
© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

COMS10015 hand-out: exam-style revision questions

Part I: Mathematical preliminaries

� S1. The question essentially just demands application of

𝑥̂ ↦→ 𝑥 =

𝑖<𝑛∑
𝑖=0

𝑥̂𝑖 · 𝑏 𝑖 ,

which defines a mapping between the representation (on the LHS) and value (on the RHS) of 𝑥. In this case,

setting 𝑏 = 3 allows computation of a (decimal) value for each representation (i.e., literal); we need to select the one

whose value turns out to be 123(10). As such, it should be clear that

𝑥̂ = 11120 = ⟨0, 2, 1, 1, 1⟩(3)
↦→ ∑𝑖<𝑛

𝑖=0
𝑥̂𝑖 · 3𝑖

↦→ 0 · 30 + 2 · 31 + 1 · 32 + 1 · 33 + 1 · 34

↦→ 0 · 1 + 2 · 3 + 1 · 9 + 1 · 27 + 1 · 81

↦→ 123(10)

st. 11120 is the correct answer.

� S2. It should be clear that

𝑥̂ = ⟨𝑥̂0 , 𝑥̂1 , . . . , 𝑥̂𝑛−1⟩
= ⟨1, 1, 0, 0, 1, 1, 0, 0⟩
↦→ −𝑥̂𝑛−1 · 2𝑛−1 +∑𝑛−2

𝑖=0
𝑥̂𝑖 · 2𝑖

↦→ 2
0 + 2

1 + 2
4 + 2

5

↦→ 1 + 2 + 16 + 32

↦→ 51(10)

𝑦̂ = ⟨𝑦̂0 , 𝑦̂1 , . . . , 𝑦̂𝑛−1⟩
= ⟨1, 1, 0, 0, 1, 1, 0, 0⟩
↦→ (−1)𝑦̂𝑛−1 ·∑𝑛−2

𝑖=0
𝑦̂𝑖 · 2𝑖

↦→ 1 · (20 + 2
1 + 2

4 + 2
5)

↦→ 1 + 2 + 16 + 32

↦→ 51(10)

i.e., both 𝑥 and 𝑦 are represented by the binary literal 00110011, which yields the decimal value 51(10) in both cases.

However, if we set the MSB of 𝑥̂ and 𝑦̂ to 1, then we get

𝑥̂′ = ⟨𝑥̂′
0
, 𝑥̂′

1
, . . . , 𝑥̂′

𝑛−1
⟩

= ⟨1, 1, 0, 0, 1, 1, 0, 1⟩
↦→ −𝑥̂′

𝑛−1
· 2𝑛−1 +∑𝑛−2

𝑖=0
𝑥̂′
𝑖
· 2𝑖

↦→ 2
0 + 2

1 + 2
4 + 2

5 − 2
7

↦→ 1 + 2 + 16 + 32 − 128

↦→ −77(10)

𝑦′ = ⟨𝑦̂′
0
, 𝑦̂′

1
, . . . , 𝑦̂′

𝑛−1
⟩

= ⟨1, 1, 0, 0, 1, 1, 0, 1⟩
↦→ (−1)𝑦̂′𝑛−1 ·∑𝑛−2

𝑖=0
𝑦̂′
𝑖
· 2𝑖

↦→ −1 · (20 + 2
1 + 2

4 + 2
5)

↦→ −1 − 2 − 16 − 32

↦→ −51(10)

so −77 and −51 is the correct answer.

� S3. In 16 bits, the largest possible positive value we can represent using two’s-complement is

2
𝑛−1 − 1 = 2

16−1 − 1 = 32767

git # b282dbb9 @ 2025-09-03 1

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

and the largest possible negative value is

−2
𝑛−1 = −2

16−1 = −32768

Using this, we can deduce the following:

a The largest possible positive product is given by

𝑥 · 𝑦 = −32768 · −32768 = 1073741824

which is somewhat counter-intuitive given both operands are negative, but stems from the fact that in two’s-

complement more negative values can be represented than positive.

b The largest possible negative product is given by

𝑥 · 𝑦 = −32768 · 32767 = −1073709056

or

𝑥 · 𝑦 = 32767 · −32768 = −1073709056.

� S4. First, note that

x = 256(10) = 0000000100000000(2)
y = 4852(10) = 0001001011110100(2)

Casting from short to char basically truncates the value from 16 to 8 bits (i.e., leaves the 8 LSBs only), meaning

(char)(x) = 00000000(2) = 0(10)
(char)(y) = 11110100(2) = −12(10)

st. 0 and −12 is the correct answer.

� S5. Given

x = 9(10)
= 00001001(2)

0x97 = 97(16)
= 10010111(2)

the expression (~x << 4) 0x97| evaluates to give

(~x) = 11110110(2)
(~x << 4) = 01100000(2)
(~x << 4) 0x97| = 11110111(2)

= −9(10)

st. r = −9 is the correct answer.

� S6. For a signed, 𝑛-bit integers represented using two’s-complement we know that

−2
𝑛−1 ≤ x ≤ 2

𝑛−1 − 1

so for the 8-bit examples in this case

−128 ≤ x ≤ 127.

Of the 256 possible values of x, 128 are negative (i.e., < 0) and 128 are positive (i.e., ≥ 0). Clearly all positive

values are fixed points: for these, the if statement causes the assignment r = x to be executed. So the question is

whether or not any of the negative values are fixed points?

At first glance, this would seem impossible so none is an understandable response. However, recall that

negation in two’s-complement is achieved via

r = −x = ¬x + 1.

Now consider what happens if we negate x = −128:

−x = ¬ x + 1

= ¬ 10000000(2) + 1

= 01111111(2) + 1

= 10000000(2)
= x

This means x = −128 is a fixed point, i.e., that abs fails to work correctly for this value (since we cannot represent

128 in 8 bits using two’s-complement). As such, 129 is the correct answer: the 128 positive values, plus the 1

negative value from above.

git # b282dbb9 @ 2025-09-03 2

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S7. First, note that

x = −10(10)
↦→ −2

7 + 2
6 + 2

5 + 2
4 + 2

2 + 2
1

↦→ 11110110

Next, since x is signed (implying an arithmetic vs. logical right-shift), we can evaluate the expression as follows

~((x >> 2) ^ 0xF4) ↦→ ¬((11110110 ≫ 2) ⊕ 11110100)
↦→ ¬(11111101 ⊕ 11110100)
↦→ ¬(00001001)
↦→ 11110110

↦→ −2
7 + 2

6 + 2
5 + 2

4 + 2
2 + 2

1

↦→ −10(10)

� S8. We know that

0 ≤ x, y < 2
8 = 256

due to their type and representation, so there are 256 · 256 = 65536 possible assignments to them variables, i.e.,

pairs

(x, y)
to consider. Only the case where their sum x + y is zero will yield a Hamming weight of zero: the repersentation

of a non-zero sum will have at least one bit in it equal to one, and hence a Hamming weight of greater than zero.

The obvious initial answer would be that the assignment x = 0 and y = 0 is the only case where x + y = 0

and hence HW(x + y) = 0. However, others exist due to the effect of overflow: x = 255 and y = 1 should yield

x + y = 256, for example, but, due to overflow (i.e., the fact we we cannot represent 256 as an unsigned, 8-bit

integer), actually yields x + y = 0 and hence HW(x + y) = 0. Applying this principle more generally, the correct

answer is that 256 pairs will yield x + y = 0 and hence HW(x + y) = 0: put simply, every possible x has exactly

one y that will yield the sum x + y = 0.

� S9. The central idea in a positional number system is

𝑥̂ = ⟨𝑥̂0 , 𝑥̂1 , . . . , 𝑥̂𝑛−1⟩ ↦→ 𝑥 =

𝑛−1∑
𝑖=0

𝑥̂𝑖 · 𝑏 𝑖 ,

i.e., each 𝑖-th digit in the (left-hand side) literal is weighted by 𝑏 𝑖 and accumulated to yield the (right-hand side)

represented value. In this case the literal has 𝑛 = 2 digits, so, given 𝑥0 = 0 and 𝑥1 = 1, we can see that

𝑥̂ = ⟨𝑥̂0 , 𝑥̂1⟩ ↦→ 𝑥 = 𝑥̂0 · 𝑏0 + 𝑥̂1 · 𝑏1 = 0 · 1 + 1 · 𝑏 = 0 + 𝑏 = 𝑏.
This fact holds for any 𝑏, and of course if we knew 𝑏 one of the other options might be correct (e.g., if 𝑏 = 10 then

𝑥 = 10 would also be correct).

� S10. First, note that in two’s-complement representation

0(10) ↦→ 00000000

−1(10) ↦→ 11111111

yield 𝑛-bit “all 0” and “all 1” sequences for any 𝑛. Now consider an arbitrary 𝑥, and each option stemming from

it:

𝑥 = 01101010 ↦→ 106(10)
¬𝑥 = 10010101 ↦→ −107(10)

𝑥 ∧ ¬𝑥 = 00000000 ↦→ 0(10)
𝑥 ∨ ¬𝑥 = 11111111 ↦→ −1(10)
𝑥 ⊕ ¬𝑥 = 11111111 ↦→ −1(10)
𝑥 + ¬𝑥 = 11111111 ↦→ −1(10)
𝑥 − ¬𝑥 = 11010101 ↦→ −43(10)

Note that if the 𝑖-th bit of 𝑥 is 0 then that of ¬𝑥 will be 1; if the 𝑖-th bit of 𝑥 is 1 then that of ¬𝑥 will be 0. Based on

this, the AND case will always yield the “all 0” sequence, i.e., 0, because the per-bit computation will be 0 ∧ 1 or

0 ∧ 1 (both yielding 0). Likewise, the OR case will always yield the “all 1” sequence, i.e., −1, because the per-bit

computation will be 0 ∨ 1 or 0 ∨ 1 (both yielding 1); the same is true for both the XOR case and the addition case,

with the latter stemming from the absence of carries. In fact, all these cases will apply for any 𝑛 and 𝑥 based on

the same reasoning. So the subtraction case is incorrect: even the result is slightly confusing in that this example

overflows (the actual result 213(10) cannot be represented in 8 bits, at least when using two’s-complement).

git # b282dbb9 @ 2025-09-03 3

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S11. a true. We know that 1) HW(𝑥) yields the number of times 𝑥𝑖 = 1, and 2) HD(𝑥, 𝑦) yields the number of

times 𝑥𝑖 ≠ 𝑦𝑖 . Therefore, given 𝑟 = 𝑥 ⊕ 𝑦 we know that HW(𝑟) yields the number of times 𝑟𝑖 = 1: based on the

definition of XOR, this is the number of times 𝑥𝑖 = 0 and 𝑦𝑖 = 1 or 𝑥𝑖 = 1 and 𝑦𝑖 = 0, i.e., the number of times

𝑥𝑖 ≠ 𝑦𝑖 . Hence, HW(𝑟) = HW(𝑥 ⊕ 𝑦) = HD(𝑥, 𝑦).
b true. When using two’s-complement representation, we have that −𝑥 ≡ ¬𝑥 + 1. For example, given an 8-bit 𝑥

equal to 1 we find that

𝑥 = 000000001(16)
¬𝑥 = 111111110(16)
¬𝑥 +1 = 111111111(16)

i.e., the representation of −1 will have all bits set to 1. This holds for any 𝑛, because two’s-complement

representation means

𝑥̂ = ⟨𝑥̂0 , 𝑥̂1 , . . . , 𝑥̂𝑛−1⟩

↦→ 𝑥

= 𝑥̂𝑛−1 · −2
𝑛−1 +

𝑛−2∑
𝑖=0

𝑥̂𝑖 · 2𝑖

i.e., the MSB 𝑥̂𝑛−1 has a large negative weight, whereas all other 𝑥̂𝑖 for 0 ≤ 𝑖 < 𝑛 − 1 have a small(er) positive

weight. So, if 𝑥̂𝑖 = 1 for 0 ≤ 𝑖 < 𝑛 we find that

𝑥̂ ↦→ 1 · −2
𝑛−1 +

𝑛−2∑
𝑖=0

1 · 2𝑖

↦→ −2
𝑛−1 + (2𝑛−1 − 1)

↦→ −1

� S12. a i |𝐴| = 3.

ii 𝐴 ∪ 𝐵 = {1, 2, 3, 4, 5}.
iii 𝐴 ∩ 𝐵 = {3}.
iv 𝐴 − 𝐵 = {1, 2}.
v 𝐴 = {4, 5, 6, 7, 8}.
vi {𝑥 | 2 · 𝑥 ∈ 𝒰} = {1, 2, 3, 4}.

b i +0 in sign-magnitude is 00000000, in two’s-complement is 00000000.

ii −0 in sign-magnitude is 10000000, in two’s-complement is 00000000.

iii +72 in sign-magnitude is 01001000, in two’s-complement is 01001000.

iv −34 in sign-magnitude is 10100010, in two’s-complement is 11011110.

v −8 in sign-magnitude is 10001000, in two’s-complement is 11111000.

vi This is a trick question: one cannot represent 240 in 8-bit sign-magnitude or two’s-complement; the incorrect

guess of 11111000 in two’s-complement for example is actually −8.

� S13. The population count or Hamming weight of 𝑥, denoted by ℋ(𝑥) say, is the number of bits in the binary

expansion of 𝑥 that equal one. Using an unsigned 32-bit integer 𝑥 for example, an implementation might be

written as follows:

int H(uint32_t x) {
int t = 0;

for(int i = 0; i < 32; i++) {
if((x >> i) & 1) {
t = t + 1;

}
}

return t;
}

git # b282dbb9 @ 2025-09-03 4

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S14. Writing

𝑡0 = (𝑥 ∧ 𝑦) ⊕ 𝑧
𝑡1 = (¬𝑥 ∨ 𝑦) ⊕ 𝑧
𝑡2 = (𝑥 ∨ ¬𝑦) ⊕ 𝑧
𝑡3 = ¬(𝑥 ∨ 𝑦) ⊕ 𝑧
𝑡4 = ¬¬(𝑥 ∨ 𝑦) ⊕ 𝑧

for brevity, we can write the following truth table:

𝑥 𝑦 𝑧 𝑡0 𝑡1 𝑡2 𝑡3 𝑡4
0 0 0 0 1 1 1 0

0 0 1 1 0 0 0 1

0 1 0 0 1 0 0 1

0 1 1 1 0 1 1 0

1 0 0 0 0 1 0 1

1 0 1 1 1 0 1 0

1 1 0 1 1 1 0 1

1 1 1 0 0 0 1 0

Looking at the row where 𝑥 = 0, 𝑦 = 0 and 𝑧 = 1, it is clear that 𝑡0 = 1 and 𝑡4 = 1, so (𝑥 ∧ 𝑦) ⊕ 𝑧 and ¬¬(𝑥 ∨ 𝑦) ⊕ 𝑧
are the correct answers.

� S15. You may be able to just spot which one is incorrect, but looking at each case exhaustively (via a truth table

for the LHS and RHS of the supposed equivalence), we see that

𝑥 𝑦 𝑧 (𝑥 ∧ 𝑦) ∧ 𝑧 𝑥 ∧ (𝑦 ∧ 𝑧) 𝑥 ∨ 1 𝑥 𝑥 ∨ ¬𝑥 1 ¬(𝑥 ∨ 𝑦) ¬𝑥 ∧ ¬𝑦 ¬¬𝑥 𝑥

0 0 0 0 0 1 0 1 1 1 1 0 0

0 0 1 0 0 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 1 1 0 0 0 0

0 1 1 0 0 1 0 1 1 0 0 0 0

1 0 0 0 0 1 1 1 1 0 0 1 1

1 0 1 0 0 1 1 1 1 0 0 1 1

1 1 0 0 0 1 1 1 1 0 0 1 1

1 1 1 1 1 1 1 1 1 0 0 1 1

and identify 𝑥 ∨ 1 ≡ 𝑥 as the incorrect case: it probably should be 𝑥 ∨ 1 ≡ 1, or maybe 𝑥 ∧ 1 ≡ 𝑥.

� S16. By writing

𝑡0 = 𝑥 ∨ (𝑧 ∨ 𝑦)
𝑡1 = ¬(¬𝑦 ∧ ¬𝑧)

we can shorten the expression to

𝑡2 = 𝑡0 ∧ 𝑡1.
Then, you can see either by enumeration, i.e.,

𝑥 𝑦 𝑧 𝑡0 𝑡1 𝑡2 𝑦 ∨ 𝑧
0 0 0 0 0 0 0

0 0 1 1 1 1 1

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 1 0 0 0

1 0 1 1 1 1 1

1 1 0 1 1 1 1

1 1 1 1 1 1 1

or via the derivation

(𝑥 ∨ (𝑧 ∨ 𝑦)) ∧ ¬(¬𝑦 ∧ ¬𝑧)
= (𝑥 ∨ (𝑧 ∨ 𝑦)) ∧ (𝑦 ∨ 𝑧) (de Morgan)

= (𝑥 ∨ (𝑦 ∨ 𝑧)) ∧ (𝑦 ∨ 𝑧) (commutativity)

= (𝑥 ∨ (𝑦 ∨ 𝑧)) ∧ ((𝑦 ∨ 𝑧) ∨ 0) (identity)

= ((𝑦 ∨ 𝑧) ∨ 𝑥) ∧ ((𝑦 ∨ 𝑧) ∨ 0) (commutativity)

= (𝑦 ∨ 𝑧) ∨ (𝑥 ∧ 0) (distribution)

= (𝑦 ∨ 𝑧) ∨ (0) (null)

= (𝑦 ∨ 𝑧) (identity)

that the correct answer is 𝑦 ∨ 𝑧.

git # b282dbb9 @ 2025-09-03 5

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S17. By writing

𝑡0 = 𝑥 ∨ 𝑦
𝑡1 = 𝑥 ∧ 𝑧

we can shorten the expression to

𝑡2 = 𝑡0 ∨ 𝑡1.
Then, you can see either by enumeration, i.e.,

𝑥 𝑦 𝑧 𝑡0 𝑡1 𝑡2 𝑥 ∨ 𝑦
0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 1 0 1 1

0 1 1 1 0 1 1

1 0 0 1 0 1 1

1 0 1 1 1 1 1

1 1 0 1 0 1 1

1 1 1 1 1 1 1

or via the derivation

(𝑥 ∨ 𝑦) ∨ (𝑥 ∧ 𝑧)
= (𝑦 ∨ 𝑥) ∨ (𝑥 ∧ 𝑧) (commutativity)

= 𝑦 ∨ (𝑥 ∨ (𝑥 ∧ 𝑧)) (association)

= 𝑦 ∨ 𝑥 (absorption)

= 𝑥 ∨ 𝑦 (commutativity)

that the correct answer is 𝑥 ∨ 𝑦.

