↦→ row address buffer

do you think is correct?

� Q157. Identify each statement which is correct:

A: SRAM-based memories typically have a lower access latency than DRAM-based alternatives

B: SRAM-based memories typically have a lower density than DRAM-based alternatives

C: a memory that uses big-endian byte ordering will have a higher access latency than one using a little-endian

order

D: a Harvard-style organisation means both instructions and data are stored in the same memory

� Q158. Consider a DRAM-based memory device with a capacity of 65536 addressable bytes. Of the following

options

A: 8 address pins, 65536 cells

B: 16 address pins, 65536 cells

C: 8 address pins, 524288 cells

D: 16 address pins, 524288 cells

E: none of the above

which offers the most likely description of said device?

� Q159. Consider an SRAM-based memory device, which has a 4-bit data bus and 12-bit address bus. If your goal

is to construct a 32KiB memory and only have such devices available, how many will you need?

A: 1

B: 2

C: 4

D: 8

E: 16

� Q160. Imagine you are using an 1kB, byte-addressable memory within some larger system. In doing so, you

make a mistake which means the 4-th address wire 𝐴4 is not correctly connected: it therefore has the fixed value

𝐴4 = 0. Which of the following options

git # b282dbb9 @ 2025-09-03 47

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

CPU MEM0 MEM1 MEM2 MEM3

𝐴
address

decoder

𝐷

𝑒𝑛
3𝑒𝑛

2
𝑒𝑛

1
𝑒𝑛

0

data

bus

address

bus

Figure 13: A diagrammatic description of an 8-bit micro-processor and associated memory system.

A: 1

B: 4

C: 256

D: 512

E: 1024

reflects the number of addresses now accessible if the memory is

a an SRAM, or

b a DRAM.

� Q161. Consider an 8-bit micro-processor, connected to a memory system via an 18-bit address bus: let 𝐴 denote

said bus, such that 𝐴𝑖 for 0 ≤ 𝑖 < 18 is the 𝑖-th bit. The memory system is comprised of 4 separate memory devices

(either RAMs or ROMs) denoted MEM0, MEM1, MEM2, and MEM3. An address decoder maps addresses to memory

devices by controlling a set of associated enable (or chip select) signals, i.e., 𝑒𝑛0, 𝑒𝑛1, 𝑒𝑛2, and 𝑒𝑛3. Figure 13 offers

a diagrammatic version of the same description, noting various extraneous control signals are omitted for clarity.

If the enable signals are

𝑒𝑛0 = ¬𝐴17 ∧ ¬𝐴16 ∧ ¬𝐴15

𝑒𝑛1 = ¬𝐴17 ∧ ¬𝐴16 ∧ 𝐴15 ∧ ¬𝐴14

𝑒𝑛2 = ¬𝐴17 ∧ 𝐴16

𝑒𝑛3 = 𝐴17 ∧ 𝐴16 ∧ 𝐴15 ∧ 𝐴14 ∧ 𝐴13 ∧ 𝐴12 ∧ 𝐴11 ∧ 𝐴10 ∧ 𝐴9 ∧ 𝐴8 ∧ 𝐴7 ∧ 𝐴6 ∧ 𝐴5

which memory device is address 𝐴 = 48350 mapped to?

A:MEM0

B:MEM1

C:MEM2

D:MEM3

� Q162. Classify each of the following statements as either true or false, then explain why using at most a few

sentences.

a One SRAM memory device has 1024 addressable 8-bit elements, whereas another has 1024 addressable 32-bit

elements: the latter will have a higher access latency than the former.

b SRAM and DRAM memories are both classed as volatile. However, a DRAM cell will retain the value stored for

a short period after powered-off, whereas an SRAM cell will not.

c A given SRAM device has a 16-bit address bus, and 8-bit data bus; it has a total capacity of 128KiB.

� Q163. Draw a transistor-level circuit diagram describing a 6T SRAM memory cell.

� Q164. Consider a 1Mbit SRAM memory device (i.e., housing a total of 10
6

SRAM memory cells, each holding a

1-bit value), and a DRAM-based alternative with the same capacity: you are tasked with deciding which device

to use within some larger system. After reading the data sheets, it seems that

git # b282dbb9 @ 2025-09-03 48

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

a the DRAM-based device might be harder to integrate into the system, and

b the SRAM-based device should have a lower access latency.

Briefly explain why each statement is accurate.

� Q165. At a high level, a DRAM memory device could be described as an array (or matrix) of 1-bit cells with an

interface including a data pin, address pins and control pins (e.g., chip select, output and write enable, row and

column strobes). Carefully explain the purpose of

a row and column buffers, and

b row and column decoders

which represent components in such a device.

Part VI: Digital logic design using Verilog

� Q166. Write the following as Verilog declarations:

a An 8-bit little-endian wire vector called a.

b A 5-bit big-endian wire vector called b.

c A 32-bit register called c.

d A signed 16-bit register called d.

e A memory of 1024 elements, each 8 bits in size, called e.

f A generate variable called f.

� Q167. Given the declarations:

3 : 0] a;
3 : 0] b;
1 : 0] c;
3 : 0] d;

e;

a = 4'b1101;
b = 4'b01XX;

what are the values resulting from the following assignments:

a assign c = a[1 : 0];

b assign c = a[3 : 2];

c assign d = a & b;

d assign d = a ^ b;

e assign d = { a[3:2], a[1:0] };

f assign d = { a[1:0], a[3:2] };

g assign c = { 2{ b[1] } };

h assign c = { 2{ b[2] } };

i assign e = &a;

j assign e = ^a;

� Q168. a Consider the following Verilog processes for appropriately defined 1-bit wires a, b, x, y, p and q:

always @ (posedge p) begin
x <= a;
y <= b;

end

always @ (posedge q) begin
x <= b;
y <= a;

end

git # b282dbb9 @ 2025-09-03 49

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

Given that p and q are independent and may change at any time, write down one potential problem with this

design and outline one potential solution.

b Consider the following Verilog process, for appropriately defined 1-bit wire clk and 2-bit wire vector state,
which implements a state machine with three states:

always @ (posedge clk) begin
case(state)
0 : begin do_0; state = 1; end
1 : begin do_1; state = 2; end
2 : begin do_2; state = 0; end

endcase
end

If this process constitutes the entirety of the design, write down one potential problem with it and outline one
potential solution.

� Q169. A Decimal Digit Detector (DDD) is a device that accepts a 1-bit input at each positive clock edge, and waits

until four such bits have been received. At this point, it sets a 1-bit output signal to true if the 4-bit accumulated

input (interpreted in little-endian form) is a valid Binary Coded Decimal (BCD) digit and false if it is not; it then

repeats the process for the next set of four input bits.

Design a Verilog module to model the DDD device; your design should incorporate a reset signal that is able

to initialise the DDD.

� Q170. A comparator 𝐶 is a function which takes two unsigned 𝑛-bit integers 𝑥 and 𝑦 as input and produces

max(𝑥, 𝑦) and min(𝑥, 𝑦) as outputs. One can think of 𝐶 as sorting the 2-element sequence (𝑥, 𝑦) into the resulting

sequence (min(𝑥, 𝑦),max(𝑥, 𝑦)). Design a Verilog module to model a single comparator for 𝑛-bit numbers.

� Q171. An 𝑛-bit shift register 𝑄 is a register (say 𝑛 D-type flip-flops) whose content is right-shifted on each

positive of a shared clock edge. This means if 𝑄𝑖 refers to the 𝑖-th bit of 𝑄,

• 𝑄0 is discarded (i.e., shifted out of the register),

• every 𝑄𝑖 for 0 ≤ 𝑖 < 𝑛 − 1 is set to 𝑄𝑖+1, and

• 𝑄𝑛−1 is replaced by some new value (i.e., shifted in to the register).

A Linear Feedback Shift Register (LFSR) is a type of pseudo-random number generator based on this component:

at each positive clock edge

• 𝑄0 is used as a 1-bit pseudo-random output from the LFSR, and

• 𝑄𝑛−1 is replaced by a bit dictated by other bits in 𝑄, which are XOR’ed together according to a tap sequence.

For example, if the tap sequence is 𝑇 = ⟨0, 3, 4, 5, 7⟩ then the new bit that replaces 𝑄𝑛−1 is

𝑡 =
⊕
𝑡∈𝑇

𝑄𝑡 = 𝑄0 ⊕ 𝑄3 ⊕ 𝑄4 ⊕ 𝑄5 ⊕ 𝑄7.

Design a Verilog module to model an 8-bit LFSR with the tap sequence above; your design should incorporate a

reset signal which initialises the LFSR with a seed value given as input.

Part VII: Computational machines: Finite State Machines (FSMs)

� Q172. Consider a Finite State Machine (FSM) whose concrete implementation is as follows:

git # b282dbb9 @ 2025-09-03 50

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

en

D Q

¬Q
en

D Q

¬Q

en

D Q

¬Q
en

D Q

¬Q

Φ1

Φ2

x

r

Notice that the implementation is based on use of four D-type latches, and a 2-phase clock supplied via Φ1 and

Φ2; one additional input 𝑥 plus one output 𝑟 are also evident. To function correctly, a clock generator ensures Φ1

and Φ2 are driven as follows:

Φ2

Φ1

ρ

a From the following list

A:Φ1 and Φ2 are digital signals

B:Φ1 and Φ2 are non-overlapping

C:Φ1 and Φ2 are gated

D:Φ1 and Φ2 are unskewed

E:Φ1 and Φ2 each have a duty cycle of 33%

identify each property the clock generator must guarantee is true for the implementation to function correctly.

b Consider the two D-type latches at the bottom of the diagram, which form a 2-bit register. Imagine the value

stored in this register is expressed as a 2-bit integer: when the implementation is initially powered-on, is this

value equal to

A: 00(2)
B: 01(2)
C: 10(2)
D: 11(2)
E: any of the above

c Any FSM specification will include a transition function, often denoted 𝛿, which can be described in either

git # b282dbb9 @ 2025-09-03 51

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

tabular or diagrammatic form. Of the following options

A



S0startstart S1 S2 S3 S4

x = 0

x = 0

x = 0

x = 0

x = 0

x = 1 x = 1 x = 1 x = 1

x = 1

B


S0startstart S1 S2 S3

x = 0

x = 0

x = 0 x = 0

x = 1 x = 1 x = 1

x = 1

C


S0startstart S1 S2 S3

x = 1

x = 1

x = 1 x = 1

x = 0 x = 0 x = 0

x = 0

D


S0startstart S1 S2 S3

x = 0

x = 0 x = 0 x = 0

x = 1 x = 1 x = 1

x = 1

E


S0startstart S1 S2

x = 0 x = 0

x = 1

x = 1

x = 1

which captures the transition function of this FSM?

d Which of the following FSM types, namely

A:Mealy

B:Moore

does this implementation represent?

e In the 2-phase clock waveform above, 𝜌 illustrates the clock period: recall this is inversely proportional to the

clock frequency. Imagine the gate delay for NOT, AND, and 2- and 3-input OR gates are 10ns 20ns 20ns, 30ns

respectively, and the critical path associated for a D-type latch is 60ns. Which of the following best matches the

maximum possible clock frequency of this implementation?