� S18. In the same way as NAND, we know NOR is functionally complete: this can be shown via

¬𝑥 ≡ 𝑥 ∨ 𝑥
𝑥 ∧ 𝑦 ≡ ¬𝑥 ∨ ¬𝑦 ≡ (𝑥 ∨ 𝑥) ∨ (𝑦 ∨ 𝑦)
𝑥 ∨ 𝑦 ≡ (𝑥 ∨ 𝑦) ∨ (𝑥 ∨ 𝑦)

Then, since 𝑥 ∨ 𝑦 ≡ ¬(𝑥 ∨ 𝑦), clearly {∨,¬} is functionally complete: this set can be rewritten directly as { ∨ }. We

can harness these facts to show that in fact all other options are functionally complete.

• Given the truth table

𝑥 𝑦 ⊕
0 0 0

0 1 1

1 0 1

1 1 0

we have ¬𝑥 ≡ 𝑥 ⊕ 1, or, put another way, we can construct ¬ using ⊕. Overall then,

{⊕,∨} ; {¬,∨},
i.e., we have constructed the RHS from the LHS; we know the RHS is functionally complete, so the LHS is as

well.

• This option is somewhat more difficult: using the same strategy as above, we now need to construct both ¬ and
∨.

– Given the truth table

𝑥 𝑦 ≡ .
0 0 1 0

0 1 0 1

1 0 0 1

1 1 1 0

it should be clear that since 𝑥 . 𝑦 ≡ 𝑥 ⊕ 𝑦, we have ¬𝑥 ≡ 𝑥 . 1. Alternatively, given the truth table

𝑥 𝑦 ⇒
0 0 1

0 1 1

1 0 0

1 1 1

we have 𝑥 ⇒ 0 ≡ ¬𝑥.

git # b282dbb9 @ 2025-09-03 6

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

– Given the axiom 𝑥 ⇒ 𝑦 ≡ ¬𝑥∨ 𝑦,we could write ¬𝑥 ⇒ 𝑦 ≡ ¬(¬𝑥)∨ 𝑦 ≡ 𝑥∨ 𝑦. That is, based on constructions

for ¬ and⇒ (the LHS) we can construct ∨ (the RHS).

Overall then,

{⇒, .} ; {¬,∨},

i.e., we have constructed the RHS from the LHS; we know the RHS is functionally complete, so the LHS is as

well.

• Based on the above, it should be clear that

{⇒} ; {¬,∨}

because we can construct both ¬ and ∨ using it alone; in the above . was potentially redundant in fact, which

is also true of⇏ here. Alternatively, given the truth table

𝑥 𝑦 ⇒ ⇏
0 0 1 0

0 1 1 0

1 0 0 1

1 1 1 0

we could write 1⇏ 𝑦 ≡ ¬𝑦, and use⇏ as a replacement for . and so ¬ as required in the above. Either way, it

is clearly the case that

{⇒,⇏} ; {¬,∨}

i.e., we have constructed the RHS from the LHS; we know the RHS is functionally complete, so the LHS is as

well.

� S19. First, note that each input can obviously be assigned one of two values, namely 0 or 1, so there are 2
𝑛

possible

assignments to 𝑛 inputs. For example, if we have 1 input, say 𝑥, there are 2
1 = 2 possible assignments because 𝑥

can either be 0 or 1. In the same way, for 2 inputs, say 𝑥 and 𝑦, there are 2
2 = 4 possible assignments: we can have

𝑥 = 0 𝑦 = 0

𝑥 = 0 𝑦 = 1

𝑥 = 1 𝑦 = 0

𝑥 = 1 𝑦 = 1

This is why a truth table for 𝑛 inputs will have 2
𝑛

rows: each row details one assignment to the inputs, and the

associated output.

So how many functions are there? A function with 𝑛-inputs means a truth table with 2
𝑛

rows; each row includes

an output that can either be 0 or 1 (depending on exactly which function the truth table describes). So to count

how many functions there are, we can just count how many possible assignments there are to the 2
𝑛

outputs. The

correct answer is 2
2
𝑛
.

� S20. The derivation is as follows

LHS = (𝑦 ∧ ¬𝑥) ∨ (𝑥 ∧ ¬𝑦)
= (𝑦 ∧ ¬𝑥) ∨ 0 ∨ (𝑥 ∧ ¬𝑦) ∨ 0 (identity)

= (𝑦 ∧ ¬𝑥) ∨ (𝑦 ∧ ¬𝑦) ∨ (𝑥 ∧ ¬𝑦) ∨ (𝑥 ∧ ¬𝑥) (inverse)

= (𝑦 ∧ (¬𝑥 ∨ ¬𝑦)) ∨ (𝑥 ∧ (¬𝑦 ∨ ¬𝑥)) (distribution)

= ((¬𝑥 ∨ ¬𝑦) ∧ 𝑦) ∨ ((¬𝑥 ∨ ¬𝑦) ∧ 𝑥) (commutativity)

= (¬𝑥 ∨ ¬𝑦) ∧ (𝑥 ∨ 𝑦) (distribution)

= (𝑥 ∨ 𝑦) ∧ (¬𝑥 ∨ ¬𝑦) (commutativity)

= (𝑥 ∨ 𝑦) ∧ ¬(𝑥 ∧ 𝑦) (de Morgan)

= RHS

suggesting that the correct option is the de Morgan axiom.

� S21. These are all (or close to) Boolean axioms, which potentially can be identified by just looking at them: for

example, the first one is the association axiom. Taking a more systematic approach, the following, exhaustive

git # b282dbb9 @ 2025-09-03 7

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

truth-table

𝑥 𝑦 𝑧 (𝑥 ∧ 𝑦) ∧ 𝑧 𝑥 ∧ (𝑦 ∧ 𝑧) 𝑥 ⇒ 𝑦 ¬𝑥 ∨ 𝑦 𝑥 ∧ (𝑥 ∨ 𝑦) ¬(𝑥 ∨ 𝑦) ¬𝑥 ∧ ¬𝑦 𝑦 𝑥 ∨ 0 𝑥

0 0 0 0 0 1 1 0 1 1 0 0 0

0 0 1 0 0 1 1 0 1 1 0 0 0

0 1 0 0 0 1 1 0 0 0 1 0 0

0 1 1 0 0 1 1 0 0 0 1 0 0

1 0 0 0 0 0 0 1 0 0 0 1 1

1 0 1 0 0 0 0 1 0 0 0 1 1

1 1 0 0 0 1 1 1 0 0 1 1 1

1 1 1 1 1 1 1 1 0 0 1 1 1

demonstrates that

𝑥 ∧ (𝑥 ∨ 𝑦) . 𝑦.

This is an incorrect version of the absorption axiom, which could be corrected to read

𝑥 ∧ (𝑥 ∨ 𝑦) ≡ 𝑥.

� S22. Adding parentheses for clarity throughout, using either derivation

(𝑥 ∧ 𝑥) ∨ (𝑥 ∧ ¬𝑥)
= 𝑥 ∧ (𝑥 ∨ ¬𝑥) (𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)

(𝑥 ∧ 𝑥) ∨ (𝑥 ∧ ¬𝑥)
= 𝑥 ∧ (𝑥 ∨ ¬𝑥) (𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)
= (𝑥 ∨ ¬𝑥) ∧ 𝑥 (𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑖𝑡𝑦)

(𝑥 ∧ 𝑥) ∨ (𝑥 ∧ ¬𝑥)
= 𝑥 ∨ (𝑥 ∧ ¬𝑥) (𝑖𝑑𝑒𝑚𝑝𝑜𝑡𝑒𝑛𝑐𝑦)
= 𝑥 ∨ 0 (𝑖𝑛𝑣𝑒𝑟𝑠𝑒)
= 𝑥 (𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦)

(𝑥 ∧ 𝑥) ∨ (𝑥 ∧ ¬𝑥)
= ¬(¬(𝑥 ∧ 𝑥) ∧ ¬(𝑥 ∧ ¬𝑥)) (𝑑𝑒𝑀𝑜𝑟𝑔𝑎𝑛)
= ¬((¬𝑥 ∨ ¬𝑥) ∧ (¬𝑥 ∨ 𝑥)) (𝑑𝑒𝑀𝑜𝑟𝑔𝑎𝑛)

or, failing that, enumeration

𝑥 𝑥 ∧ 𝑥 ∨ 𝑥 ∧ ¬𝑥 𝑥 ∧ (𝑥 ∨ ¬𝑥) (𝑥 ∨ ¬𝑥) ∧ 𝑥 𝑥 ¬𝑥 ¬((¬𝑥 ∨ ¬𝑥) ∧ (¬𝑥 ∨ 𝑥))
0 0 0 0 0 1 0

1 1 1 1 1 0 1

means we can conclude that

𝑥 ∧ 𝑥 ∨ 𝑥 ∧ ¬𝑥 . ¬𝑥.

� S23. At first glance, this question looks like a lot of work. However, we can immediately rule out several options

because the associated Karnaugh maps are clearly invalid:

• option A is invalid because the dimensions do not match the truth table: it ignores 𝑧 s is for a 3-input rather than

4-input function,

• option B is invalid because the content does not match the truth table: the truth table has 6 entries equal to 1

whereas the Karnaugh map has 5,

• option D is invalid because the 3-element red group is invalid: groups must be rectangular, but this is L-shaped.

So only options C and E remain. Even just looking at them, we can guess that option C will yield a more efficient

expression because it uses fewer, larger groups (option E uses unit-sized groups only). In more detail

• Option C yields

𝑟 = 𝑓 (𝑤, 𝑥, 𝑦, 𝑧) = (¬𝑥 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑦)

and thus 5 AND, 2 OR, and 6 NOT operators.

git # b282dbb9 @ 2025-09-03 8

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

• Option E yields

𝑟 = 𝑓 (𝑤, 𝑥, 𝑦, 𝑧) = (𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ 𝑧)

and thus 18 AND, 5 OR, and 16 NOT operators.

Even considering the (significant) potential for applying common sub-expression, e.g., computing and sharing the

result of ¬𝑥 once versus using using one operator for each instance, option Cwill clearly involve fewer operators.

� S24. Adding parentheses for clarity throughout, using either derivation

= (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑦 ∧ 𝑧)
= (𝑥 ∧ 𝑦 ∧ 1) ∨ (𝑥 ∧ 𝑦 ∧ 𝑧) (𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦)
= (𝑥 ∧ 𝑦) ∧ (1 ∨ 𝑧) (𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)
= (𝑥 ∧ 𝑦) ∧ (𝑧 ∨ 1) (𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑖𝑡𝑦)
= 𝑥 ∧ 𝑦 ∧ 1 (𝑛𝑢𝑙𝑙)
= 𝑥 ∧ 𝑦 (𝑛𝑢𝑙𝑙)

or, failing that, enumeration

𝑥 𝑦 𝑧 (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑦 ∧ 𝑧) 𝑥 ∧ 𝑦 𝑥 ∧ 𝑧 𝑦 ∧ 𝑧 𝑥 ∧ 𝑦 ∧ 𝑧 1

0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1

0 1 1 0 0 0 1 0 1

1 0 0 0 0 0 0 0 1

1 0 1 0 0 1 0 0 1

1 1 0 1 1 0 0 0 1

1 1 1 1 1 1 1 1 1

means we can conclude that

𝑥 ∧ 𝑦 ∨ 𝑥 ∧ 𝑦 ∧ 𝑧 ≡ 𝑥 ∧ 𝑦.

� S25. One can show that there are 2
2
𝑛

possible Boolean functions with 𝑛 inputs. In this case 𝑛 = 1 so we know

there are 2
2

1

= 2
2 = 4 such functions, which we can enumerate as follows:

𝑥 𝑓0 𝑓1 𝑓2 𝑓3
0 0 0 1 1

1 0 1 0 1

In essence, 𝑓0 is the constant 0 function (noting 𝑓0(𝑓0(𝑥)) = 0 = 𝑓0(𝑥)), 𝑓1 is the identity function (noting 𝑓1(𝑓1(𝑥)) =
𝑥 = 𝑓1(𝑥)), 𝑓2 is the complement function (noting 𝑓2(𝑓2(𝑥)) = ¬¬𝑥 = 𝑥 ≠ ¬𝑥 = 𝑓2(𝑥)), and 𝑓3 is the constant 1

function (noting 𝑓3(𝑓3(𝑥)) = 1 = 𝑓3(𝑥)), As such, only 1 of the 4 possible functions, namely 𝑓2, is not idempotent.

� S26. One can show that there are 2
2
𝑛

possible Boolean functions with 𝑛 inputs. In this case 𝑛 = 2 so we know

there are 2
2

2

= 2
4 = 16 such functions, which we can enumerate as follows:

𝑥 𝑦 𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10 𝑓11 𝑓12 𝑓13 𝑓14 𝑓15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

The cases where 𝑥 = 𝑦 = 0 and 𝑥 = 𝑦 = 1 are naturally symmetric, so the question is basically whether or not the

remaining cases are also symmetric, i.e., whether or not 𝑓𝑖(0, 1) = 𝑓𝑖(1, 0) holds for a given 𝑖. By inspection of the

truth table above, one can see that the relationship holds for each

𝑖 ∈ 𝑆 = {0, 1, 6, 7, 8, 9, 14, 15},

noting that |𝑆 | = 8 possible functions are therefore symmetric. As an aside, symmetric Boolean functions are

known as Boolean counting functions in some contexts; one can prove that there are 2
𝑛+1

such functions with 𝑛
inputs, which in our case means 2

𝑛+1 = 2
2+1 = 2

3 = 8 as expected.

git # b282dbb9 @ 2025-09-03 9

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S27. Adding parentheses for clarity throughout, using either derivation

(𝑥 ∧ (¬𝑥 ∨ 𝑦)) ∨ 𝑦
= (𝑥 ∧ ¬𝑥) ∨ (𝑥 ∧ 𝑦) ∨ 𝑦 (𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)
= (𝑥 ∧ ¬𝑥) ∨ 𝑦 ∨ (𝑥 ∧ 𝑦) (𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑖𝑡𝑦)
= (𝑥 ∧ ¬𝑥) ∨ 𝑦 ∨ (𝑦 ∧ 𝑥) (𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑖𝑡𝑦)
= (𝑥 ∧ ¬𝑥) ∨ 𝑦 (𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛)
= (𝑥 ∧ ¬𝑥) ∨ (𝑦 ∧ 1) (𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦)
= (𝑥 ∧ ¬𝑥) ∨ (𝑦 ∧ (𝑥 ∨ 1)) (𝑛𝑢𝑙𝑙)
= (𝑥 ∧ ¬𝑥) ∨ (𝑦 ∧ (1 ∨ 𝑥)) (𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑖𝑡𝑦)

(𝑥 ∧ (¬𝑥 ∨ 𝑦)) ∨ 𝑦
= (𝑥 ∧ ¬𝑥) ∨ (𝑥 ∧ 𝑦) ∨ 𝑦 (𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)
= 0 ∨ (𝑥 ∧ 𝑦) ∨ 𝑦 (𝑖𝑛𝑣𝑒𝑟𝑠𝑒)

(𝑥 ∧ (¬𝑥 ∨ 𝑦)) ∨ 𝑦
= (𝑥 ∧ ¬𝑥) ∨ (𝑥 ∧ 𝑦) ∨ 𝑦 (𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)
= 0 ∨ (𝑥 ∧ 𝑦) ∨ 𝑦 (𝑖𝑛𝑣𝑒𝑟𝑠𝑒)
= (𝑥 ∧ 𝑦) ∨ 0 ∨ 𝑦 (𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑖𝑡𝑦)
= (𝑥 ∧ 𝑦) ∨ 𝑦 ∨ 0 (𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑖𝑡𝑦)
= (𝑥 ∧ 𝑦) ∨ 𝑦 (𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦)
= 𝑦 ∨ (𝑥 ∧ 𝑦) (𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑖𝑡𝑦)
= 𝑦 ∨ (𝑦 ∧ 𝑥) (𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑖𝑡𝑦)
= 𝑦 (𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛)

(𝑥 ∧ (¬𝑥 ∨ 𝑦)) ∨ 𝑦
= ¬(¬(𝑥 ∧ (¬𝑥 ∨ 𝑦)) ∧ ¬𝑦) (𝑑𝑒𝑀𝑜𝑟𝑔𝑎𝑛)
= ¬((¬𝑥 ∨ ¬(¬𝑥 ∨ 𝑦)) ∧ ¬𝑦) (𝑑𝑒𝑀𝑜𝑟𝑔𝑎𝑛)
= ¬((¬𝑥 ∨ (𝑥 ∧ ¬𝑦)) ∧ ¬𝑦) (𝑑𝑒𝑀𝑜𝑟𝑔𝑎𝑛)

or, failing that, enumeration

𝑥 𝑦 𝑥 ∧ (¬𝑥 ∨ 𝑦) ∨ 𝑦 𝑥 ∧ ¬𝑥 ∨ 𝑦 ∧ (1 ∨ 𝑥) 0 ∨ 𝑥 ∧ 𝑦 ∨ 𝑦 𝑥 ∧ 𝑦 𝑦 ¬((¬𝑥 ∨ (𝑥 ∧ ¬𝑦)) ∧ ¬𝑦)
0 0 0 0 0 0 0 0

0 1 1 1 1 0 1 1

1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

means we can conclude that

𝑥 ∧ (¬𝑥 ∨ 𝑦) ∨ 𝑦 . 𝑥 ∧ 𝑦.