A: 1.0kHz

B: 5.9MHz

C: 9.0MHz

D: 9.5MHz

E: 1.0GHz

f Which of the following best describes the purpose of this FSM?

A: set 𝑟 = 1 iff. the current value of 𝑥 is different from the previous value of 𝑥,

B: act as a modulo 4 counter that is incremented by the value of 𝑥, and set 𝑟 = 1 the current counter value is zero,

C: compute the Hamming weight of a sequence fed as input bit-by-bit via 𝑥, and set 𝑟 = 1 once this is equal to 3

D: count the number of consecutive times 𝑥 = 1, and set 𝑟 = 1 once this is equal to 3

git # b282dbb9 @ 2025-09-03 52

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

E: inspect the sequence fed as input bit-by-bit via 𝑥, and set 𝑟 = 1 iff. this sequence, when interpreted as an

unsigned integer, is odd

� Q173. Figure 14 and Figure 15, describe an FSM implementation and an associated waveform. When read left-

to-right, the waveform captures how values of Φ1 and Φ2 (a 2-phase clock), and 𝑟𝑠𝑡 (a reset signal) change over

time; the other input 𝑠 maintains the value 𝐴6(16) throughout. Note that the waveform is annotated with some

instances and periods in time (e.g., 𝜌, and each 𝑡𝑖).

a What is the value of 𝑟 at time 𝑡0?

A: 0

B: 1

C: undefined

b What is the value of 𝑟 at time 𝑡1?

A: 0

B: 1

C: undefined

c What is the value of 𝑟 at time 𝑡2?

A: 0

B: 1

C: undefined

d Consider the following NAND-based implementations

D-type latch ↦→ Figure 16

2-input XOR gate ↦→ Figure 17

2-input, 1-bit multiplexer ↦→ Figure 18

relating to components used within Figure ??. The waveform is annotated with 𝜌, which illustrates the clock

period. If a 2-input NAND gate imposes a gate delay of 𝑇
nand

= 10ns, which value most closely reflects the

maximum possible clock frequency?

A: 1.0MHz

B: 1.2GHz

C: 3.8MHz

D: 5.9MHz

E: 6.6MHz

� Q174. Consider the design as shown in Figure 19, which implements a simple Finite State Machine (FSM) using

D-type latches and a 2-phase clock. Note that the 𝑟 output reflects whether the FSM is in an accepting state, the

𝑟𝑠𝑡 input resets the FSM into the start state, and the 𝑋𝑖 input drives transitions between states: the idea is that the

𝑖-th element of a sequence

𝑋 = ⟨𝑋0 , 𝑋1 , . . . , 𝑋𝑛−1⟩
is provided as input, via 𝑋𝑖 , in the 𝑖-th step. Assuming the entirety of 𝑋 is consumed, which of the following

A: 𝑟 = 𝑋0 ⊕ 𝑋1 ⊕ · · · ⊕ 𝑋𝑛−1

B: 𝑟 = 𝑋0 ∧ 𝑋1 ∧ · · · ∧ 𝑋𝑛−1

C: 𝑟 = 𝑋0 ∧ 𝑋1 ∧ · · · ∧ 𝑋𝑛−1

git # b282dbb9 @ 2025-09-03 53

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝑒𝑛𝐷
𝑄 ¬𝑄

𝑒𝑛𝐷
𝑄 ¬𝑄

𝑒𝑛𝐷
𝑄 ¬𝑄

𝑒𝑛𝐷
𝑄 ¬𝑄

𝑒𝑛𝐷
𝑄 ¬𝑄

𝑒𝑛𝐷
𝑄 ¬𝑄

𝑒𝑛𝐷
𝑄 ¬𝑄

𝑒𝑛𝐷
𝑄 ¬𝑄

𝑒𝑛𝐷
𝑄 ¬𝑄

𝑒𝑛𝐷
𝑄 ¬𝑄

𝑒𝑛𝐷
𝑄 ¬𝑄

𝑒𝑛𝐷
𝑄 ¬𝑄

𝑒𝑛𝐷
𝑄 ¬𝑄

𝑒𝑛𝐷
𝑄 ¬𝑄

𝑒𝑛𝐷
𝑄 ¬𝑄

𝑒𝑛𝐷
𝑄 ¬𝑄

𝑐

𝑥

𝑦
𝑟 𝑠 0

𝑐

𝑥

𝑦
𝑟 𝑠 1

𝑐

𝑥

𝑦
𝑟 𝑠 2

𝑐

𝑥

𝑦
𝑟 𝑠 3

𝑐

𝑥

𝑦
𝑟 𝑠 4

𝑐

𝑥

𝑦
𝑟 𝑠 5

𝑐

𝑥

𝑦
𝑟 𝑠 6

𝑐

𝑥

𝑦
𝑟 𝑠 7

Φ
1

Φ
2

𝑟𝑠
𝑡

𝑟

Figure 14: An FSM implementation, which has 4 inputs (1-bit Φ1, Φ2 and 𝑟𝑠𝑡 on the left-hand side; 8-bit 𝑠 spread within
the design) and 1 output (1-bit 𝑟 on the right-hand side).

git # b282dbb9 @ 2025-09-03 54

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

Φ2

Φ1

𝑟𝑠𝑡

𝑡0 𝑡1 𝑡2
𝜌

Figure 15: A waveform describing behaviour of Φ1, Φ2, and 𝑟𝑠𝑡 within Figure 14.

Q

¬Q

D

en

S′

R′

Figure 16: A NAND-based implementation of a D-type latch.

x

y

r

Figure 17: A NAND-based implementation of a 2-input XOR gate.

c

r

x

y

Figure 18: A NAND-based implementation of a 2-input, 1-bit multipliexer.

git # b282dbb9 @ 2025-09-03 55

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝑒𝑛

𝐷 𝑄

¬𝑄

𝑒𝑛

𝐷 𝑄

¬𝑄

𝜙2

𝜙1

𝑟 𝑋𝑖

𝑟𝑠𝑡

Figure 19: Implementation of a simple FSM, using D-type latches and a 2-phase clock.

D: 𝑟 = 𝑋0 ∨ 𝑋1 ∨ · · · ∨ 𝑋𝑛−1

E: 𝑟 = 𝑋0 ∨ 𝑋1 ∨ · · · ∨ 𝑋𝑛−1

best describes the output from, or functionality of the FSM?

� Q175. Consider the design as shown in Figure 20, which implements a simple Finite State Machine (FSM) using

D-type latches and a 2-phase clock; note that it includes one output labelled 𝑟, and one input labelled 𝑥. Which of

the following options

A: 2

B: 3

C: 5

D: 6

E: 9

reflects

a the number of gates involved in the output function implementation?

b the number of gates involved in the transition function implementation?

� Q176. Consider a FSM defined abstractly by Figure 21 and concretely by Figure 22, meaning the latter is an

implementation of the former. Note that there is one output labelled 𝑟 and one input labelled 𝑥, and that D-type

latches are used to store the current (resp. next) state denoted 𝑄 (resp. 𝑄′); doing so implies used of a 2-phase

clock. The AND gate labelled ⊙ has 2 inputs, which are currently disconnected. Which of the following

A:𝑄1 and 𝑄0

B:¬𝑥 and 𝑄0

C:¬𝑥 and 𝑄1

D: 𝑥 and 𝑄0

E: 𝑥 and 𝑄1

should those inputs be connected to if the FSM is to function correctly?

git # b282dbb9 @ 2025-09-03 56

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝑒𝑛

𝐷 𝑄

¬𝑄

𝑒𝑛

𝐷 𝑄

¬𝑄

𝑒𝑛

𝐷 𝑄

¬𝑄

𝑒𝑛

𝐷 𝑄

¬𝑄

𝜙2

𝜙1

𝑥

𝑟

𝑄
0

𝑄
1

𝑄′
0

𝑄′
1

Figure 20: Implementation of a simple FSM, using D-type latches and a 2-phase clock.

𝑆0

𝑆1

𝑆2

𝑆3

𝑥 = 0

𝑥 = 1

𝑥 = 1

𝑥 = 0

𝑥 = 0

𝑥 = 1

𝑥 = 1

𝑥 = 0

Figure 21: The abstract design of an example FSM.

git # b282dbb9 @ 2025-09-03 57

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝑒𝑛

𝐷 𝑄

¬𝑄

𝑒𝑛

𝐷 𝑄

¬𝑄

𝑒𝑛

𝐷 𝑄

¬𝑄

𝑒𝑛

𝐷 𝑄

¬𝑄

Φ2

Φ1

𝑥

⊙

𝑟

Figure 22: The concrete implementation of an example FSM.

𝑒𝑛

𝐷 𝑄

¬𝑄
𝑒𝑛

𝐷 𝑄

¬𝑄

𝑟

𝑄0 𝑄1

𝑐𝑙𝑘

𝑥

Figure 23: An FSM implementation, which has 2 inputs (𝑐𝑙𝑘 and 𝑥) and 1 output (𝑟).

git # b282dbb9 @ 2025-09-03 58

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q177. Classify each of the following statements as either true or false, then explain why using at most a few

sentences.

a The clock frequency used to control a FSM must be limited by the critical path of the transition or output

function; otherwise, the FSM will function incorrectly.

b Although Moore- and Mealy-style FSMs have different structures, every instance of the former can be converted

into (or restructured to form) an instance of the latter.

c Consider Figure 23, which captures an FSM implementation: it has 2 inputs (𝑐𝑙𝑘 and 𝑥) and 1 output (𝑟). If the

FSM state is initialised such that 𝑄0 = 0 and 𝑄1 = 1, then, no matter how many times it is updated via positive

edges on 𝑐𝑙𝑘, if 𝑥 = 0 then 𝑟 will never equal 1.

� Q178. The parity function 𝑓 accepts an 𝑛-bit sequence 𝑋 as input, and yields 𝑓 (𝑋) = 1 iff. 𝑋 has an odd

number of elements equal to 1. If 𝑓 (𝑋) = 1 (resp. 𝑓 (𝑋) = 0), we say the parity of 𝑋 is odd (resp. even). Using a

combinatorial circuit, one can compute this as

𝑓 (𝑋) = 𝑋0 ⊕ 𝑋1 ⊕ · · · ⊕ 𝑋𝑛−1

since XOR can be thought of as addition modulo two. However, how could we design a Finite State Machine

(FSM) to compute 𝑓 (𝑋) when supplied with 𝑋 one element at a time? Explain step-by-step how you would solve

this challenge: start with a high-level design for any FSM then fill in detail required for this FSM. Are there any

features or requirements you can add to this basic description so the FSM is deemed “better” somehow?