� S28. Adding parentheses for clarity throughout, using either derivation

(𝑥 ∨ 𝑦) ∧ (𝑥 ∨ ¬𝑦)
= 𝑥 ∨ (𝑦 ∧ ¬𝑦) (𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)
= 𝑥 ∨ 0 (𝑖𝑛𝑣𝑒𝑟𝑠𝑒)
= 𝑥 (𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦)

or, failing that, enumeration

𝑥 𝑦 (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ ¬𝑦) ¬𝑥 𝑥 ¬𝑦 𝑦 0

0 0 0 1 0 1 0 0

0 1 0 1 0 0 1 0

1 0 1 0 1 1 0 0

1 1 1 0 1 0 1 0

means we can conclude that

(𝑥 ∨ 𝑦) ∧ (𝑥 ∨ ¬𝑦) ≡ 𝑥.

git # b282dbb9 @ 2025-09-03 10

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S29. a false. Notice that 𝑓 is a 2-input, 1-output Boolean function. Since it has 𝑛 = 2 inputs, there are

2
2
𝑛
= 2

2
2

= 16 possible functions, some of which are as follows:

𝑥 𝑦 𝑓0 𝑓10 𝑓12 𝑓15

0 0 0 0 0 1

0 1 0 1 0 1

1 0 0 0 1 1

1 1 0 1 1 1

These could be described as a “constant 0” function 𝑓0(𝑥, 𝑦) = 0, an “identity” function 𝑓10(𝑥, 𝑦) = 𝑦, an “identity”

function 𝑓12(𝑥, 𝑦) = 𝑥, and a “constant 1” function 𝑓15(𝑥, 𝑦) = 1 respectively; they can all be implemented using

0 Boolean operators.

b true. First, note that by disjunction and conjunction we essentially mean OR and AND, i.e., ∨ and ∧. We can

then answer the question by giving example analogies, with (at least) 3 representing obvious candidates:

i the axioms that govern them are similar: 𝑥 ∨ false = 𝑥 and 𝑥 ∧ true = 𝑥 are analogous to 𝑥 + 0 = 𝑥 and

𝑥 × 1 = 𝑥, for example.

ii the specification of associated operators is similar:

𝑥 𝑦 𝑟 = 𝑥 ∧ 𝑦
false false false
false true false
true false false
true true true

is analogous to

𝑥 𝑦 𝑟 = 𝑥 × 𝑦
0 0 0

0 1 0

1 0 0

1 1 1

for example.

iii there is an explicit cross-over of some terminology: within Boolean algebra we have Sum of Products (SoP),

i.e., AND’ing together terms formed by OR’ing together variables and Product of Sums (PoS), i.e., OR’ing

together terms formed by AND’ing together variables, for example, both of which associated addition with

AND and multiplication with OR.

� S30. a The truth table for this function is as follows

𝑎 𝑏 𝑐 (𝑎 ∧ 𝑏 ∧ ¬𝑐) (𝑎 ∧ ¬𝑏 ∧ 𝑐) (¬𝑎 ∧ ¬𝑏 ∧ 𝑐) 𝑓 (𝑎, 𝑏, 𝑐)
0 0 0 0 0 0 0

0 0 1 0 0 1 1

0 1 0 0 0 0 0

0 1 1 0 0 0 0

1 0 0 0 0 0 0

1 0 1 0 1 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 0

Since there are 𝑛 = 3 input variables, there are clearly 2
𝑛 = 2

3 = 8 input combinations; three of these produce 1

as an the output from the function.

git # b282dbb9 @ 2025-09-03 11

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

b The truth table for this function is as follows

𝑎 𝑏 𝑐 𝑑 𝑓 (𝑎, 𝑏, 𝑐, 𝑑)
0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

so since there is only one case where 𝑓 (𝑎, 𝑏, 𝑐, 𝑑) = 1, the only assignment given which matches the criteria is

𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1.

This hints at a general principle: when we have an expression like this, a term such as ¬𝑥 can be read as “𝑥
should be 0” and 𝑥 as “𝑥 should be 1”. So the expression as a whole is read as “𝑎 should be 0 and 𝑏 should be 1

and 𝑐 should be 0 and 𝑑 should be 1”. Since we have basically fixed all four inputs, only one entry of the truth

table matches. On the other hand, if we instead had

𝑓 (𝑎, 𝑏, 𝑐, 𝑑) = ¬𝑎 ∧ 𝑏 ∧ ¬𝑐

for example, we would be saying “𝑎 should be 0 and 𝑏 should be 1 and 𝑐 should be 0, and 𝑑 can be anything”

which gives two possible assignments (i.e., 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and either 𝑑 = 0 or 𝑑 = 1).

c Informally, SoP form means there are say 𝑛 terms in the expression: each term is the conjunction of some variables

(or their complement), and the expression is the disjunction of the terms. As conjunction and disjunction basically

means the AND and OR operators, and AND and OR act sort of like multiplication and addition, the SoP name

should make some sense: the expression is sort of like the sum of terms which are themselves each a product of

variables. The second option is correct as a result; the first and last violate the form described above somehow

(e.g., the first case is in the opposite, PoS form).

d One can easily make a comparison using a truth table such as

𝑎 𝑏 𝑎 ∨ 1 𝑎 ⊕ 1 ¬𝑎 𝑎 ∧ 1 ¬(𝑎 ∧ 𝑏) ¬𝑎 ∨ ¬𝑏
0 0 1 1 1 0 1 1

0 1 1 1 1 0 1 1

1 0 1 0 0 1 1 1

1 1 1 0 0 1 0 0

from which it should be clear that all the equations are correct except for the first one. That is, 𝑎 ∨ 1 ≠ 𝑎 but

rather 𝑎 ∨ 1 = 1.

e i Inspecting the following truth table

𝑎 ¬𝑎 ¬¬𝑎
0 1 0

0 1 0

1 0 1

1 0 1

shows this equivalence is correct (this is the involution axiom).

ii Inspecting the following truth table

𝑎 𝑏 ¬𝑎 ¬𝑏 𝑎 ∧ 𝑏 ¬(𝑎 ∧ 𝑏) ¬𝑎 ∨ ¬𝑏
0 0 1 1 0 1 1

0 1 1 0 0 1 1

1 0 0 1 0 1 1

1 1 0 0 1 0 0

shows this equivalence is correct (this is the de Morgan axiom).

git # b282dbb9 @ 2025-09-03 12

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

iii Inspecting the following truth table

𝑎 𝑏 ¬𝑎 ¬𝑏 ¬𝑎 ∧ 𝑏 𝑎 ∧ ¬𝑏
0 0 1 1 0 0

0 1 1 0 1 0

1 0 0 1 0 1

1 1 0 0 0 0

shows this equivalence is incorrect.

iv Inspecting the following truth table

𝑎 ¬𝑎 𝑎 ⊕ 𝑎
0 1 0

1 0 0

shows this equivalence is incorrect.

� S31. a The dual of any expression is constructed by using the principle of duality, which informally means

swapping each AND with OR (and vice versa) and each 0 with 1 (and vice versa); this means, for example, we

can take the OR form of each axiom and produce the AND form (and vice versa).

So in this case, we start with an OR form: this means the dual will the corresponding AND form. Making the

swaps required means we end up with

𝑥 ∧ 0 ≡ 0

so the second option is correct.

b This question is basically asking for the complement of 𝑓 , since the options each have ¬ 𝑓 on the left-hand side:

this means using the principle of complements, a generalisation of the de Morgan axiom, by swapping each

variable with the complement (and vice versa), each AND with OR (and vice versa), and each 0 with 1 (and vice

versa). If we apply these rules (taking care with the parenthesis) to

𝑓 = ¬𝑎 ∧ ¬𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∨ ¬𝑒 ,

we end up with

¬ 𝑓 = (𝑎 ∨ 𝑏) ∧ 𝑐 ∧ 𝑑 ∧ 𝑒
which matches the last option.

c The de Morgan axiom, which can be generalised using by the principle of complements, says that

¬(𝑥 ∧ 𝑦) ≡ ¬𝑥 ∨ ¬𝑦

or conversely that

¬(𝑥 ∨ 𝑦) ≡ ¬𝑥 ∧ ¬𝑦
You can think of either form as “pushing” the NOT operator on the left-hand side into the parentheses: this acts

to complement each variable, and swap the AND to an OR (or vice versa). We know that

𝑥 ∧ 𝑦 ≡ ¬(𝑥 ∧ 𝑦)
𝑥 ∨ 𝑦 ≡ ¬(𝑥 ∨ 𝑦)

So pattern matching against the options, it is clear the first one is correct, for example, because

𝑥 ∨ 𝑦 ≡ ¬(𝑥 ∨ 𝑦) ≡ ¬𝑥 ∧ ¬𝑦

where the right-hand side matches the description of an AND whose two inputs are complemented. Likewise,

the second one is correct because

𝑥 ∧ 𝑦 ≡ ¬(𝑥 ∧ 𝑦) ≡ ¬𝑥 ∨ ¬𝑦.

� S32. a The third option, i.e., ¬𝑎 ∧ ¬𝑏 is the correct one; the three simplification steps, via two axioms, are as

follows:

¬ (𝑎 ∨ 𝑏) ∧ ¬ (𝑐 ∨ 𝑑 ∨ 𝑒) ∨ ¬ (𝑎 ∨ 𝑏)
= (¬𝑎 ∧ ¬𝑏) ∧ ¬ (𝑐 ∨ 𝑑 ∨ 𝑒) ∨ (¬𝑎 ∧ ¬𝑏) (de Morgan)

= (¬𝑎 ∧ ¬𝑏) ∧ (¬𝑐 ∧ ¬𝑑 ∧ ¬𝑒) ∨ (¬𝑎 ∧ ¬𝑏) (de Morgan)

= ¬𝑎 ∧ ¬𝑏 (absorption)

git # b282dbb9 @ 2025-09-03 13

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

b We can clearly see that

(𝑎 ∨ 𝑏 ∨ 𝑐) ∧ ¬(𝑑 ∨ 𝑒) ∨ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑑 ∨ 𝑒)
= (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬(𝑑 ∨ 𝑒) ∨ (𝑑 ∨ 𝑒)) (distribution)

= (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ ((𝑑 ∨ 𝑒) ∨ ¬(𝑑 ∨ 𝑒)) (commutativity)

= (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ 1 (inverse)

= 𝑎 ∨ 𝑏 ∨ 𝑐 (identity)

meaning the first option is the correct one.

c We can clearly see that

𝑎 ∧ 𝑐 ∨ 𝑐 ∧ (¬𝑎 ∨ 𝑎 ∧ 𝑏)
= (𝑎 ∧ 𝑐) ∨ (𝑐 ∧ (¬𝑎 ∨ (𝑎 ∧ 𝑏))) (precedence)

= (𝑐 ∧ 𝑎) ∨ (𝑐 ∧ (¬𝑎 ∨ (𝑎 ∧ 𝑏))) (commutativity)

= 𝑐 ∧ (𝑎 ∨ ¬𝑎 ∨ (𝑎 ∧ 𝑏)) (distribution)

= 𝑐 ∧ (1 ∨ (𝑎 ∧ 𝑏)) (inverse)

= 𝑐 ∧ ((𝑎 ∧ 𝑏) ∨ 1) (commutativity)

= 𝑐 ∧ 1 (null)

= 𝑐 (identity)

meaning the last option is the correct one: none of the above is correct, since the correct simplification is actually

just 𝑐.

d The fourth option, i.e., 𝑎 ∧ 𝑏 is correct. This basically stems from repeated application of the absorption axiom,

the AND form of which states

𝑥 ∨ (𝑥 ∧ 𝑦) ≡ 𝑥.

Applying it from left-to-right, we find that

𝑎 ∧ 𝑏 ∨ 𝑎 ∧ 𝑏 ∧ 𝑐 ∨ 𝑎 ∧ 𝑏 ∧ 𝑐 ∧ 𝑑 ∨ 𝑎 ∧ 𝑏 ∧ 𝑐 ∧ 𝑑 ∧ 𝑒 ∨ 𝑎 ∧ 𝑏 ∧ 𝑐 ∧ 𝑑 ∧ 𝑒 ∧ 𝑓
= (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑏) ∧ (𝑐) ∨ (𝑎 ∧ 𝑏) ∧ (𝑐 ∧ 𝑑) ∨ (𝑎 ∧ 𝑏) ∧ (𝑐 ∧ 𝑑 ∧ 𝑒) ∨ (𝑎 ∧ 𝑏) ∧ (𝑐 ∧ 𝑑 ∧ 𝑒 ∧ 𝑓) (precedence)

= (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑏) ∧ (𝑐 ∧ 𝑑) ∨ (𝑎 ∧ 𝑏) ∧ (𝑐 ∧ 𝑑 ∧ 𝑒) ∨ (𝑎 ∧ 𝑏) ∧ (𝑐 ∧ 𝑑 ∧ 𝑒 ∧ 𝑓) (absorption)

= (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑏) ∧ (𝑐 ∧ 𝑑 ∧ 𝑒) ∨ (𝑎 ∧ 𝑏) ∧ (𝑐 ∧ 𝑑 ∧ 𝑒 ∧ 𝑓) (absorption)

= (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑏) ∧ (𝑐 ∧ 𝑑 ∧ 𝑒 ∧ 𝑓) (absorption)

= (𝑎 ∧ 𝑏) (absorption)

e We can simplify this function as follows

𝑓 (𝑎, 𝑏, 𝑐) = (𝑎 ∧ 𝑏) ∨ 𝑎 ∧ (𝑎 ∨ 𝑐) ∨ 𝑏 ∧ (𝑎 ∨ 𝑐)
= (𝑎 ∧ 𝑏) ∨ 𝑎 ∨ 𝑏 ∧ (𝑎 ∨ 𝑐) (absorbtion)

= 𝑎 ∨ (𝑎 ∧ 𝑏) ∨ 𝑏 ∧ (𝑎 ∨ 𝑐) (commutitivity)

= 𝑎 ∨ 𝑏 ∧ (𝑎 ∨ 𝑐) (absorbtion)

= 𝑎 ∨ (𝑏 ∧ 𝑎) ∨ (𝑏 ∧ 𝑐) (distribution)

= 𝑎 ∨ (𝑎 ∧ 𝑏) ∨ (𝑏 ∧ 𝑐) (commutitivity)

= 𝑎 ∨ (𝑏 ∧ 𝑐) (commutitivity)

at which point there is nothing else that can be done: we end up with 2 operators (and AND and an OR), so the

second option is correct.

f Working from the right-hand side toward the left, we have that

¬𝑥 ∨ ¬𝑦
= (¬𝑥 ∧ 1) ∨ ¬𝑦 (identity)

= (¬𝑥 ∧ 1) ∨ (¬𝑦 ∧ 1) (identity)

= (¬𝑥 ∧ (𝑦 ∨ ¬𝑦)) ∨ (¬𝑦 ∧ 1) (inverse)

= (¬𝑥 ∧ (𝑦 ∨ ¬𝑦)) ∨ (¬𝑦 ∧ (𝑥 ∨ ¬𝑥)) (inverse)

= (¬𝑥 ∧ 𝑦) ∨ (¬𝑥 ∧ ¬𝑦) ∨ (¬𝑦 ∧ (𝑥 ∨ ¬𝑥)) (distribution)

= (¬𝑥 ∧ 𝑦) ∨ (¬𝑥 ∧ ¬𝑦) ∨ (¬𝑦 ∧ 𝑥) ∨ (¬𝑦 ∧ ¬𝑥) (distribution)

= (¬𝑥 ∧ 𝑦) ∨ (¬𝑦 ∧ 𝑥) ∨ (¬𝑥 ∧ ¬𝑦) ∨ (¬𝑥 ∧ ¬𝑦) (commutativity)

= (¬𝑥 ∧ 𝑦) ∨ (¬𝑦 ∧ 𝑥) ∨ (¬𝑥 ∧ ¬𝑦) (idempotency)

g By writing

𝑡0 = 𝑥 ∧ 𝑦
𝑡1 = 𝑦 ∧ 𝑧
𝑡2 = 𝑦 ∨ 𝑧
𝑡3 = 𝑥 ∨ 𝑧
𝑡4 = 𝑡1 ∧ 𝑡2

git # b282dbb9 @ 2025-09-03 14

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

we can shorten the LHS and RHS to

𝑓 = 𝑡0 ∨ 𝑡4
𝑔 = 𝑦 ∧ 𝑡3

and then perform a brute-force enumeration

𝑥 𝑦 𝑧 𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑓 𝑔

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 1 0 0 0

0 1 0 0 0 1 0 0 0 0

0 1 1 0 1 1 1 1 1 1

1 0 0 0 0 0 1 0 0 0

1 0 1 0 0 1 1 0 0 0

1 1 0 1 0 1 1 0 1 1

1 1 1 1 1 1 1 1 1 1

to demonstrate that 𝑓 = 𝑔, i.e., the equivalence holds. Note that this approach is not as robust if the intermediate

steps are not shown; simply including 𝑓 and 𝑔 in the truth table does not give much more confidence that simply

writing the equivalence!