� Q179. Imagine you are asked to to build a simple DNA matching hardware circuit as part of a research project.

The circuit will be given DNA strings which are sequences of tokens that represent chemical building blocks. The

goal is to search a large input sequence of DNA tokens for a small sequence indicative of some feature.

The circuit will receive one token per clock cycle as input; the possible tokens are adenine (𝐴), cytosine (𝐶),

guanine (𝐺) and thymine (𝑇). The circuit should, given the input sequence, set an output flag to 1 when the

matching sequence 𝐴𝐶𝑇 is found somewhere in the input or 0 otherwise. You can assume the inputs are infinitely

long, i.e., the circuit should just keep searching forever and set the flag when the match is a success.

a Design a circuit to perform the required task, show all your working and explain any design decisions you make.

b Now imagine you are asked to build two new matching circuits which should detect the sequences𝐶𝐴𝐺 and𝑇𝑇𝑇
respectively. It is proposed that instead of having three separate circuits, they are combined into a single circuit

that matches the input sequence against one matching sequence selected with an additional input. Describe one
advantage and one disadvantage you can think of for the two implementation options.

� Q180. A revolutionary, ecologically sound washing machine is under development by your company. When

turned on, the machine starts in the idle state awaiting input. The washing cycle consists of the three stages: fill
(when it fills with water), wash (when the wash occurs), spin (when spin dying occurs); the machine then returns to

idle when it is finished. Two buttons control the machine: pressing 𝐵0 starts the washing cycle, pressing 𝐵1 cancels

the washing cycle at any stage and returns the machine to idle; if both buttons are pressed at the same time, the

machine continues as normal as if neither were pressed.

a You are asked to design a circuit to control the washing machine. Draw a diagram illustrating states the washing

machine can be in, and valid transitions between them.

b Translate your diagram from above into a corresponding, tabular description of the transition function.

c Using an appropriate technique, derive Boolean expressions which allow computation of the transition function;

note that because the washing machine is ecologically sound, minimising the overall gate count is important.

� Q181. Recall that an 𝑛-bit Gray code is a cyclic, 2
𝑛
-element sequence 𝑆 where each 𝑖-th element 𝑆𝑖 is itself an

𝑛-element binary sequence, and the Hamming distance between adjacent elements is one, i.e.,

HD(𝑆𝑖 , 𝑆𝑖−1 (mod 2
𝑛)) = HD(𝑆𝑖 , 𝑆𝑖+1 (mod 2

𝑛)) = 1.

a Using an expression (rather than words), define

i HW(𝑋), the Hamming weight of a binary sequence 𝑋, and

ii HD(𝑋,𝑌), the Hamming distance between binary sequences 𝑋 and 𝑌.

b Consider a D-type flip-flop, capable of storing a 1-bit value, realised using CMOS-based transistors arranged

into logic gates. Using a gate-level circuit diagram, describe the design of such a component (clearly explaining

the purpose of each part).

git # b282dbb9 @ 2025-09-03 59

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

c Imagine successive elements of a 3-bit Gray code sequence are stored, one after another, in a register realised

using flip-flops of the type described above. The fact only one bit changes each time the register is updated

could be viewed as advantageous: explain why.

d Using a block diagram, draw a generic Finite State Machine (FSMs) framework, including for example 𝛿, 𝜔 and

any input and output; clearly explain the purpose of each component in the framework.

e Using the framework outlined above, design a concrete FSM which has

• two 1-bit inputs 𝑟𝑠𝑡 and 𝑐𝑙𝑘, and

• one 3-bit output 𝑟.

and whose behaviour is as follows: at each positive edge of the clock signal 𝑐𝑙𝑘, if 𝑟𝑠𝑡 = 0 then 𝑟 should be

updated with the next element of a 3-bit Gray code, otherwise 𝑟 should be reset to the first element.

Note that your answer should provide enough detail to fully specify each component in the framework (e.g.,

Boolean expressions for 𝛿).

� Q182. An electronic security system, designed to prevent unauthorised use of a door, is attached to a mains

electricity supply. The system has the following components:

• Three buttons, say 𝐵𝑖 for 0 ≤ 𝑖 < 3, whose value is initially 0; when pressed, a button remains pressed and the

value changes to 1.

• A door handle modelled by

𝐻 =

{
1 when the handle is turned

0 when the handle is unturned

• A lock mechanism modelled by

𝐿 =

{
1 when the door is locked

0 when the door is unlocked

If the door handle is turned after the order of button presses matches a 3-element password sequence 𝑃, the door

should be unlocked; if there is a mismatch, it should remain locked. The mechanism is reset (and all buttons

released) whenever the handle is turned (whether or not the door is unlocked). If 𝑃 = ⟨𝐵1 , 𝐵0 , 𝐵2⟩, then for

example

• 𝐵1 then 𝐵0 then 𝐵2 is pressed, then the handle is turned, the door is unlocked, i.e., 𝐿 is set to 0, and the mechanism

is reset,

• 𝐵0 then 𝐵1 then 𝐵2 is pressed, then the handle is turned, the door remains locked, i.e., 𝐿 is set to 1, and the

mechanism is reset,

• 𝐵1 then 𝐵0 is pressed, then the handle is turned, the door remains locked, i.e., 𝐿 is set to 1, and the mechanism

is reset.

a Using a block diagram, draw a generic Finite State Machine (FSMs) framework, including for example the

transision and output functions (i.e., 𝛿 and 𝜔) and any input and output; clearly explain the purpose of each

component in the framework.

b Imagine the password is fixed to 𝑃 = ⟨𝐵2 , 𝐵0 , 𝐵1⟩. Using the framework outlined above, design a concrete FSM

which can be used to control the security system as required.

Note that your answer should provide enough detail to fully specify each component in the framework (e.g.,

Boolean expressions for the transision function).

c After inspecting your design, someone claims they can avoid the need for a clock signal: explain how this is

possible.

d The same person suggests an alternative approach whereby 𝑃 is not fixed, but rather stored in an SRAM memory

device. Although this approach could be more useful, explain one reason it could be viewed as disadvantageous.

e Before being sold, each physical system needs to be tested to ensure it functions as advertised. Explain a suitable

testing strategy for your design, and any alterations required to facilitate it.

� Q183. Imagine you are John Connor in the film Terminator II: your aim is to design a device that guesses ATM

(or cash machine) Personal Identification Numbers (PINs) using brute-force search. The ATM uses 4-digit decimal

PINs, examples being 1234 and 9876. The device stores a current PIN denoted𝑃: it performs each guess in sequence

by first checking whether 𝑃 is correct, then incrementing 𝑃 ready for the next step. The process concludes when

𝑃 is deemed correct.

a Two potential representations for the PIN are suggested:

git # b282dbb9 @ 2025-09-03 60

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

L𝑖 : R𝑎𝑑𝑑𝑟 ← R𝑎𝑑𝑑𝑟 + 1 then goto L𝑖+1 ↦→
012345678

000 𝑎𝑑𝑑𝑟 0000

L𝑖 : R𝑎𝑑𝑑𝑟 ← R𝑎𝑑𝑑𝑟 − 1 then goto L𝑖+1 ↦→
012345678

001 𝑎𝑑𝑑𝑟 0000

L𝑖 : if R𝑎𝑑𝑑𝑟 = 0 then goto L𝑡𝑎𝑟𝑔𝑒𝑡 else goto L𝑖+1 ↦→
012345678

010 𝑎𝑑𝑑𝑟 𝑡𝑎𝑟𝑔𝑒𝑡

L𝑖 : halt ↦→
012345678

011 00 0000

Figure 24: The instruction set for an example 4-register counter machine.

a decimal representation in which the PIN is stored as a sequence of four unsigned integers, i.e.,𝑃 = ⟨𝑃0 , 𝑃1 , 𝑃2 , 𝑃3⟩,
with each 0 ≤ 𝑃𝑖 < 10, or

a binary representation in which the PIN is stored as a single unsigned integer, i.e., 𝑃, with 0 ≤ 𝑃 < 10000.

State one advantage of each option, and explain which you think is more appropriate.

b A combinatorial component within the device should take the current PIN 𝑃 as input, and produce two outputs:

• the guess sent to the ATM, i.e., 𝐺 = ⟨𝐺0 , 𝐺1 , 𝐺2 , 𝐺3⟩, where each 0 ≤ 𝐺𝑖 < 10 is the 𝑖-th decimal digit of the

current PIN, and

• the incremented PIN 𝑃′ ready for the next guess.

Produce a design for this component; include a block diagram and enough detail to fully specify how a gate-level

implementation could be performed.

c The device is controlled by a simple Finite State Machine (FSM) which can be described diagrammatically:

𝑆0start 𝑆1 𝑆2 𝑆3 𝑆4

𝑏 = 0

𝑏 = 1 𝜖 𝜖

𝑟 = 0

𝑟 = 1

𝜖

In a more explanatory form, the idea is as follows:

• The device starts in state 𝑆0, in which 𝑃 is initialised; once the start button 𝑏 is pressed, it moves into state 𝑆1.

• In state 𝑆1, 𝑃 is driven as input into combinatorial component and the device moves into state 𝑆2.

• In state 𝑆2, 𝐺 is sent to the ATM and 𝑃′ is latched to form the new value of 𝑃; the device moves into state 𝑆3.

• In state 𝑆3 the device checks the ATM response 𝑟. If 𝑟 = 1 then 𝐺 was the correct guess and the device moves

into state 𝑆4 where it halts (i.e., remains in 𝑆4); otherwise, the device moves into state 𝑆1 and the process

repeats.

Focusing on the diagram above only, produce a design for the FSM; include a block diagram, and enough detail

to fully specify how a gate-level implementation could be performed.

Part VIII: Computational machines: Register Machines (RMs)

� Q184. A given counter machine has 𝑟 = 4 registers, and supports an instruction set detailed in Figure 24.