To prove the equivalence using an axiomatic approach, the following steps can be applied:

(𝑥 ∧ 𝑦) ∨ (𝑦 ∧ 𝑧 ∧ (𝑦 ∨ 𝑧))
= (𝑥 ∧ 𝑦) ∨ (𝑦 ∧ 𝑧 ∧ 𝑦) ∨ (𝑦 ∧ 𝑧 ∧ 𝑧) (distribution)

= (𝑥 ∧ 𝑦) ∨ (𝑦 ∧ 𝑦 ∧ 𝑧) ∨ (𝑦 ∧ 𝑧 ∧ 𝑧) (commutativity)

= (𝑥 ∧ 𝑦) ∨ (𝑦 ∧ 𝑧) ∨ (𝑦 ∧ 𝑧) (idempotency)

= (𝑥 ∧ 𝑦) ∨ (𝑦 ∧ 𝑧) (idempotency)

= (𝑦 ∧ 𝑥) ∨ (𝑦 ∧ 𝑧) (commutativity)

= 𝑦 ∧ (𝑥 ∨ 𝑧) (distribution)

h Using four simplification steps, via three axioms and the AND operator, as follows

¬(𝑎 ∨ 𝑏) ∧ ¬(¬𝑎 ∨ ¬𝑏)
= (¬𝑎 ∧ ¬𝑏) ∧ (𝑎 ∧ 𝑏) (de Morgans)

= (¬𝑎 ∧ 𝑎) ∧ (¬𝑏 ∧ 𝑏) (association)

= (¬𝑎 ∧ 𝑎) ∧ (¬𝑏 ∧ 𝑏) (identity)

= false ∧ false (operator)

= false

we get a form that contains zero operators (which by definition must be the fewest).

Part II: Basics of digital logic: general

� S33. We can deal with the first two statements in one go: an N-MOSFET (or N-type MOSFET) has N-type

semiconductor terminals and a P-type body. If the type of semiconductors were swapped, we have a P-MOSFET

(or P-type MOSFET) not an N-MOSFET.

A CMOS cell is a pairing of two transistors. However, it depends on use of complementary types, namely one

N-type and one P-type, rather than the same type as suggested. As such, this statement is incorrect (although

subtly so).

A given N-MOSFET is deemed active (resp. inactive) when current is allowed (resp. disallowed) to flow. The

flow is, in some sense, controlled by the voltage level applied: it acts to widen or narrow the associated depletion

region. At some threshold, “enough” voltage is applied for there to be “enough” current flowing for source and

drain to be deemed connected and hence the MOSFET active. So this statement is true, although arguably some

detail is glossed over (e.g., the fact a leakage current will always exist, so a transistor is always a little bit active).

� S34. This is a NAND gate, so clearly there are two inputs and one output: by inspecting the circuit we can see

them labelled 𝑥, 𝑦 and 𝑟, plus identify the two power rails labelled𝑉𝑑𝑑 and𝑉𝑠𝑠 . The output 𝑟 is “pulled-up” to the

𝑉𝑑𝑑 voltage level iff. a connection is made via one or other of the top two transistors. Their parallel arrangement

gives a hint at their type, even if the system is not recognisable. If we look at the truth table for NAND, i.e.,

git # b282dbb9 @ 2025-09-03 15

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝑥 𝑦 𝑟

0 0 1

0 1 1

1 0 1

1 1 0

then if either 𝑥 = 0 or 𝑦 = 0 then 𝑟 = 1, where 𝑉𝑠𝑠 ≡ 0 and 𝑉𝑑𝑑 ≡ 1: these must be P-MOSFETS, therefore, because

we want a connection to be formed between 𝑟 and 𝑉𝑑𝑑 if 𝑥 = 𝑉𝑠𝑠 or 𝑦 = 𝑉𝑠𝑠 . There is, of course, a companion

pull-down network allowing 𝑟 to be “pulled-down” to the 𝑉𝑠𝑠 voltage level. However, this is constructed from a

sequential arrangement of N-MOSFETS: we did not study BJT transistors, which represent a different technology

from MOSFETs.

Finally, note that it is highly unlikely you will see a flux capacitor in a circuit other than during Back To The

Future!

� S35. Provided you know what the behaviour of the pull-up network (top, consisting of P-MOSFETs) and pull-

down network (bottom, consisting of N-MOSFETs) is, it is reasonably easy (if long winded) to answer the question

by looking at a case-by-case analysis. A more efficient way is to spot the sequential and parallel organisation of

MOSFETs:

• If 𝑥 = 𝑉𝑠𝑠 , 𝑦 and 𝑧 are irrelevant because a connection between 𝑟 and 𝑉𝑑𝑑 is formed (via the bottom-left

P-MOSFET), while a connection between 𝑟 and 𝑉𝑑𝑑 is impossible (due to the top N-MOSFET).

• If 𝑥 = 𝑉𝑑𝑑, 𝑦 and 𝑧 are relevant:

– If 𝑦 = 𝑉𝑠𝑠 , 𝑧 = 𝑉𝑠𝑠 then a path between 𝑟 and 𝑉𝑠𝑠 is impossible; in this case, however, a path between 𝑟 and

𝑉𝑑𝑑 is formed (via the top P-MOSFETs).

– If 𝑦 = 𝑉𝑠𝑠 , 𝑧 = 𝑉𝑑𝑑 then a path between 𝑟 and 𝑉𝑠𝑠 is formed (via the top and bottom-right N-MOSFETs).

– If 𝑦 = 𝑉𝑑𝑑, 𝑧 = 𝑉𝑠𝑠 then a path between 𝑟 and 𝑉𝑠𝑠 is formed (via the top and bottom-left N-MOSFETs).

– If 𝑦 = 𝑉𝑑𝑑, 𝑧 = 𝑉𝑑𝑑 then a path between 𝑟 and 𝑉𝑑𝑑 is impossible; in this case, however, a path between 𝑟 and

𝑉𝑠𝑠 is formed (via the bottom N-MOSFETs).

So given 𝑉𝑠𝑠 ≡ 0 and 𝑉𝑑𝑑 ≡ 1, we can write

𝑥 𝑦 𝑧 𝑟 = 𝑓 (𝑥, 𝑦, 𝑧)
0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

which, translated into an expression, is 𝑟 = ¬(𝑥 ∧ (𝑦 ∨ 𝑧) or ¬𝑥 ∨ (¬𝑦 ∧¬𝑧) if you prefer: basically 𝑟 = 1 if 𝑥 = 0 or

both 𝑦 = 0 and 𝑧 = 0, otherwise 𝑟 = 0.

� S36. This question is tricky, in the sense there are lots of ways an XOR gate can be constructed using logic gate

instances. One can show, for example, that 𝑥 ⊕ 𝑦 is equivalent to

a (¬𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ¬𝑦),
b (𝑥 ∨ 𝑦) ∧ ¬(𝑥 ∧ 𝑦),
c 𝑡0 ∧ 𝑡1 where 𝑡0 = (𝑥 ∧ 𝑥) ∧ 𝑦 and 𝑡1 = (𝑦 ∧ 𝑦) ∧ 𝑥, or

d 𝑡1 ∧ 𝑡2 where 𝑡0 = 𝑥 ∧ 𝑦, 𝑡1 = 𝑥 ∧ 𝑡0, and 𝑡2 = 𝑦 ∧ 𝑡0,

e (𝑥 ∨ 𝑦) ∨ ¬(𝑥 ∧ 𝑦)
and potentially more besides: note that the question rules out the otherwise viable option of directly using

transistors, for example.

To compare the options, the starting point is how each logic gate we could use will be realised using transistors.

In reality this may increase the range of possible answers even further, but to provide an answer imagine that we

only consider the four options above, and assume that

NOT ; 2 transistors

NAND ; 4 transistors

NOR ; 4 transistors

AND ; 6 transistors

OR ; 6 transistors

git # b282dbb9 @ 2025-09-03 16

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

i.e., since we know we can construct NOT, NAND and NOR using the stated number of MOSFET-based transistors,

the best way to form AND and OR is simply to append a NOT to a NAND or NOR. This means we can just count

the logic gate instances, and translate:

2 ·NOT + 2 ·AND + 1 ·OR ; 22 transistors

1 ·NOT + 2 ·AND + 1 ·OR ; 20 transistors

5 ·NAND ; 20 transistors

4 ·NAND ; 16 transistors

1 ·NOT + 1 ·NAND + 2 ·NOR ; 14 transistors

Based on this 14 is the correct answer, although keep in mind it might be possible to do better based on using a

different set of options (for XOR) and assumptions.

� S37. This is quite a tricky question, in the sense there are several plausible answers: selecting between them

really needs some justification, which of course is impossible with a multiple choice question! It is important

to keep in mind that the question focuses on design of some behaviour based on transistors, not precision wrt.

manufacture of the design. Put another way, the question is intentionally pitched at a high-level, with the various

caveats attempting to limit the possible answers:

a It might seem possible to use 0 transistors, in that one can just connect 𝑥 directly to 𝑟. This may realise the pass

through behaviour required, but does not impose a delay (and more generally does not satisfy use-cases for

current or voltage buffers) so is not really valid.

b One could implement a buffer using 1 N-MOSFET transistor, say, in series with a pull-down resistor: the idea is

that when 𝑥 = 𝑉𝑑𝑑 the transistor connects 𝑟 to 𝑉𝑑𝑑, otherwise the resistor pulls 𝑟 down to 𝑉𝑠𝑠 .

However, the material provided does not cover use of resistors: the question caters for this by asking for an

implementation using only transistors, and not listing 1 as an answer! This is justified further by the fact by

placing an emphasis on CMOS, using only an N-MOSFET might seem confusing therefore (given the argument

that N- and P-MOSFETs occur in pairs as part of a pull-down and pull-up network). So although this is arguably

the best answer, it is not the expected one!

c One could start by considering a NOT gate implementation, which will clearly invert 𝑥. It does so via a P-

MOSFET that connects𝑉𝑑𝑑 to 𝑟, and an N-MOSFET that connects𝑉𝑠𝑠 to 𝑟. As such, when 𝑥 = 𝑉𝑠𝑠 (resp. 𝑥 = 𝑉𝑑𝑑)
the P-MOSFET will be connected and N-MOSFET disconnected (resp. vice versa) meaning that 𝑟 = 𝑉𝑑𝑑 ≃ ¬𝑥
(resp. 𝑟 = 𝑉𝑠𝑠 ≃ ¬𝑥). A somewhat simple observation is that if we swap the P- and N-MOSFETs, we end up with

a buffer. That is, if the P-MOSFET connects 𝑉𝑠𝑠 to 𝑟 and the N-MOSFET connects 𝑉𝑑𝑑 to 𝑟, then the behaviour

swaps st. if 𝑥 = 𝑉𝑑𝑑 (resp. 𝑥 = 𝑉𝑠𝑠) then 𝑟 = 𝑉𝑑𝑑 ≃ 𝑥 (resp. 𝑟 = 𝑉𝑠𝑠 ≃ 𝑥).

So 2 transistors is a reasonable answer if we assume it is possible to organise them this way. In reality, this is

debatable: it is the opposite of normal pull-down and pull-up networks connected to 𝑉𝑑𝑑 and 𝑉𝑠𝑠 , so may not be

reasonable under the constraints of a given manufacturing process. However, the question is careful to ask for

an unconstrained organisation for transistors, so the assumption is allowed.

d Finally, one could simply use two NOT gate implementations in series with each other: this inverts 𝑥 twice,

computing 𝑟 = ¬¬𝑥 = 𝑥 using 4 transistors. This approach needs no assumptions, but on the other hand is

obviously not very efficient wrt. the number of transistors used.

In summary then, 2 transistors is a correct (or the expected) answer in this case (although you could quite

reasonably argue for other answers).

� S38. From the truth table, one can form a Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

1
0

1
1

0
2

1
3

0
4

1
5

?
6

1
7

which includes two groups: unlike some other examples, the don’t care in this case is uncovered (i.e., we treat it

as 0) since we cannot make fewer or larger groups by covering it (i.e., treating it as 1). Even so, translating each

group into a term yields the SoP expression

𝑟 = 𝑓 (𝑥, 𝑦, 𝑧) = (¬𝑥 ∧ ¬𝑦) ∨ 𝑧

git # b282dbb9 @ 2025-09-03 17

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

which is the correct answer: the fact this is the only one in SoP form at least hints at the correct answer even

without going through the above.

� S39. To answer this question, the idea is that we

• use a 3-level cascade to produce an 8-input, 1-bit multiplexer, then

• replicate this 8 times to produce an 8-input, 8-bit multiplexer

using a generic 2-input, 1-bit multiplexer whose behaviour can be described as

𝑟 =

{
𝑥 if 𝑐 = 0

𝑦 otherwise

i.e., it selects the input 𝑥 (i.e., connects the output 𝑟 to 𝑥) if the control signal 𝑐 = 0, and selects the input 𝑦 (i.e.,

connects the output 𝑟 to 𝑦) if the control signal 𝑐 = 1.

Imagine the 8, 1-bit inputs are named 𝑠, 𝑡, 𝑢, 𝑣, 𝑤, 𝑥, 𝑦 and 𝑧 and there is a 3-bit control signal 𝑐 (to select

between 2
3 = 8 inputs). The cascade of 2-input, 1-bit multiplexers is constructed as follows

𝑡0 =

{
𝑠 if 𝑐0 = 0

𝑡 otherwise

𝑡1 =

{
𝑢 if 𝑐0 = 0

𝑣 otherwise

𝑡2 =

{
𝑤 if 𝑐0 = 0

𝑥 otherwise

𝑡3 =

{
𝑦 if 𝑐0 = 0

𝑧 otherwise

𝑡4 =

{
𝑡0 if 𝑐1 = 0

𝑡1 otherwise

𝑡5 =

{
𝑡2 if 𝑐1 = 0

𝑡3 otherwise

𝑟 =

{
𝑡4 if 𝑐2 = 0

𝑡5 otherwise

noting there are 3 layers (i.e., they form a tree of depth 3). Using a table such as

𝑐 𝑐2 𝑐1 𝑐0 𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑟

0 0 0 0 𝑠 𝑢 𝑤 𝑦 𝑠 𝑤 𝑠
1 0 0 1 𝑡 𝑣 𝑥 𝑧 𝑡 𝑥 𝑡
2 0 1 0 𝑠 𝑢 𝑤 𝑦 𝑢 𝑦 𝑢
3 0 1 1 𝑡 𝑣 𝑥 𝑧 𝑣 𝑧 𝑣
4 1 0 0 𝑠 𝑢 𝑤 𝑦 𝑠 𝑤 𝑤
5 1 0 1 𝑡 𝑣 𝑥 𝑧 𝑡 𝑥 𝑥
6 1 1 0 𝑠 𝑢 𝑤 𝑦 𝑢 𝑦 𝑦
7 1 1 1 𝑡 𝑣 𝑥 𝑧 𝑣 𝑧 𝑧

makes it clear the 𝑐-th input is selected as the output 𝑟. Given such a component, we then just replicate it 8 times:

the same control signal is used for each 𝑖-th replication, which then produces the 𝑖-th bit of 𝑟 by selecting between

the 𝑖-th bits of the 8-bit inputs 𝑠 through to 𝑧.

We use 7 instances of the 2-input, 1-bit multiplexer for each of the cascades; there are 8 replicated cascades, so

the correct answer is that we need 7 · 8 = 56 instances.

� S40. First, notice that the critical path (or longest sequential path) runs through the 4 full-adder instances (as a

result of the carry chain): the 3-rd (most-significant) instance cannot produce either 𝑐𝑜 = 𝑐4 or 𝑟3 until the carry

propagates from the 0-th (least-significant) instance, and so is dependent on 𝑐𝑖 = 𝑐0, 𝑥0, and 𝑦0).