Consider two configurations of this counter machine:

a the program, held in memory as machine code, is fixed to

MEM = ⟨ 0𝐴3(16) , 060(16) , 080(16) , 097(16) ,
050(16) , 020(16) , 083(16) , 0𝐶0(16) ⟩

git # b282dbb9 @ 2025-09-03 61

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

R
0

R
1

R
r−

1

Q

rs
t

D
en

Q

rs
t

D
en

Q

rs
t

D
en

Q

rs
t

D
en

R
′Q

rs
t

D
en

0
+

1
−

1
? =

0

rs
t

rs
t

ex
ec

ut
e∧
¬

ha
lt
∧
Φ

1

ex
ec

ut
e∧
¬

ha
lt
∧
Φ

2

ad
dr

al
u

ad
dr

cm
p

w
r

P
C

M
E

M
IR

Q

rs
t

D
en

Q

rs
t

D
en

ad
dr

da
ta

P
C
′

Q

rs
t

D
en

+
1

de
co

de
r

in
st

al
u

w
r

ad
dr

ta
rg

et
jm

p
ha

lt

rs
t

rs
t

fe
tc

h
∧
¬

ha
lt
∧
Φ

1
ex

ec
ut

e∧
¬

ha
lt
∧
Φ

1

rs
t

ex
ec

ut
e∧
¬

ha
lt
∧
Φ

2

jm
p
∧

cm
p

ta
rg

et

SQ

rs
t

D
en

S
′Q

rs
t

D
en

+
1

? =
0

? =
1

? =
2

fe
tc

h
de

co
de

ex
ec

ut
e

rs
t
Φ

2

rs
t
Φ

1

Figure 25: The high-level data- and control-path for an example 4-register counter machine.

git # b282dbb9 @ 2025-09-03 62

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

in
st

0

in
st

1

in
st

2

in
st

3

in
st

4

in
st

5

in
st

6

in
st

7

in
st

8

1
2

0
0

0
0

0
0

m
er

geinst8,...,6

al
u

1
1

0
0

1
0

0
0

m
er

geinst8,...,6

gj

w
r

gj

m
er

geinst5,...,4

gj

ad
dr

gj

m
er

geinst3,...,0

gj

ta
rg

et

gj
gj

jm
p

gj
gj

ha
lt

gj

Figure 26: The low-level decoder implementation for an example 4-register counter machine.

git # b282dbb9 @ 2025-09-03 63

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

and the initial configuration is

𝒞0 = (𝑙 = 0, 𝑣0 = 0, 𝑣1 = 2, 𝑣2 = 1, 𝑣3 = 0),

b the program, held in memory as machine code, is fixed to

MEM = ⟨ 0𝐵3(16) , 070(16) , 080(16) , 097(16) ,
030(16) , 050(16) , 083(16) , 0𝐴𝐵(16) ,
030(16) , 060(16) , 087(16) , 0𝐶0(16) ⟩

and the initial configuration is

𝒞0 = (𝑙 = 0, 𝑣0 = 0, 𝑣1 = 3, 𝑣2 = 2, 𝑣3 = 1).

For each configuration, a) produce a trace of execution, then b) decide which of the following options

A:Compare the values in R1 and R2, setting R3 to reflect the result

B:Add the values in R1 and R2, setting R3 to reflect the result

C: Swap the values in R1 and R2

D:Copy the value in R1 into R2, retaining the value in R1

E:Copy the value in R1 into R2, clearing the value in R1

is the best description of what the associated program does.

� Q185. Figure 24 describes the instruction set of an example 4-register counter machine. Consider some 𝑖-th
encoded, machine code instruction 0𝐴5(16) expressed in hexadecimal. Which of the following

A: halt computation

B: if register 2 equals 0 then goto instruction 5, else goto instruction 𝑖 + 1

C: if register 10 equals 0 then goto instruction 5, else goto instruction 𝑖 + 1

D: increment register 2, then goto instruction 𝑖 + 1

E: decrement register 10, then goto instruction 𝑖 + 1

best describes the instruction semantics?

� Q186. Figure 25 outlines, at a high level, a 4-register counter machine implementation; Figure 26 completes said

implementation, detailing internals of the decoder component. Note that the multiplexer inputs should be read

left-to-right, and use zero-based indexing. Using the left-most multiplexer in the decoder as an example, if the

3-bit control-signal derived from 𝑖𝑛𝑠𝑡 is 001(2) = 1(10) then the 1-st input is selected; this means the output is 2(10).
Which of the following

A: L𝑖 : if R3 = 0 then goto L9 else goto L𝑖+1

B: L𝑖 : if R3 + 1 = 0 then goto L9 else goto L𝑖+1

C: L𝑖 : R3 ← R3 + 1 then goto L𝑖+1

D: L𝑖 : R3 ← 0 then goto L𝑖+1

E:None of the above

describes the semantics of a machine code instruction 100111001(2) for this counter machine?

� Q187. Recall that instructions for a register machine will explicitly use a register file for source and destination

operands; in contrast, instructions for a stack machine will implicitly use a stack for source and destination

operands. Consider an instance of the latter, where a stack pointer sp and two algorithms push and pop are used

to control an in-memory stack. The associated ISA includes

ld 𝑥 ↦→ 𝑡0 ← MEM[𝑥] ; push(sp, 𝑡0)
st 𝑥 ↦→ 𝑡0 ← pop(sp) ; MEM[𝑥] ← 𝑡0
add ↦→ 𝑡0 ← pop(sp) ; 𝑡1 ← pop(sp) ; push(𝑡1 + 𝑡0)
sub ↦→ 𝑡0 ← pop(sp) ; 𝑡1 ← pop(sp) ; push(𝑡1 − 𝑡0)
mul ↦→ 𝑡0 ← pop(sp) ; 𝑡1 ← pop(sp) ; push(𝑡1 · 𝑡0)

noting the availability of load and store instructions which use a direct addressing mode. Which of the following

A:Compute 𝑟 = (𝑎 + 𝑏) · (𝑐 − 𝑑), and store 𝑟 in memory at address 4

git # b282dbb9 @ 2025-09-03 64

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

B:Compute 𝑟 = (𝑎 + 𝑏 − 𝑐) · 𝑑, and store 𝑟 in memory at address 4

C:Compute 𝑟 = (𝑏 + 𝑎) · (𝑑 − 𝑐), and store 𝑟 in memory at address 4

D: Set the values of 𝑎 and 𝑏 to zero

E: Swap the values of 𝑎 and 𝑏

best describes the purpose of

a this program

ld 0 ; ld 1 ; add ; ld 2 ; ld 3 ; sub ; mul ; st 4,

assuming that 𝑎, 𝑏, 𝑐, and 𝑑 are initially located in memory at addresses 0, 1, 2, and 3 respectively?

b this program

ld 0 ; ld 1 ; st 0 ; st 1,

assuming that 𝑎, 𝑏, 𝑐, and 𝑑 are initially located in memory at addresses 0, 1, 2, and 3 respectively?

Part IX: Hardware test and debug

� Q188. Sara Latch is employed as a digital logic design engineer. As part of this role, Sara designs an 8-bit

ripple-carry adder; said design is subsequently used within a larger project by her colleague Andy Gate. However,

the project, once it has been manufactured, is found to function incorrectly: representing the adder inputs (i.e., 𝑥
and 𝑦) and output (i.e., 𝑟) as unsigned, 8-bit hexadecimal integers, Andy observes that

𝑥 = 50(16) , 𝑦 = 56(16) ; 𝑟 = 86(16)

so asks Sara for help. Although a definitive conclusion remains difficult, which of the following descriptions of

the problem

A: The 0-th input bit 𝑥0 has been hard-wired to 1 by mistake

B: The 1-st output bit 𝑟1 has been hard-wired to 0 by mistake

C: Each AND gate in the 2-nd full-adder cell has been mistakenly replaced with an OR gate

D: Each OR gate in the 4-th full-adder cell has been mistakenly replaced with an AND gate

E: The carry-out of the 6-th full-adder cell is not connected to the carry-in of 7-th full-adder cell (meaning that

carry-in is always 0)

is consistent with the evidence available?

� Q189. Imagine a circuit can compute the sum or difference of two 𝑛-bit operands 𝑥 and 𝑦 based on a control

signal 𝑧, i.e.,

𝑟 =

{
𝑥 + 𝑦 if 𝑧 = 0

𝑥 − 𝑦 if 𝑧 = 1

You are asked to test whether it computes the correct result or not: assuming a large 𝑛, e.g., 𝑛 = 64, explain two
different ways to approach this challenge.

� Q190. Imagine you design then manufacture a ripple-carry adder circuit: given two unsigned, 8-bit integer

inputs 𝑥 and 𝑦, it will compute the unsigned, 8-bit sum 𝑟 = 𝑥 + 𝑦. You suspect two faults may have occurred

during the manufacturing process, namely

a a stuck-at fault, whereby 𝑟0 (the 0-th bit of 𝑟) always has the value 1, and

b an open connection fault, whereby the carry-out of the 1-st full-adder is not connected to the carry-in of the 2-nd

full-adder.

For each case, explain which values of 𝑥 and 𝑦 could be used to (dis)prove your suspicion within a diagnostic

testing strategy.

Part X: Processor design: general

� Q191. Imagine you have two micro-processors, denoted CPU0 and CPU1, which are designed by different vendors

but support the same ISA: you write an assembly language program 𝐴, then use an assembler 𝒜 to produce the

associated machine code program 𝑀 = 𝒜(𝐴).

git # b282dbb9 @ 2025-09-03 65

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

a Which of the following properties

A: The number of clock cycles elapsed

B: The amount of energy consumed

C: The number of instructions executed

D: The order that accesses to main memory are performed

E: The number of accesses to main memory performed

will remain the same between executions of 𝑀 on CPU0 and CPU1 (assuming the same input is provided in both

cases)?

b Which of the following properties

A: The amount of memory used to store data

B: The amount of memory used to store instructions

C: The average Cycles Per Instruction (CPI)

D: The content of memory before execution

E: The content of memory after execution

might differ between executions of 𝑀 on CPU0 and CPU1 (assuming the same input is provided in both cases)?

� Q192. Arrange these phases of instruction execution in the order they must be performed:

a Write-back.

b Fetch.

c Execute.

d Decode.

� Q193. Identify each task which is typically associated with the instruction decode phase:

a Load operands from register file.

b Load data from memory.

c Increment program counter.

d Perform sign extension.

� Q194. The description of a stored program memory architecture often implies it is superior to, or at least more

advanced than, a Harvard memory architecture. In reality both have advantages and disadvantages; discuss two
advantages that a Harvard memory architecture can provide.

Part XI: Processor design: Instruction Set Architecture (ISA)

� Q195. Which of the following options would you not expect (or at least it would be uncommon) to see in the

specification of an ISA:

A: The word size

B: The set of accessible general-purpose registers

C: The way a given instruction is expressed as machine code

D: The execution latency of a given instruction

E: The set of accessible special-purpose registers

� Q196. Which of the following statements best describes the semantics of a relative branch instruction?

A: The program counter is reset to zero, so is independent from the current program counter value

B: The branch target is at an offset from, and so is dependent on the current program counter value

C: The branch target is relatively far from the current program counter value

git # b282dbb9 @ 2025-09-03 66

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

D: The branch target is greater than the current program counter value

E: The program counter is only updated if a condition is true

� Q197. Consider the specification of an ISA, which includes a) a fixed-length, 32-bit instruction encoding, and b) a

byte addressable memory, with a 32-bit address space; instructions are required to be aligned in memory. Imagine

the ISA is implemented by some micro-architecture, in which the program counter is a register comprised of 𝑛
D-type latches: what is the minimum 𝑛 possible?

A: 0

B: 14

C: 16

D: 30

E: 32

� Q198. Which of the following options would you not expect (or at least it would be uncommon) to see in the

specification of an ISA:

A: The number of instructions supported by any micro-architecture which implements the ISA

B: The effect that execution of a division instruction has on any status register(s)

C: The type of (e.g., number of bits in) the operands used during execution of a division instruction

D: The conditions which would cause an error during execution of a division instruction

E: The energy consumed during execution of a division instruction

� Q199. Consider the specification of an ISA, which includes b) a fixed-length, 16-bit instruction encoding, and a)

a 16-element register file. What is the maximum number of 3-address arithmetic instructions the specification can

include?

A: 1

B: 3

C: 4

D: 16

E: 65536

� Q200. Figure 27 shows a subset of ARMv7A architectural state, i.e., the content of some general-purpose registers

and memory: the LHS (resp. RHS) shows the state before (resp. after) execution of some instruction. From the

list below, which instruction do you think was executed?

A: The load ldrh r0, [r1], #4

B: The branch b 100

C: The store str r0, [r1, #4]

D: The addition add r1, r1, r2

E: The move mov r2, r1

� Q201. Consider the 3 instruction formats used by MIPS32, as shown in Figure 28. Imagine the number of

general-purpose registers is halved: which of the following statements

A: There must be a greater number of R-type instructions

B: There must be a greater number of I-type instructions

C: There could be 9 times the number of R-type instructions

D:R-type instructions could be 2 bits smaller

git # b282dbb9 @ 2025-09-03 67

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝐵𝑒 𝑓 𝑜𝑟𝑒︷ ︸︸ ︷ 𝐴 𝑓 𝑡𝑒𝑟︷ ︸︸ ︷
GPR[0] = 00000000(16) 0000𝐵𝐴𝐴𝐷(16)
GPR[1] = 00000082(16) 00000086(16)
GPR[2] = 00000004(16) 00000004(16)

...
GPR[15] = 000000𝐹𝐶(16) 00000100(16)

...
MEM[126] = 𝐷𝐸(16) 𝐷𝐸(16)
MEM[127] = 𝐶0(16) 𝐶0(16)
MEM[128] = 𝐸𝐹(16) 𝐸𝐹(16)
MEM[129] = 𝐵𝐸(16) 𝐵𝐸(16)
MEM[130] = 𝐴𝐷(16) 𝐴𝐷(16)
MEM[131] = 𝐵𝐴(16) 𝐵𝐴(16)
MEM[132] = 𝐸𝐷(16) 𝐸𝐷(16)
MEM[133] = 𝐹𝐸(16) 𝐹𝐸(16)

...

Figure 27: A subset of ARMv7A architectural state before (left) and after (right) execution of some instruction.

05

1
0

1
1

1
5

2
0

2
1

2
5

2
6

3
1

opcode rs rt rd shamt funct
}

R-type

opcode rs rt imm
}

I-type

opcode imm
}

J-type

Figure 28: A diagramatic description of the 3 instruction formats used by MIPS32.

E: I-type instructions could have an immediate field which is 2 bits larger

is most likely to then be true?

� Q202. Imagine that an ISA includes an instruction whose semantics are

GPR[𝑥] ← MEM[MEM[GPR[𝑦]] + GPR[𝑧]].

Based on this instruction alone, which of the following

A:CISC

B:RISC

C:Neither CISC nor RISC

D: Both CISC and RISC

best classifies the ISA?

� Q203. Consider two instructions, drawn from different ISAs:

1. R0 ← R0 + 13(10)
2. R0 ← R1 + 13(10)

Assuming each instruction is representative of the associated ISA, which of the following options

1. 2.

A stack machine register machine

B register machine accumulator machine

C accumulator machine register machine

D accumulator machine accumulator machine

E register machine stack machine

git # b282dbb9 @ 2025-09-03 68

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

provides the most precise classification of both the ISAs and the machines which implement them?

� Q204. MIPS32 is an ISA which fixes GPR[0] = 0 (i.e., the register always yields 0 when read, with any write

ignored) and includes instructions for

add : GPR[𝑥] ← GPR[𝑦] + GPR[𝑧]
sub : GPR[𝑥] ← GPR[𝑦] − GPR[𝑧]
addi : GPR[𝑥] ← GPR[𝑦] + 𝑖𝑚𝑚

but not
subi : GPR[𝑥] ← GPR[𝑦] − 𝑖𝑚𝑚

Given this information, which of the following explanations

A:One can realise the semantics of subi by using addi

B:One can realise the semantics of subi by using addi and add

C: There is never a need to subtract an immediate value from a register

D: There were no unused opcodes to allocate to subi

E: The immediate value 𝑖𝑚𝑚 is too large to use during subtraction, and may cause overflow

for omitting subi seems the most plausible?

� Q205. While executing an ARMv7-A program, imagine you find that PC = 𝑥 before fetch-decode-execute cycle

𝑖 (i.e., the instruction executed in execution cycle 𝑖 is fetched from address 𝑥). In certain cases, the instruction

located at address 𝑥 makes it possible that PC = 𝑥 after fetch-decode-execute cycle 𝑖 (i.e., the instruction executed

in execution cycle 𝑖 + 1 is also fetched from address 𝑥). Which of the following options

A: add r15, r15, r2

B: j r3

C: mv pc, r7

D:All of the above

E:None of the above

describes such a case?

� Q206. Consider a micro-processor, connected to a byte-addressable memory whose capacity is 64KiB. The

processor supports a CISC-style ISA, which uses a fixed-length instruction encoding; it specifies 16 general-

purpose registers, and a word size of 64 bits.

Instructions in the ISA allow a style of access to operands making it a memory-memory architecture. In each

3-address instruction, of which there are 120, each operand exists in memory and is specified by an (independent)

indexed addressing mode involving an immediate-based base plus a register-based offset; using an addition

instruction for example, the ARM-like syntax

add [ri, #i], [rj, #j], [rk, #k]

maps to the following semantics

MEM[i + GPR[ri]] ← MEM[j + GPR[rj]] +MEM[k + GPR[rk]].

A base address in such an instruction must be able to specify any address in memory. Given the information

available, what is the minimum instruction length for this ISA?

A: 16 bits

B: 35 bits

C: 64 bits

D: 67 bits

E: 120 bits

� Q207. In a seminal essay on the relationship between compilers and computer architecture, Wulf makes two

statements:

git # b282dbb9 @ 2025-09-03 69

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

a “[a]s a compiler writer, I must applaud the trend in many recent machines to allow each instruction operand to be specified
by any of the addressing modes”

b “provide primitives, not solutions”
Which of the following ISA design philosophies

A:RISC

B:CISC

C: Both of the above

D:None of the above

is best aligned with each statement?

� Q208. MIPS32 is an ISA which uses fixed-length, 32-bit instruction formats. The ISA includes a set of relative,

conditional branch instructions such as

beq rs, rt, imm ↦→ if GPR[rs] = GPR[rt] then PC← PC + ext
32

± (imm ≪ 2),

each of which involves a 16-bit, signed immediate 𝑖𝑚𝑚 represented using two’s-complement; note that ext
32

± (𝑥) is
used to denote sign-extension of 𝑥 to 32-bits. Which of the following options

A:±16KiB

B:±18KiB

C:±32KiB

D:±34KiB

E:±128KiB

is the most reasonable description of the branch range (if we measure it in bytes)?

� Q209. Imagine the ARMv7A instruction

ldrh r0, [r1], r2

is executed by a compliant micro-processor. Considering the entire fetch-decode-execute cycle associated with said

instruction, how many bytes does the ISA suggest are transferred between the micro-processor and memory?

A: 1

B: 2

C: 4

D: 6

E: 8

� Q210. Imagine you use a micro-processor to write, compile, then execute a C program; the micro-processor has

a byte-addressable memory. The program defines a pointer

uint32_t* p;

and, while debugging a problem, you find out that

sizeof(p) = 8.

How many addressable bytes of memory are there, i.e., how large is the associated address space?

A: 2
64

B: 2
32

C: 2
16

D: 2
8

E:None of the above

git # b282dbb9 @ 2025-09-03 70

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q211. Consider a hypothetical ISA, which includes a single instruction and no registers: the assembly language

short-hand (left) and formal semantics (right) of this instruction, i.e.,

sbn x, y, z ↦→ MEM[x] ← MEM[x] −MEM[y] ; if MEM[x] < 0 then PC← 𝑧,

could be summarised informally as “subtract, then branch if negative”. Note that the instruction uses 3 immediate

operands, namely x, y, and z, each of which is used as an address. Imagine that two programs are written using

this ISA, then executed on an associated micro-architecture. The programs are described as follows

a The memory content is

𝑖 MEM[𝑖]
0 sbn 100, 100, 0
1 sbn 100, 101, 2
2 sbn 102, 100, 3

3

...

with execution starting with PC = 0 and terminating once PC = 3.

b The memory content is

𝑖 MEM[𝑖]
0 sbn 100, 100, 0
1 sbn 100, 101, 2
2 sbn 102, 102, 0
3 sbn 102, 100, 4

4

...

with execution starting with PC = 0 and terminating once PC = 4.

where MEM is being (partially) described using a table where the left-hand column is an address (i.e., 𝑖) and the

right-hand column is the associated content (i.e., MEM[𝑖]), and, purely for convenience, we list the instructions

rather than encodings of them. For each program, which of the following

A: It adds MEM[101] to MEM[102], storing the result in MEM[102]
B: It subtracts MEM[101] from MEM[102], storing the result in MEM[102]
C: It copies MEM[101] into MEM[102]
D: It clears MEM[102], i.e., sets MEM[102] = 0

E:None of the above, e.g., it will never terminate

best describes the purpose?

� Q212. Imagine a hypothetical “ARMv7-A style” memory access instruction

mxs r0, r1, r2

is executed. Which of the following options

A:Direct store

B: Indexed, 8-bit load

C: Indexed, 16-bit load

D:Auto-indexed, 8-bit load

E:Auto-indexed, 16-bit load

is the most reasonable description of the instruction semantics

a based on Figure 29,

b based on Figure 30,

where both Figures offer a (partial) description of the general-purpose register file and byte-addressable memory

accessed. The left-hand description reflects before execution of the instruction, whereas the right-hand description

reflects after execution of the instruction; within each description, the left-hand column lists an address (i.e., 𝑖)
whereas the right-hand column lists the associated content (i.e., GPR[𝑖] or MEM[𝑖]).

git # b282dbb9 @ 2025-09-03 71

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

Before execution After execution

𝑖 GPR[𝑖]
0 2

1 3

2 1

3 0

...
...

𝑖 GPR[𝑖]
0 39

1 3

2 3

3 0

...
...

mxs r0, r1, r2−−−−−−−−−−−−−−−−→
𝑖 MEM[𝑖]
0 5

1 3

2 0

3 1

4 7

5 2

6 6

7 4

...
...

𝑖 MEM[𝑖]
0 5

1 3

2 0

3 1

4 7

5 2

6 6

7 4

...
...

Figure 29: The general-purpose register file and byte-addressable memory state, before (left) and after (right) execution of a
hypothetical memory access instruction.