Next, we need some detail about each full-adder instance: the 𝑖-th such instance will compute the sum and

carry-out

𝑟𝑖 = 𝑥𝑖 ⊕ 𝑦𝑖 ⊕ 𝑐𝑖
𝑐𝑖+1 = (𝑥𝑖 ∧ 𝑦𝑖) ∨ (𝑥𝑖 ∧ 𝑐𝑖) ∨ (𝑦𝑖 ∧ 𝑐𝑖)

= (𝑥𝑖 ∧ 𝑦𝑖) ∨ ((𝑥𝑖 ⊕ 𝑦𝑖) ∧ 𝑐𝑖)

from summands 𝑥𝑖 and 𝑦𝑖 , plus the carry-in 𝑐𝑖 (where 𝑐0 = 𝑐𝑖 and 𝑐𝑜 = 𝑐4). There are two different options for

git # b282dbb9 @ 2025-09-03 18

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝑐𝑖+1, so, for the quoted gate delays, we find the critical paths from input to output can be described as:

Input(s) Output(s) Critical path

𝑥𝑖 , 𝑦𝑖 𝑟𝑖 𝑇𝑋𝑂𝑅 + 𝑇𝑋𝑂𝑅 = 120ns

𝑐𝑖 𝑟𝑖 𝑇𝑋𝑂𝑅 = 60ns

Option 1

𝑥𝑖 , 𝑦𝑖 𝑐𝑖+1 𝑇𝐴𝑁𝐷 + 𝑇𝐼𝑂𝑅 + 𝑇𝐼𝑂𝑅 = 60ns

𝑐𝑖 𝑐𝑖+1 𝑇𝐴𝑁𝐷 + 𝑇𝐼𝑂𝑅 + 𝑇𝐼𝑂𝑅 = 60ns

Option 2

𝑥𝑖 , 𝑦𝑖 𝑐𝑖+1 𝑇𝑋𝑂𝑅 + 𝑇𝐴𝑁𝐷 + 𝑇𝐼𝑂𝑅 = 100ns

𝑐𝑖 𝑐𝑖+1 𝑇𝐴𝑁𝐷 + 𝑇𝐼𝑂𝑅 = 40ns

The correct answer will clearly differ depending on the option we select for 𝑐𝑖+1, but imagine we select the latter:

irrespective of whether it is better or worse, it matches the lecture slide(s). As such, we can deduce the following:

• For the 0-th full-adder instance, it takes 100ns to generate 𝑐1 from 𝑐0, 𝑥0, and 𝑦0.

• For the 1-st full-adder instance, it takes 40ns to generate 𝑐2 from 𝑐1, The reason it is not 100ns, as you might

expect, is because the gate computing 𝑥1 ⊕ 𝑦1 can produce an output before 𝑐1 is available; this means it does not

contribute to the critical path.

• For the 2-nd full-adder instance, it takes 40ns to generate 𝑐3 from 𝑐2, 𝑥2, and 𝑦2. The reason it is not 100ns, as

you might expect, is because the gate computing 𝑥2 ⊕ 𝑦2 can produce an output before 𝑐2 is available; this means

it does not contribute to the critical path.

• For the 3-rd instance, it takes 40ns to generate 𝑐4 from 𝑐3, The reason it is not 100ns, as you might expect, is

because the gate computing 𝑥3 ⊕ 𝑦3 can produce an output before 𝑐3 is available; this means it does not contribute

to the critical path. Likewise, it takes 60ns to generate 𝑟3 from 𝑐3, 𝑥3, and 𝑦3; for the same reason as above, this

is not 120ns as you might expect.

So the critical path is 220ns wrt. 𝑐4 and 240ns wrt. 𝑟3, and therefore 240ns overall. It turns out applying similar

reasoning to the former option yields a slightly longer critical path of 240ns wrt. 𝑐4 because

• For the 0-th full-adder instance, it takes 60ns to generate 𝑐1 from 𝑐0, 𝑥0, and 𝑦0.

• For the 1-st full-adder instance, it takes 60ns to generate 𝑐2 from 𝑐1, 𝑥1, and 𝑦1.

• For the 2-nd full-adder instance, it takes 60ns to generate 𝑐3 from 𝑐2, 𝑥2, and 𝑦2.

• For the 3-rd instance, it takes 60ns to generate 𝑐4 from 𝑐3, 𝑥3, and 𝑦3, and 60ns to generate 𝑟3 from 𝑐3, 𝑥3, and 𝑦3.

The reason it is not 120ns, as you might expect, is because the gate computing 𝑥3 ⊕ 𝑦3 can produce an output

before 𝑐3 is available; this means it does not contribute to the critical path.

but this has no impact on the answer, which is still 240ns overall.

� S41. The optimisation they are suggested is captured by the following:

𝑐𝑜

𝑠
𝑥
𝑦

𝑐𝑜

𝑠
𝑥
𝑦

𝑐𝑜

𝑠
𝑥
𝑦

𝑐𝑜

𝑠
𝑥
𝑦

𝑥0 𝑟0 𝑥1 𝑟1 𝑥2 𝑟2 𝑥3 𝑟3

𝑐𝑖
𝑐𝑜

Put another way, their idea implies the half-adders used no longer have a carry-in. This is not a problem in terms

of computing an addition: we can still use the two available inputs (vs. three for a full-adder) to provide one

operand (i.e., 𝑥𝑖 , the 𝑖-th bit of 𝑥) plus a carry-in from the previous half-adder instance. However, clearly this is not

the same addition as previously, since the input we would use to provide the other operand is no longer available.

That is, we can select 𝑥 as normal, but can no longer provide a 𝑦 input (the half-adders use that for to propagate

the carry).

Other than 𝑥, the only other input we can control is 𝑐𝑖 which acts as the overall carry-in to the addition. Since

𝑐𝑖 ∈ {0, 1}, this means 𝑦 = 0 and 𝑦 = 1 are the correct answers.

� S42. Recall that a 2-input XOR operator can be described via the following truth table:

𝑥 𝑦 𝑟

0 0 0

0 1 1

1 0 1

1 1 0

git # b282dbb9 @ 2025-09-03 19

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

Crucially, this demonstrates that

𝑥 ⊕ 𝑥 ≡ 0

and

𝑥 ⊕ 0 ≡ 𝑥,
and hence

𝑥 ⊕ 𝑥 ⊕ 𝑦 ≡ 𝑦
for any 𝑥 and 𝑦.

Using these axioms, we can write expressions to describe the output of each XOR gate, and hence each overall

output 𝑟𝑖 . Inspecting the circuit from left-to-right and top-to-bottom, we can show

𝑡0 = 𝑥0 ⊕ 𝑥2

𝑡1 = 𝑥1 ⊕ 𝑥3

𝑟0 = 𝑡2 = 𝑥0 ⊕ 𝑡0 = 𝑥0 ⊕ 𝑥0 ⊕ 𝑥2 = 𝑥2

𝑟1 = 𝑡3 = 𝑥1 ⊕ 𝑡1 = 𝑥1 ⊕ 𝑥1 ⊕ 𝑥3 = 𝑥3

𝑟2 = 𝑡4 = 𝑡0 ⊕ 𝑡2 = 𝑥0 ⊕ 𝑥2 ⊕ 𝑥2 = 𝑥0

𝑟3 = 𝑡5 = 𝑡1 ⊕ 𝑡3 = 𝑥1 ⊕ 𝑥3 ⊕ 𝑥3 = 𝑥1

st. it becomes clear 𝑟0 = 𝑥2, 𝑟1 = 𝑥3, 𝑟2 = 𝑥0, and 𝑟3 = 𝑥1, i.e., the most- and least-significant 2-bit halves of 𝑥 are

swapped over to produce 𝑟.

� S43. a Although alternative organisations of the variables may alter the form, a representative Karnaugh map

would be:

00 01 11 10

00

01

11

10

𝑟 = 𝑓 (𝑤, 𝑥, 𝑦, 𝑧)

𝑦

𝑤

𝑧

𝑥

0
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

?
8

1
9

1
10

0
11

0
12

1
13

1
14

0
15

The most efficient approach would attempt to form the fewest groups possible, and the largest groups possible:

these will combine to minimise the number and complexity of each term in the resulting expression. As such,

the 1 entries can be covered by 4 groups per

00 01 11 10

00

01

11

10

𝑟 = 𝑓 (𝑤, 𝑥, 𝑦, 𝑧)

𝑦

𝑤

𝑧

𝑥

0
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

?
8

1
9

1
10

0
11

0
12

1
13

1
14

0
15

noting that a) each group covers 4 entries (with certain entries covered more than once), b) the don’t care is

assumed to be 0 and therefore remains uncovered, and c) 2 of the groups, in center rows and columns, wrap

around the left and right, and top and bottom edges respectively.

b Performing the translation as is, we find that

𝑟 = 𝑓 (𝑤, 𝑥, 𝑦, 𝑧) = (¬𝑥 ∧ 𝑧) ∨
(𝑥 ∧ ¬𝑧) ∨
(𝑥 ∧ ¬𝑦) ∨
(𝑤 ∧ ¬𝑦)

git # b282dbb9 @ 2025-09-03 20

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

This expression requires 4 NOT, 4 AND, and 3 OR operators and so 4 + 4 + 3 = 11 in total. To further

reduce the number of operators, we can apply various optimisation steps. First, it is possible to show that

(¬𝑥 ∧ 𝑧) ∨ (𝑥 ∧ ¬𝑧) ≡ 𝑥 ⊕ 𝑧, meaning we collapse two terms into one term (involving one XOR). Second, the

term ¬𝑦 is used in two terms; we can compute the result once, using one NOT, and share it between the terms.

In combination, we produce the alternative

𝑟 = 𝑓 (𝑤, 𝑥, 𝑦, 𝑧) = (𝑥 ⊕ 𝑧) ∨
(𝑥 ∧ 𝑡) ∨
(𝑤 ∧ 𝑡)

where 𝑡 = ¬𝑦. However, finally, it is possible to apply the distribution axiom to the latter two terms: by rewriting

it as

𝑟 = 𝑓 (𝑤, 𝑥, 𝑦, 𝑧) = ((𝑥 ⊕ 𝑧)) ∨
(𝑡 ∧ (𝑥 ∨ 𝑤))

we produce an expression that requires 1 NOT, 1 AND, 2 OR and 1 XOR operators and so 1 + 2 + 2 + 1 = 5 in

total.

� S44. For SR-type latch and flip-flop components, we expect at least 𝑆, 𝑅 and 𝑒𝑛 inputs and a𝑄 output; in contrast,

for the D-type (resp. T-type) latch and flip-flop components we expect 𝐷 (resp. 𝑇) and 𝑒𝑛 inputs and a 𝑄 output

which match. Even based on the argument that we might have 𝑄 and ¬𝑄 from one or other, this at least makes

the former less likely. Additionally, we might expect 𝑆 and 𝑅 to be used in a controlled way so as to avoid a

problematic meta-stable state; there are instances where 𝑥 = 𝑦 = 𝑧 = 1 and 𝑥 = 𝑦 = 𝑧 = 0, so this control is not

clearly being applied.

Narrowing down the choices further requires interpretation of the signal labelling and behaviour. While

somewhat tricky, it should be clear that the value of 𝑧 changes to match 𝑦 while 𝑥 = 1 and is unchanged when

𝑥 = 0. Crucially, it is not the case that 𝑧 changes to match 𝑦 only at the point where 𝑥 transitions from 0 to 1 (or 1

to 0): as shown in the right-hand portion of the waveform, 𝑧 changes at any point that 𝑥 = 1. As such, we infer

the component is likely to be a level-triggered latch not an edge triggered flip-flop. Additionally, 𝑧 does not toggle

between 0 and 1 while 𝑥 = 1; it matches whatever 𝑦 is.

In summary therefore, i.e., having ruled out a) SR-type components, b) flip-flop components, and c) a T-type

flip-flop, we conclude that the correct answer is a D-type latch: 𝑥 represents the enable signal 𝑒𝑛, 𝑦 represents the

input 𝐷 and 𝑧 represents the output 𝑄.

� S45. First, recall that the truth table for NAND is

𝑥 𝑦 𝑟

0 0 1

0 1 1

1 0 1

1 1 0

If one or other (or both) of 𝑥 and 𝑦 is equal to 0 then the output 𝑟 must be 1: only when 𝑥 and 𝑦 equal 1 do we get 𝑟
equal to 0. This gives a useful way to ascertain the behaviour of the circuit, in the sense we can enumerate the set

of consistent states it can be in:

a If 𝑆 = 0 then the top NAND gate must output 1, and if 𝑅 = 0 then the bottom NAND gate must output 1. That

is, 𝑆 = 0 and 𝑅 = 0 means we have 𝑄 = 1 and ¬𝑄 = 1.

b If 𝑅 = 0 then the bottom NAND gate must output 1, so if 𝑆 = 1 then the top NAND gate outputs 1 ∧ 1 = 0. That

is, 𝑆 = 1 and 𝑅 = 0 means we have 𝑄 = 0 and ¬𝑄 = 1.

c If 𝑆 = 0 then the top NAND gate must output 1, so if 𝑅 = 1 then the bottom NAND gate outputs 1 ∧ 1 = 0. That

is, 𝑆 = 0 and 𝑅 = 1 means we have 𝑄 = 1 and ¬𝑄 = 0.

d If 𝑆 = 1 and 𝑅 = 1 then one of two possibilities can apply: either

i the top NAND gate outputs 0, meaning the bottom NAND gate outputs 0 ∧ 1 = 1 (which is consistent with

the top gate computing 1 ∧ 1 = 0)

ii the bottom NAND gate outputs 0, meaning the top NAND gate outputs 0 ∧ 1 = 1 (which is consistent with

the bottom gate computing 1 ∧ 1 = 0).

Put another way, 𝑆 = 𝑅 = 0 is the meta-stable state (which is inconsistent in the sense wrt. 𝑄 = ¬𝑄: they should

differ) and 𝑆 = 𝑅 = 1 is the storage state (which retains whatever values 𝑄 and ¬𝑄 have already); 𝑆 = 0 and 𝑅 = 1

sets 𝑄 = 1, while 𝑆 = 1 and 𝑅 = 0 resets 𝑄 = 0, whatever the currently value of 𝑄 is. As such, the second excitation

table is correct (the first one is for a NOR-based SR-latch), noting this is sort of the inverse of a NOR-based SR-latch

wrt. the meaning of 𝑆 and 𝑅.

git # b282dbb9 @ 2025-09-03 21

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

p
r
i
m

a
r
y

m
u

l
t
i
p

l
e
x
e
r

i
n

p
a
s
s
-
t
h

r
o
u

g
h

m
o
d

e

s
e
c
o
n

d
a
r
y

m
u

l
t
i
p

l
e
x
e
r

i
n

s
t
o
r
a
g
e

m
o
d

e

p
r
i
m

a
r
y

m
u

l
t
i
p

l
e
x
e
r

i
n

s
t
o
r
a
g
e

m
o
d

e

s
e
c
o
n

d
a
r
y

m
u

l
t
i
p

l
e
x
e
r

i
n

p
a
s
s
-
t
h

r
o
u

g
h

m
o
d

e

p
r
i
m

a
r
y

m
u

l
t
i
p

l
e
x
e
r

i
n

p
a
s
s
-
t
h

r
o
u

g
h

m
o
d

e

s
e
c
o
n

d
a
r
y

m
u

l
t
i
p

l
e
x
e
r

i
n

s
t
o
r
a
g
e

m
o
d

e

p
o
s
i
t
i
v
e

e
d

g
e

o
n
𝑏

𝛼
l
a
t
c
h

e
d

b
y

p
r
i
m

a
r
y

m
u

l
t
i
p

l
e
x
e
r

n
e
g
a
t
i
v
e

e
d

g
e

o
n
𝑏

𝛼
l
a
t
c
h

e
d

b
y

s
e
c
o
n

d
a
r
y

m
u

l
t
i
p

l
e
x
e
r

Figure 1: A time line illustrating behaviour of a multiplexer-based, primary-secondary flip-flop.

git # b282dbb9 @ 2025-09-03 22

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S46. This is quite a tricky question, but the central feature to note, for both multiplexers in the circuit, is the loop

between output and (an) input:

• in the left-hand case the loop connects the multiplexer output, say 𝑡0, to the 𝑦 input, whereas

• in the right-hand case the loop connects the multiplexer output, say 𝑡1, to the 𝑥 input.

In both cases, this allows a 1-bit value to be stored by “holding” it in the loop. Put another way, when 𝑏 = 0 then

𝑡0 = 𝑎 since the 𝑥 input is selected; when 𝑏 = 1, however, whatever value 𝑡0 has is fed back into the multiplexer.

This is conceptually similar to how SRAM cells work, for example. In that case we had a loop through two NOT

gates that acted to refresh (or reinforce) the stored value, plus extra access transistors. More formally, in each case

the loop results in bistability. Focusing on the left-hand multiplexer as an example, if 𝑏 = 1 then either of the states

𝑡0 = 0 or 𝑡0 = 1 (meaning 𝑦 = 0 and 𝑦 = 1) is stable (meaning it will not transition into the other state without a

stimulus), so the value is retained until updated (or lost if the power supply is removed).

In this case, the left-hand and right-hand multiplexers are organised in a primary-secondary form. The idea

is basically that 𝑏 acts as an enable signal (typically it will be a clock), operating both primary and secondary

multiplexer in one of two modes. Per the above,

• when 𝑏 = 0 the primary multiplexer passes 𝑎 through to 𝑡0, whereas the secondary multiplexer is in storage

mode, and

• when 𝑏 = 1 the primary multiplexer is in storage mode, whereas the secondary multiplexer passes 𝑡0 through

to 𝑡1

To understand their combined behaviour, focus on the instant in time when a positive edge occurs on 𝑏 and imagine

that 𝑎 = 𝛼 for a value 𝛼 ∈ {0, 1}. Before the edge, because 𝑏 = 0, the primary and secondary multiplexers will be

in pass-through and storage mode respectively. This means 𝑡0 = 𝑎 = 𝛼 and 𝑐 = 𝑡1. At the instance the edge occurs

on 𝑏, 𝑡0 = 𝛼. Since the primary multiplexer flips into storage mode, this value is retained (i.e., fed back around the

loop into the 𝑦 input) because 𝑏 = 1: changes to 𝑎 are irrelevant. Simultaneously, the secondary multiplexer flips

into pass-through mode st. 𝑐 = 𝛼. Then, at some point, there is a negative edge on 𝑏 meaning both primary and

secondary multiplexers flip back to the opposite mode. Given 𝑐 = 𝑡1 = 𝛼 at this instant, the fact the secondary

multiplexer is now in storage mode (again) means it retains the value of 𝛼. Likewise, since the primary multiplexer

is in pass-through mode, any change to 𝑎 is reflected in 𝑡0 (but since the secondary multiplexer is in storage mode,

this is irrelevant to the value, namely 𝛼, it retains). Diagrammatically, this can be viewed as in Figure 1.