Before execution After execution

𝑖 GPR[𝑖]
0 2

1 4

2 0

3 0

...
...

𝑖 GPR[𝑖]
0 7

1 4

2 0

3 0

...
...

mxs r0, r1, r2−−−−−−−−−−−−−−−−→
𝑖 MEM[𝑖]
0 5

1 3

2 0

3 1

4 7

5 2

6 6

7 4

...
...

𝑖 MEM[𝑖]
0 5

1 3

2 0

3 1

4 7

5 2

6 6

7 4

...
...

Figure 30: The general-purpose register file and byte-addressable memory state, before (left) and after (right) execution of a
hypothetical memory access instruction.

git # b282dbb9 @ 2025-09-03 72

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q213. ARMv7-A allows any instruction to be conditionally executed, using the concept of predicated execution.

Consider a hypothetical alternative ARMv7-X, which is identical to ARMv7-A except it does not support predicated

execution. Which of the following instructions

A: add r0, r1, r2

B: nop

C: ldr r0, [r1]

D: mov r0, r1

E: cmp r0, r1

could be viewed as having the same semantics in both ARMv7-A and ARMv7-X?

� Q214. Classify each of the following statements as either true or false, then explain why using at most a few

sentences.

a In a load-store architecture, execution of a single instruction can both load a value from memory and store a

value into memory.

b Within the context of ARMv7-A, mov r0, #0 is the only single instruction able to set the 0-th general-purpose

register to zero.

c Within a micro-processor design, the program counter must be addressable as a general-purpose register.

d Once defined, it is more difficult to alter an ISA than it is to alter the design of an associated micro-architecture.

e Consider a micro-processor based on a von Neumann (or stored-program) architecture; the number of instruc-

tions it executes per unit of time is limited by the access latency of memory.

f Doubling the word size of an ISA (e.g., from 32 to 64 bits), will half the execution latency of any program

executed on the associated micro-architecture.

� Q215. Comparing a fixed-length instruction encoding scheme to a variable-length alternative, identify the state-

ment which is incorrect:
a A variable-length scheme can more easily cope with instructions with many operands a fixed-length scheme.

b A fixed-length scheme means instructions are easier to decode than a variable-length scheme.

c A fixed-length scheme allows larger immediate operands than a variable-length scheme.

d A variable-length scheme places fewer restrictions on the program counter than a fixed-length scheme.

� Q216. Describe the following addressing modes, giving examples of their use in a C program:

a Immediate.

b Direct.

c Indirect.

d Indexed.

� Q217. a A change in the design of a particular processor means it will support the concept of predicated

execution. Explain what this means and translate the following C fragment into an assembly language style

program for the processor:

int t = 0;

for(int i = 0; i < n; i++) {
if((x >> i) & 1) {
t = t + 1;

}
}

Use predicated execution or branch instructions where appropriate, and take care to justify your choice in each

case.

b It is suggested that the code density of programs executed by the processor is too low. Explain what is meant

by code density and outline two approaches to improving this situation.

git # b282dbb9 @ 2025-09-03 73

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q218. You have been asked to define the instruction set of a new processor. The processor contains a Program

Counter (PC), four general-purpose registers (A, B, C and D), uses 8-bit instructions and has a 256-byte memory

that is addressed indirectly via the registers. The instructions set includes the following instructions:

Name Operands Meaning

LDA 𝑥 Loads constant 𝑥, with 0 ≤ 𝑥 ≤ 127, into

register A.

MOV 𝑅, 𝑆 Moves register 𝑆 into register 𝑅.

NOT 𝑅 Performs a bit-wise complement of register 𝑅.

NOP Performs no operation.

NEG 𝑅 Performs two’s-complement negation of register 𝑅.

BEZ 𝑅, 𝑥 Branches by incrementing the program counter by an

offset 𝑥, with −8 ≤ 𝑥 ≤ 7, if register 𝑅
is equal to 0.

As such, one might write the example program

LDA 10
MOV B, A
NEG B
BEZ B, 4

to load the constant 10 into register A, then move this value into register B and finally negate it before jumping

forward by four instructions if register B turns out to be zero.

a Design an encoding for the instructions given above.

b What is the maximum number of instructions with

i 2 register operands,

ii 1 register operand,

iii 0 register operands

that you can add to the instruction set based on your encoding?

c Write down a more complete instruction set, adding those you view as currently missing and giving reasons

why you want to add them.

d Finally, write down the instruction encoding for this complete instruction set.

� Q219. There are 32 pieces on a chess board represented by an (8 × 8)-element grid; a black and a white version

of 1 king, 1 queen, 2 bishops, 2 knights, 2 rooks and 8 pawns exist.

You are involved in the design of a robot that automates the game of chess only in terms of moving the physical

pieces around. The robot needs to be fed a list of moves so that it knows how to move a piece on one board position

to another position; it does not care about the legality of moves. However, it is intelligent enough to know whose

turn it is (i.e., black or white), how to find a piece on the board given its unique name (e.g., pawn #1) and can cope

with capturing pieces if a move places a piece on an already occupied square. It cannot play any version of chess

with the advanced rules of promotion, castling, resignation or en passant: it simply moves and captures pieces. It

can deal with the fact that pawns can move two spaces forward from their starting position but otherwise has no

memory.

Design a compact encoding of instructions that can be fed to the robot to provoke the movement of any piece

on the board. State any assumptions you make in your design and the advantages and disadvantages of the result.

� Q220. Imagine you are asked to design a RISC style instruction set architecture for a new 32-bit processor which

is modelled roughly on the MIPS32 design. The processor has a 32-entry general-purpose register file, and the

instruction set is to include:

• Arithmetic, logic and comparison instructions that use a mix of general-purpose register and immediate

operands.

• Memory access instructions that use an single indexed addressing mode whereby a base address is specified by

a general-purpose register operand and an offset is specified by an immediate operand.

• Branch and jump instructions that include both conditional and unconditional variants and use mix of general-

purpose register and immediate operands to specify the absolute and offset target address.

a One engineer wants to use a fixed length instruction encoding while another suggests that a variable length

encoding would be better.

git # b282dbb9 @ 2025-09-03 74

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

i Explain the advantages and disadvantages of each approach.

ii Select one approach and using your selection, design basic instruction encoding formats for the instruction

types listed above.

b The “add immediate” instruction adds the contents of a general-purpose register to a 16-bit immediate and

stores the result back into a general-purpose register. For example, the instruction

GPR[1] ← GPR[2] + 3

takes the contents of general-purpose register 2, adds the immediate value 3 to it and stores the result into

general-purpose register 1. Using just the instruction encoding formats from above, show how

i GPR[4] ← GPR[8] + 10

ii GPR[4] ← GPR[8] − 10

are encoded into 32-bit “add immediate” instructions; state any assumptions you make.

c A major customer for the processor has identified the following C function as crucial to the performance of their

applications:

int H(uint32_t x) {
int t = 0;

for(int i = 0; i < 32; i++) {
if((x >> i) & 1)
t = t + 1;

}

return t;
}

Explain what this function does and how you might alter the processor design (including any changes to the

ALU) to satisfy the requirements of this customer.

d There is some debate about which endian convention the processor should use. Assuming the memory is byte

addressed, consider the execution of an instruction that stores a 32-bit decimal integer 305419896(10) at address

0. List the content of the addresses updated by the store instruction if the processor uses

i a little-endian byte ordering, or

ii a big-endian byte ordering.

e The team responsible for writing a compiler for the new processor is concerned about the number of general-

purpose registers. Explain the positive and negative implications for the instruction set if the number of

general-purpose registers is

i increased from 32 to 64, or

ii decreased from 32 to 16.

In each case, describe how this might alter performance of programs that execute on the processor.

� Q221. a It can be difficult to definitively categorise a given processor design as either RISC or CISC. Even so,

explain four distinct features which most RISC processor exhibit.

b Some processors make use of a status register; this often includes a set of 1-bit flags that signal when specific

conditions or events occur. An example is the carry flag, which is set (resp. cleared) when a carry occurs (resp.

does not occur) during execution of integer addition instructions.

i In some processors the status register is accessed explicitly (e.g., “copy status register into general-purpose

register”), in others it is accessed implicitly (e.g., “add with carry”). Outline one distinct advantage of each
approach.

ii Name two other flags that a status register may include, and the rationale for their inclusion.

c Imagine a given 32-bit processor does not have a carry flag.

i Outline an alternative mechanism by which the processor could support access to the carry resulting from

integer addition.

ii Imagine two 32-bit values 𝑥 and 𝑦 are held in GPR[1] and GPR[2], and a 1-bit carry-in 𝑐𝑖 is held in GPR[3].
Using standard arithmetic, logic and comparison instructions only, describe how an integer add with carry

operation can be achieved without processor support for carries. Specifically, write a sequence of instructions

that computes the 33-bit result 𝑥 + 𝑦 + 𝑐𝑖, storing the 32-bit sum 𝑠 in GPR[4] and 1-bit carry-out 𝑐𝑜 in GPR[5].

git # b282dbb9 @ 2025-09-03 75

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� Q222. Consider an 8-bit RISC-like processor that uses fixed-length 8-bit instructions. It has two 8-bit general-

purpose registers called 𝐴 and 𝐵, and a program counter called 𝑃𝐶.

a In reference to the processor, briefly explain what these terms mean:

i general-purpose and special-purpose register,

ii absolute and relative branch.

b The processor has two types of load instruction, namely

𝐴← MEM[𝐵]

and

𝐴← MEM[𝑖] ,
where 𝑖 is an immediate operand and MEM represents memory.

i For each load instruction above, outline the largest effective address possible (i.e., the largest element in MEM
that can be accessed).

ii Explain two approaches (e.g., describe any additional features) which could allow the processor to address a

larger memory. For each approach again outline the largest effective address possible, and also any advantages

and disadvantages.

c Consider the following C function

short strlen(char* S) {
short i = 0;

while(S[i] != '\0') {
i = i + 1;

}

return i;
}

where char and short are signed 8-bit and 16-bit integer data-types. Explain one problem you might face when

implementing this function on the processor, and features the processor could provide to allow a solution.

� Q223. This question relates to a C function (left-hand side) and an associated, assembly language style imple-

mentation (right-hand side) for an imaginary 32-bit RISC processor:

void H(uint32_t* A, int n) {
int t = 0;

for(int i = 0; i < n; i++) {
for(int j = 0; j < 32; j++) {
if((A[i] >> j) & 1) {
t = t + 1;

}
}

}

return t;
}

. . .
GPR[2] ← 0

GPR[3] ← 0

𝑙𝑜𝑜𝑝𝑖 : if GPR[3] ≥ GPR[2], 𝑃𝐶 ← 𝑒𝑥𝑖𝑡𝑖
GPR[4] ← 0

𝑙𝑜𝑜𝑝 𝑗 : if GPR[4] ≥ 32, 𝑃𝐶 ← 𝑒𝑥𝑖𝑡 𝑗
GPR[5] ← MEM[&A + GPR[3]]
GPR[5] ← GPR[5] ≫ GPR[4]
GPR[5] ← GPR[5] ∧ 1

if GPR[5] = 0, 𝑃𝐶 ← 𝑠𝑘𝑖𝑝
GPR[2] ← GPR[2] + 1

𝑠𝑘𝑖𝑝 : GPR[4] ← GPR[4] + 1

𝑃𝐶 ← 𝑙𝑜𝑜𝑝 𝑗
𝑒𝑥𝑖𝑡 𝑗 : GPR[3] ← GPR[3] + 1

𝑃𝐶 ← 𝑙𝑜𝑜𝑝𝑖
𝑒𝑥𝑖𝑡𝑖 : . . .

The function computes the Hamming weight of all unsigned 32-bit integers in an n-element array called A; the

assembly language implementation allocates registers GPR[1], GPR[2], GPR[3] and GPR[4] to hold n, t, i, and j.

a Explain the difference between logical and arithmetic right-shift operations, and state which is required for this

function.

b The programmer estimates that executing the compiled function on a given processor means

• 50% of instructions perform arithmetic via the ALU, and take an average of 1 cycle,

• 10% of instructions perform memory accesses and take an average of 4 cycles,

git # b282dbb9 @ 2025-09-03 76

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

• 40% of instructions perform branches and take an average of 2 cycles.

Calculate the average Cycles Per Instruction (CPI) of the processor based on use of this function as a benchmark

kernel.

c Using motivating examples from the function, suggest three addressing modes that would be useful; in each

case, explain how the addressing mode works.

d The programmer and processor designers are interested in removing the explicit branch

if GPR[5] = 0, 𝑃𝐶 ← 𝑠𝑘𝑖𝑝

in some way that does not alter the result computed. Describe one hardware-oriented approach (where you can

alter the processor instruction set and/or micro-architecture) or one software-oriented approach (where you

cannot) by which this can be achieved.

e The programmer and processor designers are interested in further ways of reducing the execution time of this

function (i.e., in addition to the above). Describe one hardware-oriented approach (where you can alter the

processor instruction set and/or micro-architecture) and one software-oriented approach (where you cannot)

by which this can be achieved.

Part XII: Processor design: basic micro-architecture

� Q224. Identify the statement which is incorrect:
a A register file with many read ports implies higher implementation cost.

b A register file with many read ports implies fewer sequential read operations.

c More general-purpose registers implies greater register pressure.

d More general-purpose registers implies larger register addresses.

� Q225. Consider a new 16-bit processor, whose specifications include:

• 16 general-purpose registers.

• 8 ALU instructions that take two input register operands and write a result into a third output register operand.

• 2 memory access instructions that take two input register operands and one output register operand. 2 memory

access instructions that take one input register operand, one output register operand and a 4-bit immediate

offset.

• 4 branch instructions that take an input register operand and an 8-bit immediate offset.

Imagine you are on the design team for a this processor:

a Devise an instruction encoding for the processor, taking care to explain any advantages and disadvantages of

your design.

b Draw a block diagram of the basic components within this processor, explain the function of each one and how

they are connected together.

c Consider an instruction that adds together integers read from two registers and writes the result into a third

register; using such an instruction as an example, describe the steps involved during the following phases of

execution:

i Fetch.

ii Decode.

iii Execute.

d The control unit that operates the data-path can be implemented using hardwired logic or a micro-code based

system. Explain the idea of both of these methods, including the advantages and disadvantages of each.

� Q226. The ARM7TDMI is aimed mainly at mobile and embedded processor markets; there are numerous

interesting features in the design which have helped make it a success.

a Most ARM arithmetic instructions takes four operands: three register addresses 𝑥, 𝑦 and 𝑧 and an immediate 𝑖.
The semantics for addition, for example, are thus roughly

GPR[𝑥] ← GPR[𝑦] + (GPR[𝑧] · 2𝑖).

Using a C program as an example, demonstrate when this form of instruction might be useful.

git # b282dbb9 @ 2025-09-03 77

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

b Assuming a byte-addressed memory, one form of ARM load instruction has roughly the following semantics

GPR[𝑥] ← MEM[GPR[𝑦]]
GPR[𝑦] ← GPR[𝑦] + 1

given register addresses 𝑥 and 𝑦. Explain what this addressing mode is called and, using a C program as an

example, demonstrate when it might be useful.

c As standard, an ARM7TDMI has no instruction or data cache. Outline two reasons the designers may have

made this choice.

d Rather than being defined as a special-purpose register, the program counter is accessible as𝐺𝑃𝑅[∗][15]. Outline

two reasons the designers may have made this choice.

Part XIII: Processor design: advanced micro-architecture

� Q227. Consider a processor which implements the ARMv7-A ISA, using a 5-stage pipelined micro-architecture:

the stages reflect a “classic” RISC-like approach, in that they are 1) fetch, which fetches instructions from memory

using the program counter, 2) decode, which decodes instructions and reads operands from the register file, 3)

execute, which and executes ALU-based instructions and resolves branch conditions, 4) memory access, which

performs access to, i.e., loads from and stores to, memory, and 5) write-back, which writes results into the register

file.

As a short-hand, let F, D, E, M, and W denote those pipeline stages, and F/D, D/E, E/M, and M/W denote the

pipeline registers placed between them. If the following sequence of instructions

mov a1, a2
ldr r0, [r1]
add r2, r3, r4
sub r5, a1, r2

is executed by this processor, where will the operands used by the sub instruction come from when it reaches the

execute stage?

A:D and D

B:D/E and D/E

C:D/E and E/M

D:M/W and E/M

E:W and W

� Q228. Consider the following diagram of a computer system

CPU MEM DMA

which involves a processor, some memory, and a Direct Memory Access (DMA) controller, all connected by a

memory bus; the processor implements the ARMv7-A ISA, and uses a pipelined micro-architecture. The DMA

controller can be used to, e.g., accelerate transfer of data from one region of memory to another: rather than the

processor performing the transfer by executing instructions, the DMA controller, which can operate independently

and so concurrently, does so instead.

If the DMA controller needs to use or is using the memory bus at the same time as the processor needs to, the

processor is forced to wait. Even though the processor is continually executing instructions, the DMA controller

will often find the memory bus unused: of the following, which is the most plausible explanation for this?

A: Some instructions may not perform access to data, e.g., are not ldr or str instructions

B: The region of memory accessed by the DMA controller may be protected

git # b282dbb9 @ 2025-09-03 78

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

C:An interrupt may have occurred

D: Some instructions and/or data may reside in an L1 cache rather than memory

E: The processor may be executing a nop instruction

� Q229. a It has been suggested that in designing a new processor, a pipelined approach should be used instead

of a non-pipelined alternative. Explain how and why a pipelined design could improve performance; draw a

data-path block diagram to describe which components fit into which pipeline stages and why.

b In the context of pipelined processor design, explain the meaning of the following terms and give examples of

each:

i Structural dependency.

ii Control dependency.

iii Data dependency.

c A pipelined processor might stall when such dependencies are encountered; the performance is decreased as a

result. Explain how the three types of dependency listed above can be avoided so that stalls are minimised.

d In a pipelined processor design, branches can cause control dependencies that stall the processor until resolved.

There are several options for dealing with this problem; select two of the three options below and describe how

they work:

i Branch delay slot.

ii Predicated execution.

iii Branch prediction.

For each option, your answer should explain how the scheme works, how it reduces the performance impact,

and the trade-off between complexity and performance for the programmer and/or in the hardware.

� Q230. Consider the following C fragment which adds together two 𝑛-element vectors 𝐵 and 𝐶 to produce a result

𝐴 where each element is a 32-bit integer:

for(int i = 0; i < n; i++) {
A[i] = B[i] + C[i];

}

The fragment can be parallelised since each iteration of the loop is independent. Explain how this could be

exploited using

a A vector processor.

b A VLIW processor.

� Q231. a Using a diagram and an example program if appropriate, describe the motivation for and design of (i.e.,

components in) a vector processor.

b Describe two reasons why use of a vector processor may improve performance (for suitably written programs)

versus a scalar processor.

c The algorithm below describes the core loop of RC6, which operates in-place on a state, and uses an array of

pre-computed round keys; each element of the state (i.e., 𝐴, 𝐵, 𝐶 and𝐷) and round key (i.e., each 𝐾[𝑖]) are 32-bit

unsigned integers. The loop includes an operation 𝑥≪ 𝑦 which denotes left-rotation of 𝑥 by a distance 𝑦 (with

the constraint 0 ≤ 𝑦 < 32, i.e., just 𝑦4...0 is used as the distance).

Input: The state (𝐴, 𝐵, 𝐶, 𝐷)which is updated in-place, and 𝐾, an array of round keys

1 for 𝑖 = 0 upto 44 step +2 do
2 𝑡0 ← (𝐵 · ((2 · 𝐵) + 1))≪ 5

3 𝑡1 ← (𝐷 · ((2 · 𝐷) + 1))≪ 5

4 𝐴← ((𝐴 ⊕ 𝑡0)≪ 𝑡1) + 𝐾[𝑖 + 0]
5 𝐶 ← ((𝐶 ⊕ 𝑡1)≪ 𝑡0) + 𝐾[𝑖 + 1]
6 𝑡2 ← 𝐴
7 𝐴← 𝐵
8 𝐵← 𝐶
9 𝐶 ← 𝐷

10 𝐷 ← 𝑡2
11 end

git # b282dbb9 @ 2025-09-03 79

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

i The Intel Pentium 4 processor allows vector processing via the MMX and SSE extensions; it packs four 32-bit

sub-words into each 128-bit register. Stating any assumptions (for example about the instruction set) and

using either a diagram or pseudo-code, write a vectorised implementation of the straight-line RC6 loop body.

ii Stating any assumptions, estimate the performance improvement as a result of vectorisation. Comment on

any reason(s) your result is lower than the theoretical limit, and any changes you might make to the processor

design or instruction set to solve this problem.

� Q232. a In a superscalar processor, performance is reliant on the front-end supplying enough instructions to

keep computational resources in the back-end busy. Explain how and when speculative execution helps to solve

this problem.

b Speculative execution is often based on prediction of branch behaviour (i.e., if a branch is taken and what the

target address is). One might consider either

i static branch prediction, or

ii dynamic branch prediction.

For each case, describe a mechanism to predict branch behaviour; take care to describe the structures within the

processor, how they are used and any advantages or disadvantages of the mechanism.

c Imagine that a given processor demands function calls are implemented using dedicated “call” and “return”

instructions instead of generic branches.

i Using an example and stating any reasonable assumptions, show how such instructions would be used to

implement a function call.

ii Outline a mechanism that could provide more accurate branch target prediction for these instructions than in

those from the previous question.