A somewhat reasonable analogy is that the primary and secondary multiplexers act as latches (each being

level triggered) in isolation, but as a flip-flop once combined. 𝛼 can be viewed as being “passed along” a 2-step

“conveyor belt”. First, at a positive edge on 𝑏, the primary multiplexer will stores whatever 𝛼 is passed as input

by the user. Then, at the subsequent negative edge on 𝑏, that 𝛼 is passed on to the secondary multiplexer which

stores it; in a sense, the primary multiplexer “protects” the stored 𝛼 from subsequent changes to 𝑎 until another

positive edge on 𝑏 occurs.

So the correct answer is that the circuit represents a flip-flop, i.e., an edge triggered storage cell: 𝑎 is the flip-flop

input, 𝑐 is the flip-flop output (i.e., the stored value), and 𝑏 is the flip-flop enable signal.

� S47. Given an 𝑙-bit control signal 𝑐, the demultiplexer can select between at most 2
𝑙

outputs: we treat 𝑐 as an

unsigned, 𝑙-bit integer which will clearly range in value between 0 and 2
𝑙 −1. In general, we want an 𝑙 st. 2

𝑙 ≥ 𝑚 so

each output can be specified; typically 𝑚 is a power-of-two, since this matches the maximum number of outputs

that can be specified. However, in this case we have 𝑚 = 5.

Since 2
2 = 4 < 5 and 2

3 = 8 > 5 we know a 2-bit control signal is not enough (it cannot select 𝑟4 since 0 ≤ 𝑐 < 4),

but a 3-bit control signal is (although it could cope with upto 𝑚 = 8, and since 0 ≤ 𝑐 < 8 select 𝑟5, 𝑟6 and 𝑟7 if they

existed). In summary then, 𝑙 = 3 is the correct answer.

� S48. a Note that if a given 𝑟𝑖 is not connected to either𝑉𝑑𝑑 or𝑉𝑠𝑠 , it is deemed to have the high impedance value

Z. This suggests the correct truth table is

𝑥 𝑦 𝑟0 𝑟1
0 0 1 Z
0 1 Z Z
1 0 Z Z
1 1 Z 0

The reason is because 𝐶0 is st. 𝑟0 connects to 𝑉𝑑𝑑 via two (pull-up) P-type MOSFETs; since these MOSFETs only

connect source to drain if the gate is 𝑉𝑠𝑠 , we can say that 𝑟0 = 1 if 𝑥 = 𝑦 = 0 and 𝑟0 = Z (i.e., disconnected)

otherwise. Conversely, 𝐶1 is st. 𝑟1 connects to 𝑉𝑠𝑠 via two (pull-down) N-type MOSFETs; since these MOSFETs

only connect source to drain if the gate is 𝑉𝑑𝑑, we can say that 𝑟1 = 0 if 𝑥 = 𝑦 = 1 and 𝑟1 = Z (i.e., disconnected)

otherwise.

git # b282dbb9 @ 2025-09-03 23

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

b Note that the option using 1 instance of 𝐶0 and 1 instance of 𝐶1 sort of makes sense: one can implement a NAND

gate using 2 P-type and 2 N-type MOSFETS, matching those that exist within instances of 𝐶0 and 𝐶1. However,

the question explicitly says we need to use instances of 𝐶0 and 𝐶1: we cannot, for example, “merge” their internal

implementation to make this option viable. So, as a first step, we implement a NOT gate as follows:

𝐶0

𝐶1

𝑡0

𝑡1

𝑟𝑥

This is useful because we can reuse it when implementing a NAND gate, but also because it explains the design

approach involved: the idea is basically that the output is driven by one instance of 𝐶0 or 𝐶1 at a time, with all

the others producing the high impedance value (which is “overridden” by the driving value). The behaviour

can be described as follows:

𝑥 𝑡0 𝑡1 𝑟

0 1 Z 1

1 Z 0 0

Using the same design approach, we can now implement an NAND gate as follows:

𝐶0

𝐶0

𝐶0

𝐶1

𝑦𝑥

𝑡0

𝑡1

𝑡2

𝑡3

𝑟

Applying the same argument wrt. behaviour, we find that

𝑥 𝑦 𝑡0 𝑡1 𝑡2 𝑡3 𝑟

0 0 1 Z Z Z 1

0 1 Z 1 Z Z 1

1 0 Z Z 1 Z 1

1 1 Z Z Z 0 0

matches the truth table for NAND: remembering to count the components within each NOT gate, we therefore

use 5 instances of 𝐶0 and 3 instances of 𝐶1.

As an aside, note that one can implement a NOR gate by swapping the components types in the NAND

implementation: we therefore implement the required behaviour using 3 instances of 𝐶0 and 5 instances of 𝐶1.

Also note that it is tempting to consider something like

git # b282dbb9 @ 2025-09-03 24

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝐶1

𝐶0

𝐶0

𝑦𝑥

𝑡0

𝑡1

𝑡2

𝑟

as a solution. There is no corresponding option in the table, however: the reason for this is that it violates the

stated design strategy. This can be seen by considering the (hypothetical) truth table

𝑥 𝑦 𝑡0 𝑡1 𝑡2 𝑟

0 0 Z 1 1 1

0 1 Z Z 1 1

1 0 Z 1 Z 1

1 1 0 Z Z 0

which shows the case where 𝑥 = 0 and 𝑦 = 0 means both 𝑡1 = 1 and 𝑡2 = 1: in such a case 𝑟 is driven by two

non-Z values.

� S49. The first three options are all related to the fact that the number of transistors is increasing; the rate of

increase is important in that the associated limits are reached quicker, but is not so relevant beyond that.

• The fact there are more transistors in a fixed unit of area implies the transistors are smaller, and so, as a result,

that their feature size (i.e., the size of components in their design, such as channel length or layer thicknesses)

is also smaller. Limits clearly exist wrt. how small feature sizes can shrink. Even if manufacturing process

keep pace, at some point the feature size would be measured in some small number of atoms: at this scale it is

plausible the transistor cannot operate correctly, and beyond it one would need to consider a (radically) different

approach.

• Dennard scaling states, roughly, that as transistors become smaller, their power density remains constant. At

face value then, power consumption should not represent a limit. However, Dennard scaling has now started

to break down: with such small feature sizes, otherwise insignificant factors (e.g., static vs. dynamic power

consumption) become significant, and thus lead to increased power consumption if the number of transistors is

increased. An indefinite increase in the amount of power supplied is not plausible, meaning it acts to limit the

number of transistors one can house per unit of area.

• With a small enough feature size, the channel allowing electrical current to flow through the transistor will

not always be able to “contain” it, i.e., there is leakage current. This manifests itself as heat, which must be

dissipated away from the transistors to ensure their correct operation. So, with a fixed capacity to dissipate heat,

this will act to limit the number of transistors one can house per unit of area.

In summary then, all the first three options plausibly constrain or limit Moore’s Law.

� S50. A logical approach to this question would likely use two steps: 1) we need to assess which option(s) will

toggle 𝑠, then 2) find the shortest path from the inputs to 𝑠, which is sort of the opposite of the critical path, and use

this to decide the correct option.

Note that the truth table for this component (including the various annotated intermediate variables) is as

git # b282dbb9 @ 2025-09-03 25

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

follows:

𝑐𝑖 𝑥 𝑦 𝑡0 𝑡1 𝑡2 𝑐𝑜 𝑠

0 0 0 0 0 0 0 0

0 0 1 0 1 1 0 1

0 1 0 0 1 1 0 1

0 1 1 0 1 0 1 0

1 0 0 0 1 1 0 1

1 0 1 0 1 0 1 0

1 1 0 0 1 0 1 0

1 1 1 1 1 0 1 1

So, as a first step, we can see that

(0, 0, 0) ⇒ 𝑡0 = 0 𝑡2 = 0 𝑠 = 0 → (0, 0, 1) ⇒ 𝑡′
0
= 0 𝑡′

2
= 1 𝑠′ = 1

(0, 0, 1) ⇒ 𝑡0 = 0 𝑡2 = 1 𝑠 = 1 → (0, 1, 1) ⇒ 𝑡′
0
= 0 𝑡′

2
= 0 𝑠′ = 0

(0, 1, 1) ⇒ 𝑡0 = 0 𝑡2 = 0 𝑠 = 0 → (0, 0, 1) ⇒ 𝑡′
0
= 0 𝑡′

2
= 1 𝑠′ = 1

(1, 1, 1) ⇒ 𝑡0 = 1 𝑡2 = 0 𝑠 = 1 → (1, 1, 0) ⇒ 𝑡′
0
= 0 𝑡′

2
= 0 𝑠′ = 0

(1, 0, 1) ⇒ 𝑡0 = 0 𝑡2 = 0 𝑠 = 0 → (0, 1, 1) ⇒ 𝑡′
0
= 0 𝑡′

2
= 0 𝑠′ = 0

i.e., all options bar the last one will toggle 𝑠 (either from 0 to 1, or from 1 to 0). Next, imagine 𝑇𝑁𝑂𝑇 , 𝑇𝐴𝑁𝐷 , and

𝑇𝑂𝑅 denote the gate delay of a NOT gate, and 2-input AND and OR gate respectively. We can consider five paths

from the inputs to 𝑠, which each pass through one of the gates organised in a column on the left-hand side of the

diagram.

top 3-input AND ; 2 · 𝑇𝐴𝑁𝐷 + 1 · 𝑇𝑂𝑅

↕
3-input OR ; 1 · 𝑇𝐴𝑁𝐷 + 3 · 𝑇𝑂𝑅
2-input AND ; 2 · 𝑇𝐴𝑁𝐷 + 3 · 𝑇𝑂𝑅 + 1 · 𝑇𝑁𝑂𝑇
2-input AND ; 2 · 𝑇𝐴𝑁𝐷 + 3 · 𝑇𝑂𝑅 + 1 · 𝑇𝑁𝑂𝑇

bottom 2-input AND ; 2 · 𝑇𝐴𝑁𝐷 + 3 · 𝑇𝑂𝑅 + 1 · 𝑇𝑁𝑂𝑇
Given it is likely 𝑇𝐴𝑁𝐷 ≃ 𝑇𝑂𝑅, it seems clear the top path will be the shortest. Put another way, given 𝑠 = 𝑡0∨ 𝑡2 , we

can toggle 𝑠 by controlling 𝑡0 or 𝑡2; having identified the top path as the shortest, controlling 𝑡0 will allow control

over 𝑠 within the shortest period of time. Of the options, the second to last one, i.e., (1, 1, 1) → (1, 1, 0), is the only

one that toggles 𝑡0, and would therefore be deemed correct.

� S51. Since this is a cyclic counter, we know selecting 𝑛 = 4 means the output 𝑟 will step through values

0, 1, . . . , 24 − 1 = 15, 0, 1,

Writing this information in a tabular form as follows

𝑟 𝑟3 𝑟2 𝑟1 𝑟0
0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

0 0 0 0 0

1 0 0 0 1

...
...

...
...

...

highlights the behaviour of each 𝑖-th bit 𝑟𝑖 as 𝑟 itself changes.

git # b282dbb9 @ 2025-09-03 26

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

The question asks which 𝑟𝑖 transition between 0 and 1 at the lowest frequency, i.e., slowest. Obviously it cannot

be 𝑟4: for 𝑛 = 4 there is no 𝑟4! By looking a the table above, the solution is also obvious: the MSB 𝑟3 transition

between 0 and 1 slowest, doing so every 8 updates to 𝑟 (vs. 𝑟0, for example, which does do every 1 update).

� S52. CMOS combines complementary transistor types: one N-MOSFET, and one P-MOSFET. Since these transistor

behave in a complementary manner, it is always that case that one will be active and one inactive. This produces

an attractive feature wrt. power, in that static consumption (i.e., when there is no chance in state) is very low. The

dynamic power consumption (i.e., when there is a change of state) is of course higher, but occurs only when the

inputs cause switching activity.

So, at a high-level at least, we could argue the highest consumption is likely when the initial value differs the

most from stored value. That is, we argue that the highest switching activity occurs when the largest number of

bits stored by the register change. We can measure this using the Hamming distance between initial and stored

value: given

𝑡0 = 𝐷𝐸𝐴𝐷(16) = 1101111010101101(2)
𝑡1 = 𝐵𝐸𝐸𝐹(16) = 1011111011101111(2)
𝑡2 = 𝐹00𝐷(16) = 1111000000001101(2)
𝑡3 = 1234(16) = 0001001000110100(2)
𝑡4 = 𝐹𝐹𝐹𝐹(16) = 1111111111111111(2)
𝑡5 = 0000(16) = 0000000000000000(2)

and recalling that

HD(𝑥, 𝑦) =
𝑖<16∑
𝑖=0

𝑥𝑖 ⊕ 𝑦𝑖 ,

we can compute

HD(𝑡0 , 𝑡1) = 4

HD(𝑡0 , 𝑡2) = 6

HD(𝑡0 , 𝑡3) = 8

HD(𝑡0 , 𝑡4) = 5

HD(𝑡0 , 𝑡5) = 11

This means that based on our argument above, the correct answer would be 0000(16). A more precise answer

requires a much more detailed analysis of the component: we would need to assess the implementation in terms

of individual transistors, and compute the so-called toggle count, i.e., switching activity, at that level (rather than

via the assumption about toggling the bits stored).

� S53. Using a component set with some number of AND, OR, and NOT gates is clearly a more familiar approach.

However, all the component sets can be used to implement 𝑓 . Writing out the truth table

𝑥 𝑦 𝑧 𝑟

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

and a Karnaugh map

00 01 11 10

0

1

𝑦

𝑥

𝑧

1
0

0
1

0
2

0
3

1
4

1
5

1
6

1
7

for 𝑓 helps explain how and why:

git # b282dbb9 @ 2025-09-03 27

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

a Using 2-input, 1-bit multiplexers for clarity, component set 1 can be used to implement 𝑓 as follows:

𝑐

𝑥

𝑦
𝑟

𝑐

𝑥

𝑦
𝑟

𝑐

𝑥

𝑦
𝑟

𝑐

𝑥

𝑦
𝑟

𝑐

𝑥

𝑦
𝑟

𝑐

𝑥

𝑦
𝑟

𝑐

𝑥

𝑦
𝑟

1

1

0

0

1

1

0

1

𝑟

𝑧

𝑧

𝑧

𝑧

𝑦

𝑦

𝑥

b Using 2-input, 1-bit multiplexers for clarity, component set 2 can be used to implement 𝑓 as follows:

𝑐

𝑥

𝑦
𝑟

𝑐

𝑥

𝑦
𝑟

𝑐

𝑥

𝑦
𝑟

𝑦
𝑦

𝑦
1

𝑟

𝑧

𝑧

𝑥

c Component set 3 can be used to implement 𝑓 as follows:

𝑐

𝑥

𝑦
𝑟

¬𝑧
0

𝑟

𝑥 𝑦

� S54. First, recall that the following truth table

𝑐 𝑥 𝑦 𝑟

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

specifies the behaviour of a 2-input, 1-bit multiplexer: in short, we find that

𝑟 =

{
𝑥 if 𝑐 = 0

𝑦 if 𝑐 = 1

.

As such, we can implement an AND gate as follows:

git # b282dbb9 @ 2025-09-03 28

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝑐

𝑥

𝑦
𝑟

𝑦 𝑟

𝑥

We can show why the implementation is valid (i.e., produces a result matching AND) by inspection:

𝑥 𝑦 𝑟

0 0 𝑥 = 0

0 1 𝑥 = 0

1 0 𝑦 = 0

1 1 𝑦 = 1

Notice that 𝑥 = 0 implies the multiplexer selects the top input and hence 𝑟 = 𝑥, whereas 𝑥 = 1 implies the

multiplexer selects the top input and hence 𝑟 = 𝑦; overall, 𝑟 clearly matches AND in the sense 𝑟 = 1 if 𝑥 = 1 and

𝑦 = 1. Using the same approach, we can implement OR as follows

𝑐

𝑥

𝑦
𝑟

𝑦
𝑟

𝑥

and justify validity again by inspection:

𝑥 𝑦 𝑟

0 0 𝑦 = 0

0 1 𝑦 = 1

1 0 𝑥 = 1

1 1 𝑥 = 1

Overall then, the expression

(𝑥 ∧ 𝑦) ∨ 𝑧

can be implemented using just two multiplexers: one to implement the AND operator, and one to implement the

OR operator.

� S55. This question can be approached in several ways. First, one could employ basic pattern matching: read

from left-to-write, the three dominant structures can be matched against known NAND, NOR, and NOT gate

implementations. As such, the design implements the expression

𝑟 = ¬((𝑥 ∧ 𝑦) ∨ 𝑧)

which we manipulate as follows

¬((𝑥 ∧ 𝑦) ∨ 𝑧)
= ¬((¬(𝑥 ∧ 𝑦)) ∨ 𝑧) (𝑁𝐴𝑁𝐷)
= ¬(¬((¬(𝑥 ∧ 𝑦)) ∨ 𝑧)) (𝑁𝑂𝑅)
= ¬(𝑥 ∧ 𝑦 ∧ ¬𝑧) (𝑑𝑒𝑀𝑜𝑟𝑔𝑎𝑛)

such that

𝑟 = ¬(𝑥 ∧ 𝑦 ∧ ¬𝑧).

Second, although it involves more work, one can enumerate the transistor and signal states for each input com-

bination. For example, using + (resp. −) to denote where a given transistor is connected or activated (resp.

git # b282dbb9 @ 2025-09-03 29

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

disconnected or deactivated), we can write

𝑥 𝑦 𝑧 𝑚0 𝑚1 𝑚2 𝑚3 𝑡0 𝑚4 𝑚5 𝑚6 𝑚7 𝑡1 𝑚8 𝑚9 𝑟

0 0 0 + + − − 1 − + + − 0 + − 1

0 0 1 + + − − 1 − − + + 0 + − 1

0 1 0 − + + − 1 − + + − 0 + − 1

0 1 1 − + + − 1 − − + + 0 + − 1

1 0 0 + − − + 1 − + + − 0 + − 1

1 0 1 + − − + 1 − − + + 0 + − 1

1 1 0 − − + + 0 + + − − 1 − + 0

1 1 1 − − + + 0 + − − + 0 + − 1

and then derive the expression

𝑟 = ¬(𝑥 ∧ 𝑦 ∧ ¬𝑧)

directly.

� S56. To start with, keep in mind that this design uses flip-flops: these are edge-triggered (versus latches, which

are level-triggered). By focusing on and inspecting the left-hand flip-flop, we infer that the state will be updated

to reflect 𝐷 = 1 ⊕ 𝑄 on each positive edge of 𝑐𝑙𝑘. Given the truth table

𝑥 𝑦 𝑟

0 0 0

0 1 1

1 0 1

1 1 0

we find that 𝐷 = 1 ⊕ 𝑄 ≡ ¬𝑄, suggesting, therefore, that this is a toggle flip-flop constructed by using a D-type

flip-flop: on each positive edge of 𝑐𝑙𝑘, the state will toggle either from 0 to 1 or from 1 to 0. Note that the right-hand

flip-flop has a similar construction, but that the lower input of the XOR comes from the left-hand flip-flop.

Imagine that both flip-flops are reset, so their initial state is 0. We can draw a waveform which describes each

signal:

𝑐𝑙𝑘

𝑡0

𝑡1

𝑡2

𝑡3

𝑟

Put simply, this suggests that each toggle flip-flop acts to halve the frequency: 𝑡1 toggles at half the frequency of

𝑐𝑙𝑘 and 𝑡3 toggles at quarter the frequency of 𝑐𝑙𝑘. Given that 𝑐𝑙𝑘 has a frequency of 400MHz, we therefore expect

𝑟 = 𝑡3 to toggle with a frequency of
400

4
= 100MHz.

� S57. We know that the multiplexer will select the top input if 𝑐 = 0, or the bottom input if 𝑐 = 1. This means the

design can be expressed as

𝑟 = (¬𝑞 ∧ ¬𝑝) ∨ (𝑞 ∧ 𝑝),

i.e., if 𝑞 = 0 then 𝑟 = ¬𝑝, whereas if 𝑞 = 1 then 𝑟 = 𝑝. As such, we can produce a truth table

𝑝 𝑞 𝑟

0 0 1

0 1 0

1 0 0

1 1 1

from which it is clear(er) that 𝑟 = ¬(𝑝 ⊕ 𝑞).

git # b282dbb9 @ 2025-09-03 30

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S58. If the current input is 𝑆 = 𝑅 = 0, then the latch must be in the invalid state 𝑄 = 1, ¬𝑄 = 1. The question is

focused on instantaneously setting 𝑆 = 𝑅 = 1, which means the latch is in storage mode: the question is, what state

does it end up in? The answer is that it does not remain in the invalid state, due to the imbalanced gate delays.

Let 𝑇𝑡 and 𝑇𝑏 denote the top and bottom gate delay respectively:

a If 𝑇𝑡 = 𝑥 > 𝑥 − 𝛿 = 𝑇𝑏 , the output of the bottom gate, i.e., 𝑄, will change state first: it changes from 1 to 0, at

which point the only valid (eventual) output from the top gate is 1 (i.e., it will stay the same). So, the bottom

gate “winning” by changing first is like we reset the latch via the bottom, 𝑅 input.

b If 𝑇𝑡 = 𝑥 < 𝑥 + 𝛿 = 𝑇𝑏 , the output of the top gate, i.e., ¬𝑄, will change state first: it changes from 1 to 0, at which

point the only valid (eventual) output from the bottom gate is 1 (i.e., it will stay the same). So, the top gate

“winning” by changing first is like we set the latch via the top, 𝑆 input.

This means the latch outputs will be either 𝑄 = 0, ¬𝑄 = 1 or 𝑄 = 1, ¬𝑄 = 0.

� S59. Since the question is ultimately about Boolean expressions, we use 0 and 1 in place of 𝑉𝑠𝑠 and 𝑉𝑑𝑑 for

convenience. Recall that an N-type MOSFET is is connected or activated (resp. disconnected or deactivated) if

the gate terminal is 1 (resp. 0), whereas an P-type MOSFET is is connected or activated (resp. disconnected or

deactivated) if the gate terminal is 0 (resp. 1).

By inspection, 𝑡0 is clearly connected to 1 when either 1) 𝑥 = 0 and 𝑦 = 0 (through 𝑚0 and 𝑚1), or 2) 𝑧 = 0

(through and 𝑚2). Note that the connectives “and” and “or” used here reflect the sequential and parallel way the

P-type MOSFETS are organised. But, either way, and assuming a matching pull-down network, we can write

𝑡0 = (¬𝑥 ∧ ¬𝑦) ∨ ¬𝑧.
The output 𝑟 is then produced via 𝑚3 and 𝑚4, which form a NOT gate: this means

𝑟 = ¬((¬𝑥 ∧ ¬𝑦) ∨ ¬𝑧)
which, using the de Morgan axiom, we can rewrite as

𝑟 = (𝑥 ∨ 𝑦) ∧ 𝑧.

� S60. This is an N-type MOSFET, used here as an enable gate: if 𝑒𝑛 = 0 there is no connection between 𝑥 and 𝑟,
but if 𝑒𝑛 = 1 there is a connection between 𝑥 and 𝑟. The former case is the more interesting, in the sense that 𝑟 is

disconnected from any driving signal. This situation is modelled using 3-state logic, wherein an additional high

impedance value Z is considered. Using Z, we can therefore model the transistor using this truth-table:

𝑥 𝑒𝑛 𝑟

0 0 Z
1 0 Z
0 1 0

1 1 1

Put simply, if 𝑒𝑛 = 0 then 𝑟 = Z because there is no driving signal, but if 𝑒𝑛 = 1 then 𝑟 = 𝑥 ∈ {0, 1}. Based on the

potential values of 𝑥 and 𝑒𝑛 we conclude that 𝑟 ∈ {0, 1,Z}, i.e., it can potentially take 3 different values.

� S61. The simplest approach to producing a solution for this question is brute-force enumeration: by just inspect-

ing the truth-table, i.e.,

𝑥1 𝑥0 𝑦1 𝑦0 𝑟
0 0 0 0 0 ⇒ 0 ≯ 0

0 0 0 1 0 ⇒ 0 ≯ 1

0 0 1 0 0 ⇒ 0 ≯ 2

0 0 1 1 0 ⇒ 0 ≯ 3

0 1 0 0 1 ⇒ 1 > 0

0 1 0 1 0 ⇒ 1 ≯ 1

0 1 1 0 0 ⇒ 1 ≯ 2

0 1 1 1 0 ⇒ 1 ≯ 3

1 0 0 0 1 ⇒ 2 > 0

1 0 0 1 1 ⇒ 2 > 1

1 0 1 0 0 ⇒ 2 ≯ 2

1 0 1 1 0 ⇒ 2 ≯ 3

1 1 0 0 1 ⇒ 3 > 0

1 1 0 1 1 ⇒ 3 > 1

1 1 1 0 1 ⇒ 3 > 2

1 1 1 1 0 ⇒ 3 ≯ 3

we can see that 𝑟 = 1 in 6 cases.

git # b282dbb9 @ 2025-09-03 31

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S62. Several facts inform the optimisation one would expect.

• The adder inputs are PC and 4: whereas PC can be any 32-bit value, so the input is general-purpose, 4 is a fixed,

special-purpose input.

• Since PC is word-aligned, we know that

PC ≡ PC + 4 ≡ 0 (mod 4).

As a result, the 2 LSBs of PC + 4 always equal 0: there is no need to compute them.

• For a general-purpose adder, the carry-in input and carry-out output are useful in various situations. Here,

however, neither is useful and so they remain unused; as a result, we can optimise the adder by eliminating

them, e.g., simplifying the associated full- or half-adder cell.

Rather than a general-purpose ripple-carry adder, which uses 32 full-adder cells, we can use the facts above to

compute the same result by using 30 half-adder cells. That is, the adder design is of the form

𝑐𝑜

𝑠
𝑥
𝑦

𝑐𝑜

𝑠
𝑥
𝑦

𝑐𝑜

𝑠
𝑥
𝑦

𝑐𝑜

𝑠
𝑥
𝑦

𝑟2

𝑥2

𝑟3

𝑥3

𝑟31

𝑥31

1

0 0

𝑟0 𝑟1

where the half-adder that generates 𝑟31 is optimised even further by considering that the carry-out is unused.

Under the same assumptions, the resulting area is

29 · (1 · XOR + 1 ·AND) + 1 · (1 · XOR)
= 29 · (1 · 4 + 1 · 2) + 1 · (1 · 4)
= 29 · 6 + 1 · 4
= 178

which is a factor of 448/178 = 2.52 improvement.

� S63. Saying that the cell contains “duplicate” makes no sense, and it is not true that we do not know what the

cell content, or output, is. Rather, we do not care what the cell content is: the input is impossible, so the output is

irrelevant to 𝑓 .

Of the two remaining options, the correct one mirrors the associated approach. That is, the don’t care cell can

be treated as either 0 or 1; we select the option which will most effectively simplify the resulting term. Since the

input is impossible, that selection has no impact on the functionality of 𝑓 for the possible inputs.

� S64. Just by inspection, there is no way we can use either XOR, AND, or OR gate types to achieve the required

functionality. So if NAND and NOR are the only viable options, the question is asking which of them has been

used. The definition of NAND or NOR is as follows:

𝑥 𝑦 𝑥 ∧ 𝑦 𝑥 ∨ 𝑦
0 0 1 1

0 1 1 0

1 0 1 0

1 1 0 0

This allows us to reason about the relationship between inputs (i.e., 𝑆 and 𝑅) and outputs (i.e., 𝑄 and ¬𝑄). For

example, if the current state is 𝑄 = 0, ¬𝑄 = 1 and we have 𝑆 = 1 and 𝑅 = 1 then the top component is computing

0 = 𝑆 ⊙ ¬𝑄 = 1 ⊙ 1, and the bottom component is computing 1 = 𝑅 ⊙ 𝑄 = 1 ⊙ 0; in this case the top component is

consistent with either NAND or NOR, but the bottom component is consistent with only NAND. So, although we

could test other cases to gain more confidence, this case alone acts as a strong enough hint that ⊙ ≡ ∧ , i.e., NAND

gates have been used. But inspecting some other cases based on this option confirms it is correct. For example, if

𝑅 = 0 then we must have ¬𝑄 = 0 ∧ 𝑄 = 1 irrespective of 𝑄. Then, if 𝑆 = 1, we have 𝑄 = 𝑆 ∧ ¬𝑄 = 1 ∧ 1 = 0;

this matches row 3 of the truth table. Likewise, If 𝑆 = 0 then we must have 𝑄 = 0 ∧ ¬𝑄 = 1 irrespective of ¬𝑄.

Then, if 𝑅 = 1, we have ¬𝑄 = 𝑆 ∧ 𝑄 = 1 ∧ 1 = 0; this matches row 4 of the truth table. Note, therefore, that the

semantics of set and reset for this NAND-based latch are sort of “swapped” versus the NOR-based alternative.

git # b282dbb9 @ 2025-09-03 32

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S65. Note that the additional inputs are often termed preset and clear, matching the labels used here.

a The output of a synchronous circuit depends on the input in a discrete manner, i.e., it can change only at a

specific point in time; this is achieved using a clock signal, which acts to control when components in the circuit,

e.g., by gating them. In contrast, the output of an asynchronous circuit depends on the input in a continuous

manner, i.e., it can change at any time; there is no control of when changes in the output take effect. The same

terminology can be applied to the inputs themselves, or even signals more generally. 𝑆 and 𝑅 are most accurately

classified as synchronous. The reason is that they can influence the output only when 𝑒𝑛 = 1: we can see this

by noting 𝑒𝑛 ∧ 𝑥 = 1 if 𝑒𝑛 = 0, whereas 𝑒𝑛 ∧ 𝑥 = ¬𝑥 if 𝑒𝑛 = 1. As such, 𝑒𝑛 can be said to gate 𝑆 and 𝑅 (and

hence control their influence). 𝑃 and 𝐶 are most accurately classified as asynchronous. The reason is that they

can influence the output at any point in time, whether 𝑒𝑛 = 1 or 𝑒𝑛 = 0 and so irrespective of 𝑒𝑛: in a sense

this is obvious, because they do not interact with 𝑒𝑛 (they feed directly into the two NAND gates towards the

right-hand side).

b When used to describe a control signal 𝑥, the terms active low and active high relate to when that signal exerts

control, i.e., whether that is when 𝑥 = 0 or 𝑥 = 1; in the former case, this is often highlighted by writing ¬𝑥 or 𝑥
rather than 𝑥 as the input label. 𝑆 and 𝑅 are most accurately classified as active high: we can show that if 𝑒𝑛 = 1

then 𝑆 = 1 will set 𝑄 = 1, whereas if 𝑒𝑛 = 0 then 𝑅 = 1 will reset 𝑄 = 0. 𝑃 and 𝐶 are most accurately classified

as active low: we can show that 𝑃 = 0 will override 𝑆 and set 𝑄 = 1, whereas 𝐶 = 0 will override 𝑅 and reset

𝑄 = 0.

� S66. a A multiplexer can be viewed as

𝑟 = 𝑓 (𝑐, 𝑥0 , 𝑥1 , 𝑥2 , 𝑥3) =


𝑥0 if 𝑐 = 0

𝑥1 if 𝑐 = 1

𝑥2 if 𝑐 = 2

𝑥3 if 𝑐 = 3

i.e., the control signal 𝑐 selects an 𝑥𝑖 to produce 𝑟. Matching this with the block presented by the question,

clearly 𝑥𝑖 and 𝑐 are the input wires whereas 𝑟 is the output wires; as such, 𝑛 = (4 · 4) + log
2

4 = 16 + 2 = 18 and

𝑚 = (1 · 4) = 4.

b For a half-adder 𝑛 = 2, 𝑚 = 2: there are 2 inputs, namely 𝑥 and 𝑦, and 2 outputs, namely 𝑠 (the sum) and 𝑐𝑜 (the

carry-out). For a full-adder 𝑛 = 3, 𝑚 = 2: there are 3 inputs, namely 𝑥, 𝑦, and 𝑐𝑖 (the carry-in), and 2 outputs,

namely 𝑠 (the sum) and 𝑐𝑜 (the carry-out).