Part XIV: The memory hierarchy

� Q233. Consider a processor which uses an L1 data cache to accelerate accesses to memory. A write policy controls

operation of the cache whenever the processor tries to write to memory (i.e., executes a store instruction). Which

of the following write policies would you expect to generate the most transactions across the bus connecting the

processor and memory?

A:Write-through plus write-allocate

B:Write-back plus write-allocate

C:Write-through plus write-around

D:Write-back plus write-around

� Q234. Consider a 32-bit processor, connected to a byte-addressable RAM. The processor makes use of an 8-way

set-associative L1 cache to accelerate accesses to the RAM; the cache has a total capacity of 128KiB,which is divided

into 64B cache lines. Calculate the number of bits in the word, set, and tag fields derived by the cache from a given

address.

Word Set Tag

A 8 8 16

B 24 8 0

C 64 8 32

D 6 8 18

E 2 2 28

� Q235. Draw a diagram of a typical memory hierarchy explaining the types of device one would expect to find

in each level, their key characteristics and the principles that allow the memory hierarchy to improve system

performance.

� Q236. A given processor accesses memory using 32-bit addresses. Suppose there is a cache between the processor

and a byte-addressable main memory; the cache has a total size of 512B split into lines, each of which holds 8B.

For each of the following architectures specify how the 32-bit address would be used by the address translation

mechanism in the cache:

git # b282dbb9 @ 2025-09-03 80

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

a A direct-mapped cache.

b A 2-way set-associative cache.

c A 4-way set-associative cache.

d A fully-associative cache.

For example, in the direct-mapped case you would need to specify which bits of the address are used for the tag,

the line number and the word address.

� Q237. Cache-misses can be classified as either compulsory misses, capacity misses or conflict misses. For each
class of cache-miss, explain why it might occur and how changes in the cache architecture can reduce how often

it occurs.

� Q238. A given 32-bit processor has a unified level-one (or L1) cache. The cache has a total size of 1kB, holds 4

bytes per-line and is direct-mapped. A programmer writes, compiles and executes the following program on the

processor:

char A[1024], B[1024], C[1024];

int main(int argc, char* argv[]) {
for(int i = 0; i < 1024; i++) {
A[i] = B[i] + C[i];

}
}

a Calculate the number of bits of an address required for each of the following quantities required to locate items

in the cache:

i word address,

ii line address,

iii tag

and show how they are mapped onto the address.

b Explain the following terms in relation to the cache hardware using the above program as an example:

i spatial locality,

ii temporal locality,

iii cache interference or contention.

c Describe the sequence of cache-hits and cache-misses caused by accesses to A[i], B[i] and C[i] as the

loop progresses.

d The definition of arrays A, B and C are changed to read:

char A[1028], B[1028], C[1028];

i Explain how this changes the sequence of cache-hits and cache-misses described above and why it improves

on the original program.

ii Outline a different cache architecture that could increase the performance of the original program without

changing.

� Q239. a Using one or more C programs to illustrate your answers, explain the concepts of

i temporal locality, and

ii spatial locality.

b A given direct-mapped cache holds a total of 𝑐 = 𝑙 ·𝑤 bytes in 𝑙 lines, each containing 𝑤 1-byte words. Let 𝑙 and

𝑤 be powers-of-two, i.e., 𝑙 = 2
𝑙′

and 𝑤 = 2
𝑤′

for some 𝑙′ and 𝑤′.

i For the given 8-bit effective address 𝑥, compute the word number, line number and tag where

i. 𝑙′ = 3 and 𝑤′ = 3, with 𝑥 = 42, and

ii. 𝑙′ = 2 and 𝑤′ = 4, with 𝑥 = 81.

ii For a fixed 𝑐 one can select a

git # b282dbb9 @ 2025-09-03 81

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

i. larger 𝑙, implying a smaller 𝑤, or

ii. larger 𝑤, implying a smaller 𝑙.

For each option, explain one potential advantage versus the alternative; carefully include any assumptions.

c i Explain what is meant by a segregated (or split-use) cache architecture, and one reason such an architecture

might be used.

ii In a stored-program or von Neumann architecture, both data and instructions are held in memory. Self-

modifying programs rely on this feature: instructions are written into memory during execution, then subse-

quently executed.

Explain, in detail, one issue presented by use of a segregated cache architecture in this context and how it

might be resolved.

� Q240. The following text represents an extract from the data sheet for an ARM740T, a 32-bit processor designed

by ARM, downloaded from www.arm.com:

The ARM740T can incorporate either an 8KB or 4KB general-purpose cache. Both variants are functionally
equivalent. The cache:

• is 4-way set associative,
• is write through,
• has four words and a a valid flag per line,
• uses a random replacement algorithm.

a With reference to the description, explain

i the motivation for including a cache in the processor design, and

ii what is meant by a general-purpose cache (versus some form of special-purpose alternative).

b i Effectiveness of the cache depends on

i. spatial locality, and

ii. temporal locality

in address streams produced by programs during execution. Explain both concepts, using short C programs

to illustrate your answers.

ii Explain potential advantages and disadvantages of selecting the ARM740T model with an 8kB rather than

4kB cache.

iii The cache is described as being 4-way set-associative. Explain what this means, and what the motivation for

such a design versus a direct-mapped alternative is.

c Consider the ARM740T model with an 8kB cache, and assume for simplicity that by “four words per line” the

description means each cache line holds four bytes. Compute the number of bits used for

i the (sub)word address,

ii the line address,

iii the set number, and

iv the tag

while dealing with a load operation from address 𝑥.

d The cache is described as write-through. This refers to how it deals with store operations: the idea is that to

ensure consistency between the cache and main memory, data is stored into both, i.e., written through the cache

into main memory.

Explain one alternative scheme for dealing with stores, clearly listing any advantages and disadvantages.

� Q241. Consider a direct-mapped cache placed between a 32-bit RISC processor and a 1GB main memory:

CPU CACHE MEM
𝑥

MEM[𝑥]

𝑥

MEM[𝑥]

The cache can hold at most 1kB of data, organised as 𝑙 = 128 lines each containing 𝑤 = 8 separate 8-bit words.

git # b282dbb9 @ 2025-09-03 82

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
www.arm.com

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

a One option for implementing storage within the cache is to use 6T SRAM cells. Draw a transistor-level circuit
diagram that describes such a cell.

b Write an algorithm that details how the cache satisfies a load, performed by the processor, from address 𝑥.

c i Calculate the number of bits required to specify

i. the word address,

ii. the line address, and

iii. the tag.

Finally, calculate the number of SRAM cells required to store the data and meta-data (i.e., the valid flags and

tags).

ii Imagine a new SRAM cell is available that can operate in a low-power mode. When a control-signal 𝑝𝑤𝑟 = 1,

a given cell operates as normal; when 𝑝𝑤𝑟 = 0 the cell is in low-power mode but cannot retain any content.

Assuming such cells are used to store the cache data and meta-data, describe two distinct policies to control

them so the overall power consumption is reduced.

Part XV: Performance measurement

� Q242. a CPI and MIPS are both measures of processor performance. Explain how they are calculated and their

advantages and disadvantages.

b After some experimentation, someone shows that programs written for a given processor have the following

instruction mix:

Frequency Cycles

Arithmetic 50% 1

Branch 20% 2

Load 20% 5

Store 10% 3

The addition of a new addressing mode and a better compiler means there are less accesses to memory required.

The instruction mix after this change is as follows:

Frequency Cycles

Arithmetic 55% 1

Branch 25% 2

Load 10% 5

Store 10% 3

Calculate the overall CPI for programs that run on the processor before and after the change, and the speed-up

that results from the change.

� Q243. Outline the difficulties faced when writing benchmark software that is to collect information about pro-

cessor performance. Include at least one method that could be used to artificially increase the performance, i.e.,

“cheat” a benchmark.

Part XVI: Techniques for efficient implementation

� Q244. The following questions ask you to write C functions that operate on unsigned 16-bit integer values

represented by the uint16_t type. Each function should be fairly short, i.e., roughly 10 to 15 lines or fewer; a more

efficient function will gain more marks. For each answer, briefly state any advantages and disadvantages of your

approach in comparison to alternatives.

a Without using the operations <,=, or > or any branch or conditional operations, write a C function that replicates

the behaviour of

git # b282dbb9 @ 2025-09-03 83

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

uint16_t choose(bool c, uint16_t x, uint16_t y) {
if(c) {
return x;

}
else {
return y;

}
}

where you can assume c is used as a Boolean variable, i.e., it always equals either 0 or 1.

b Without using the multiply operation, write a C function to implement the multiplication 𝑥 · 15 for an unsigned

16-bit integer 𝑥.

c The population count or Hamming weight of 𝑥, denoted by HW(𝑥), is the number of bits in the binary expansion

of 𝑥 that equal one. Write a C function to compute HW(𝑥) for an unsigned 16-bit integer 𝑥.

d Pick one of your solutions from the previous question and show how to accelerate it using the concept of

pre-computation; you should write one C function to perform any pre-computation, and one C function that

uses the pre-computed data to implement the original operation.

� Q245. Assume that unsigned 16-bit and 8-bit integer values are represented by the uint16_t and uint8_t types.

The C function below performs “packed” division by two on elements of a vector called A: it takes each 16-bit

element A[i], unpacks it into two 8-bit values l and h, divides both by two, and packs them back into the 16-bit

result:

void packed_div2(uint16_t* A) {
for(int i = 0; i < 3; i++) {
uint8_t l = (x[i]) & 0xFF;
uint8_t h = (x[i] >> 8) & 0xFF;

l = l / 2;
h = h / 2;

A[i] = ((uint16_t)(l)) |
((uint16_t)(h) << 8) ;

}
}

Several optimisation techniques could make this function execute faster:

a Offline pre-computation.

b Specialisation.

c Parallelism.

d Program restructuring.

Show how the function could be re-written (using pseudo-code where appropriate) utilising each of these tech-

niques.

� Q246. Consider the following C fragment which adds together two n-element vectors B and C to produce a result

A (where each element is a 32-bit integer):

for(int i = 0; i < n; i++) {
A[i] = B[i] + C[i];

}

a Describe two reasons why the use of loop unrolling might increase performance of the fragment, and one reason

it might decrease performance.

b Sometimes loop unrolling requires a loop prelude and/or epilogue. Using an example, describe what these are

and why they might be required.

git # b282dbb9 @ 2025-09-03 84

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

	I Mathematical preliminaries
	II Basics of digital logic: general
	III Basics of digital logic: minimisation via Karnaugh maps
	IV Basics of computer arithmetic
	V Basics of memory technology
	VI Digital logic design using Verilog
	VII Computational machines: Finite State Machines (FSMs)
	VIII Computational machines: Register Machines (RMs)
	IX Hardware test and debug
	X Processor design: general
	XI Processor design: Instruction Set Architecture (ISA)
	XII Processor design: basic micro-architecture
	XIII Processor design: advanced micro-architecture
	XIV The memory hierarchy
	XV Performance measurement
	XVI Techniques for efficient implementation