� S67. a true. Ignoring the fact that the gate terminal is an input to (i.e., exerts control over) the N- and P-type

MOSFETs, a “bubble” on the latter is intended to show it is an “inverting version” of the former. Put more

directly, the behaviour of an N-type MOSFET can be described as

𝑔 = 𝑉𝑑𝑑 = 5V ⇒ transistor is activated, 𝑠 and 𝑑 connected

𝑔 = 𝑉𝑠𝑠 ≃ 𝐺𝑁𝐷 = 0V ⇒ transistor is deactivated, 𝑠 and 𝑑 disconnected

whereas the behaviour of an P-type MOSFET can be described as

𝑔 = 𝑉𝑠𝑠 ≃ 𝐺𝑁𝐷 = 0V ⇒ transistor is activated, 𝑠 and 𝑑 connected

𝑔 = 𝑉𝑑𝑑 = 5V ⇒ transistor is deactivated, 𝑠 and 𝑑 disconnected

i.e., the semantics of 𝑔 are the inverse (or opposite).

b false. Given that 𝑐, 𝑥, and 𝑦 are all connected to transistor gate terminals, they represent inputs; 𝑟 is not, so is

therefore an output. So, as a first step or a sanity check, this does indeed match the expression. Therefore, using

𝑉𝑑𝑑 ≡ 1 and 𝑉𝑑𝑑 ≡ 0, we can describe the behaviour exhibited by considering two cases:

i If 𝑐 = 0 the either the top-left path from 𝑉𝑑𝑑 or bottom-left path from 𝑉𝑠𝑠 is possible, depending on 𝑥: so if

𝑐 = 0 and 𝑥 = 0 then 𝑟 = 1 (via the top-left path, through bottom P-MOSFET because 𝑐 = 0 and top P-MOSFET

because 𝑥 = 0) whereas if 𝑐 = 0 and 𝑥 = 1 then 𝑟 = 0 (via the bottom-left path, through top N-MOSFET

because ¬𝑐 = 1 and bottom N-MOSFET because 𝑥 = 1).

ii If 𝑐 = 1 the either the top-right path from 𝑉𝑑𝑑 or bottom-right path from 𝑉𝑠𝑠 is possible, depending on 𝑦:

so if 𝑐 = 1 and 𝑦 = 0 then 𝑟 = 1 (via the top-left path, through bottom P-MOSFET because ¬𝑐 = 0 and top

P-MOSFET because 𝑦 = 0) whereas if 𝑐 = 1 and 𝑦 = 1 then 𝑟 = 0 (via the bottom-right path, through top

N-MOSFET because 𝑐 = 1 and bottom N-MOSFET because 𝑦 = 1).

git # b282dbb9 @ 2025-09-03 33

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

In summary, this means

𝑐 𝑥 𝑦 𝑟

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

and therefore 𝑟 = ¬((𝑥 ∧ ¬𝑐) ∨ (𝑦 ∧ 𝑐))meaning it implements a “multiplexer with inverted output”.

c true. A combinatorial logic component continuously computes the output(s) from the input(s), where the former

is a function of the latter alone: there is no internal state which contributes to the output(s), for example. For a

component 𝑓 : {0, 1}𝑛 → {0, 1}𝑚 , we can define 𝑓𝑖 : {0, 1}𝑛 → {0, 1} for 0 ≤ 𝑖 < 𝑛. Each 𝑓𝑖 takes all 𝑛 original

inputs, but outputs 1 (i.e., the 𝑖-th) of the 𝑚 original outputs. By concatenating those outputs together, we have

that

𝑓 (𝑥) ≡ 𝑓0(𝑥) ∥ 𝑓1(𝑥) ∥ · · · ∥ 𝑓𝑚−1(𝑥)
due to their behaviour as combinatorial logic; as such, we have decomposed 𝑓 into 𝑚 separate 𝑓𝑖 .

d false. To apply a Karnaugh map to this function, we would first decompose it into

𝑓𝑖 : {0, 1}𝑛 → {0, 1}

for 0 ≤ 𝑖 < 𝑚, i.e., 𝑚 separate functions which each produce a 1-bit output. Then, a separate Karnaugh map can

be applied to each 𝑓𝑖 to yield an associated Boolean expression. Doing so will yield an optimised implementation

up to a point, but there may be potential for further manual manipulation and optimisation, e.g., via 1) common

sub-expression elimination within the expression for one 𝑓𝑖 and 2) common sub-expression elimination within

the expressions for multiple 𝑓𝑖 , i.e., within the expression for 𝑓 as a whole. This potential means one cannot say

simply applying the Karnaugh map will always yield the optimal implementation.

e true. Recall that the truth table for a full-adder (i.e., 1-bit adder) reads as follows

𝑐𝑖 𝑥 𝑦 𝑐𝑜 𝑠

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

This captures the fact that it computes two 1-bit outputs (i.e., the carry-out 𝑐𝑜 and sum 𝑠) from three 1-bit inputs

(i.e., the carry-in 𝑐𝑖 and addends 𝑥 and 𝑦). Imagine that +(𝑐𝑖, 𝑥, 𝑦)𝑐𝑜 and +(𝑐𝑖, 𝑥, 𝑦)𝑠 respectfully denote the 𝑐𝑜
and 𝑠 outputs of a full-adder, as applied to the inputs 𝑐𝑖, 𝑥 and 𝑦: one can see that

𝑥 ∧ 𝑦 ≡ +(0, 𝑥, 𝑦)𝑐𝑜
𝑥 ∨ 𝑦 ≡ +(1, 𝑥, 𝑦)𝑐𝑜
¬ 𝑦 ≡ +(0, 1, 𝑦)𝑠

which implies said the full-adder is functionally complete in the sense required.

f true. There are (at least) 2 plausible implementations to consider, both of which satisfy the condition related to

number of logic gates:

i Implement a 4-input, 1-bit multiplexer directly: the following expression captures the result

𝑟 = (𝑤 ∧ ¬𝑐1 ∧ ¬𝑐0) ∨ (𝑥 ∧ ¬𝑐1 ∧ 𝑐0) ∨ (𝑦 ∧ 𝑐1 ∧ ¬𝑐0) ∨ (𝑧 ∧ 𝑐1 ∧ 𝑐0)

which involves 15 logic gates, or 13 if the duplicate terms ¬𝑐1 and ¬𝑐0 are factored out and so shared.

ii Implement a 2-input, 1-bit multiplexer then use a cascade of 3 dependant instances of it. the following

expression captures the result

𝑡0 = (𝑤 ∧ ¬𝑐0) ∨ (𝑥 ∧ 𝑐0)
𝑡1 = (𝑦 ∧ ¬𝑐0) ∨ (𝑧 ∧ 𝑐0)
𝑟 = (𝑡0 ∧ ¬𝑐1) ∨ (𝑡1 ∧ 𝑐1)

which totals 12 logic gates.

git # b282dbb9 @ 2025-09-03 34

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S68. Using a Karnaugh map, for example, one can produce the result

𝑟 = 𝑓 (𝑥, 𝑦, 𝑧) = 𝑦 ∨ (𝑧 ∧ ¬𝑥) ∨ (𝑥 ∧ ¬𝑧)

which, by inspection, gives

𝑓

𝑥 𝑦 𝑧 𝑦 𝑧 ∧ ¬𝑥 𝑥 ∧ ¬𝑧 𝑟

0 0 0 0 0 0 0

0 0 1 0 1 0 1

0 1 0 1 0 0 1

0 1 1 1 1 0 1

1 0 0 0 0 1 1

1 0 1 0 0 0 0

1 1 0 1 0 1 1

1 1 1 1 0 0 1

However, notice that the sub-expression

(𝑧 ∧ ¬𝑥) ∨ (𝑥 ∧ ¬𝑧)

can be simplified to

𝑧 ⊕ 𝑥

so per the question, the simplest implementation of 𝑓 is

𝑟 = 𝑓 (𝑥, 𝑦, 𝑧) = 𝑦 ∨ (𝑧 ⊕ 𝑥).

� S69. First, note that the following identities can be applied:

¬𝑥 ≡ 𝑥 ∧ 𝑥
𝑥 ∨ 𝑦 ≡ (𝑥 ∧ 𝑥) ∧ (𝑦 ∧ 𝑦)
𝑥 ∧ 𝑦 ≡ (𝑥 ∧ 𝑦) ∧ (𝑥 ∧ 𝑦)

As such, we can write

¬(𝑥 ∨ 𝑦) ≡ ((𝑥 ∧ 𝑥) ∧ (𝑦 ∧ 𝑦)) ∧ ((𝑥 ∧ 𝑥) ∧ (𝑦 ∧ 𝑦)).

� S70. The excitation table of a standard SR latch is

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑁𝑒𝑥𝑡
𝑆 𝑅 𝑄 ¬𝑄 𝑄′ ¬𝑄′
0 0 0 1 0 1

0 0 1 0 1 0

0 1 ? ? 0 1

1 0 ? ? 1 0

1 1 ? ? ? ?

meaning the reset-dominate alteration gives

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑁𝑒𝑥𝑡
𝑆 𝑅 𝑄 ¬𝑄 𝑄′ ¬𝑄′
0 0 0 1 0 1

0 0 1 0 1 0

0 1 ? ? 0 1

1 0 ? ? 1 0

1 1 ? ? 0 1

Given the inputs 𝑆 and 𝑅, the circuit can be constructed by using a standard SR latch with two cross-coupled NOR

gates whose inputs are 𝑆′ and 𝑅′. We simply set 𝑅′ = 𝑅 and 𝑆′ = ¬𝑅 ∧ 𝑆 so 𝑆′ is only 1 when 𝑅 = 0 and 𝑆 = 1: if

𝑅 = 1 (including the case when both 𝑅 = 1 and 𝑆 = 1), the latch it reset since 𝑆 = 0. The circuit is as follows:

git # b282dbb9 @ 2025-09-03 35

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

-------+
| +---+

+---+ +->| | +---+
| | |AND|-- S' -->| |
|NOR|---->| | |NOR|-- ~Q --+
| | +---+ +->| | |
+---+ | +---+ |

+--|---------------+
| |
| +---------------+
| +---+ |
+---->| | |

|NOR|-- Q --+
----------------- R' -->| |

+---+

� S71. A wide range of answers are clearly possible. Obvious examples include physical size, and power con-

sumption or heat dissipation. Other variants include worst-case versus average-case versions of each metric, for

example in the case of efficiency.

� S72. a MOSFET transistors work by sandwiching together N-type and P-type semiconductor layers. The different

types of layer are doped with different substances to create more holes or more electrons. For example, in an

N-type MOSFET the layers are constructed as follows

gate
+-------+
| metal |

==== source ========= drain ==== silicon oxide layer
+--+--------+---------+--------+--+
| | N-type | | N-type | |
| +--------+ +--------+ |
| P-type |
+---------------------------------+

with additional layers of silicon oxide and metal. There are three terminals on the transistor. Roughly speaking,

applying a voltage to the gate creates a channel between the source and drain through which charge can flow.

Thus the device acts like a switch: when the gate voltage is high, there is a flow of charge but when it is low

there is little flow of charge. A P-type MOSFET swaps the roles of N-type and P-type semiconductor and hence

implements the opposite switching behaviour.

b One can construct an NAND to compute 𝑧 = 𝑥 ∧ 𝑦 gate from such transistors as follows:

V_dd
|

+-------+-------+
| |
v v

+--------+ +--------+
x -->| P-type | y -->| P-type |

+--------+ +--------+
| |
+---------------+---> z
|

+--------+
x -->| N-type |

+--------+
|

+--------+
y -->| N-type |

+--------+
^
|
+-------+

|
VSS

If 𝑥 and 𝑦 are connected to 𝑉𝑠𝑠 then both top P-type transistors will be connected, and both bottom N-type

transistors will be disconnected; 𝑟 will be connected to 𝑉𝑑𝑑. If 𝑥 and 𝑦 are connected to 𝑉𝑑𝑑 and 𝑉𝑠𝑠 respectively

then the right-most P-type transistor will be connected, and both lower-most N-type transistor will be discon-

nected; 𝑟 will be connected to𝑉𝑑𝑑. If 𝑥 and 𝑦 are connected to𝑉𝑠𝑠 and𝑉𝑑𝑑 respectively then the left-most P-type

transistor will be connected, and both upper-most N-type transistor will be disconnected; 𝑟 will be connected

git # b282dbb9 @ 2025-09-03 36

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

to 𝑉𝑑𝑑. If 𝑥 and 𝑦 are connected to 𝑉𝑑𝑑 then both top P-type transistors will be disconnected, and both bottom

N-type transistors will be connected; 𝑟 will be connected to 𝑉𝑠𝑠 . In short, the behaviour we get is described by

𝑥 𝑦 𝑟

𝑉𝑠𝑠 𝑉𝑠𝑠 𝑉𝑑𝑑
𝑉𝑠𝑠 𝑉𝑑𝑑 𝑉𝑑𝑑
𝑉𝑑𝑑 𝑉𝑠𝑠 𝑉𝑑𝑑
𝑉𝑑𝑑 𝑉𝑑𝑑 𝑉𝑠𝑠

which, if we substitute 0 and 1 for 𝑉𝑠𝑠 and 𝑉𝑑𝑑, is matches that of the NAND operation.

� S73. This question is a lot easier than it sounds; basically we just add two extra transistors (one P-MOSFET and

one N-MOSFET) to implement a similar high-level approach. That is, we want 𝑟 connected to 𝑉𝑠𝑠 only when each

of 𝑥, 𝑦 and 𝑧 are connected to𝑉𝑑𝑑; this means the bottom, N-MOSFETs are in series. If any of 𝑥, 𝑦 or 𝑧 are connected

to 𝑉𝑠𝑠 , we want 𝑟 connected to 𝑉𝑑𝑑; this means the top, P-MOSFETs are in parallel. Diagrammatically, the result is

as follows:

x

y

z

r

Vss

Vdd

� S74. This is quite an open-ended question, but basically it asks for high-level explanations only. As such, some

example answers include the following:

a CMOS transistors are constructed from atomic-level understanding and manipulation; the immutable size of

atoms therefore acts as a fundamental limit on the size of any CMOS-based transistor.

b Feature scaling improves the operational efficiency of transistors, simply because smaller features reduce delay.

Beyond this however, one must utilise the extra transistors to achieve some useful task if computational efficiency

is to scale as well: improvements to an architecture or design are often required, for instance, to exploit parallelism

and so on.

c Even assuming the transistors available can be harnessed to improve computational efficiency, this has implica-

tions: more transistors within a fixed size area will increase power consumption and also heat dissipation for

example, both of which act as limits even if managed (e.g., via aggressive forms of cooling).

d On one hand, smaller transistors mean less cost per-transistor: with a fixed number of transistors, their area and

manufacturing cost will decrease. With a fixed sized area and hence more transistors in it however, this probably

means increase defect rate during manufacture. The resulting cost implication could act as an economic limit to

transistor size.

git # b282dbb9 @ 2025-09-03 37

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S75. a The most basic interpretation (i.e., not really doing any grouping using Karnaugh maps but just picking

out each cell with a 1 in it) generates the following SoP equations

𝑒 = (¬𝑎 ∧ ¬𝑏 ∧ 𝑐 ∧ ¬𝑑) ∨ (𝑎 ∧ ¬𝑏 ∧ ¬𝑐 ∧ ¬𝑑) ∨ (¬𝑎 ∧ 𝑏 ∧ ¬𝑐 ∧ 𝑑)
𝑓 = (¬𝑎 ∧ ¬𝑏 ∧ ¬𝑐 ∧ 𝑑) ∨ (¬𝑎 ∧ 𝑏 ∧ ¬𝑐 ∧ ¬𝑑) ∨ (𝑎 ∧ ¬𝑏 ∧ 𝑐 ∧ ¬𝑑)

b From the basic SoP equations, we can use the don’t care states to eliminate some of the terms to get

𝑒 = (¬𝑎 ∧ ¬𝑏 ∧ 𝑐) ∨ (𝑎 ∧ ¬𝑐 ∧ ¬𝑑) ∨ (𝑏 ∧ 𝑑)
𝑓 = (¬𝑎 ∧ ¬𝑏 ∧ 𝑑) ∨ (𝑏 ∧ ¬𝑐 ∧ ¬𝑑) ∨ (𝑎 ∧ 𝑐)

then, we can share both the terms ¬𝑎 ∧ ¬𝑏 and ¬𝑐 ∧ ¬𝑑 since they occur in 𝑒 and 𝑓 .

� S76. Simply transcribing the truth table into a suitable Karnaugh map gives

00 01 11 10

0

1

𝑦

𝑥

𝑧

1
0

1
1

0
2

1
3

1
4

0
5

0
6

?
7

from which we can derive the SoP expression

𝑟 = (¬𝑦 ∧ 𝑧) ∨ (¬𝑥 ∧ ¬𝑧).

� S77. Define ∧ as the NAND operation with the truth table:

𝑥 𝑦 𝑥 ∧ 𝑦
0 0 1

0 1 1

1 0 1

1 1 0

Using NAND, we can implement NOT, AND and OR as follows:

¬𝑥 = 𝑥 ∧ 𝑥
𝑥 ∧ 𝑦 = (𝑥 ∧ 𝑦) ∧ (𝑥 ∧ 𝑦)
𝑥 ∨ 𝑦 = (𝑥 ∧ 𝑥) ∧ (𝑦 ∧ 𝑦)

To prove this works, we can construct truth tables for the expressions and compare the results with what we would

expect; for NOT we have:

𝑥 𝑥 ∧ 𝑥 ¬𝑥
0 1 1

1 1 0

while for AND we have:

𝑥 𝑦 𝑥 ∧ 𝑦 (𝑥 ∧ 𝑦) ∧ (𝑥 ∧ 𝑦) 𝑥 ∧ 𝑦
0 0 1 0 0

0 1 1 0 0

1 0 1 0 0

1 1 0 1 1

and finally for OR we have:

𝑥 𝑦 𝑥 ∧ 𝑥 𝑦 ∧ 𝑦 (𝑥 ∧ 𝑦) ∧ (𝑥 ∧ 𝑦) 𝑥 ∨ 𝑦
0 0 1 1 0 0

0 1 1 0 1 1

1 0 0 1 1 1

1 1 0 0 1 1

such that it should be clear all three are correct.

git # b282dbb9 @ 2025-09-03 38

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S78. Conventionally a 4-input, 1-bit multiplexer might be described using a truth table such as the following:

𝑐1 𝑐0 𝑤 𝑥 𝑦 𝑧 𝑟

0 0 ? ? ? 0 0

0 0 ? ? ? 1 1

0 1 ? ? 0 ? 0

0 1 ? ? 1 ? 1

1 0 ? 0 ? ? 0

1 0 ? 1 ? ? 1

1 1 0 ? ? ? 0

1 1 1 ? ? ? 1

This assumes that there are four inputs, namely 𝑤, 𝑥, 𝑦 and 𝑧, with two further control signals 𝑐1 and 𝑐0 deciding

which of them provides the output 𝑟. However, another valid way to write the same thing would be

𝑐1 𝑐0 𝑟

0 0 𝑤
0 1 𝑥
1 0 𝑦
1 1 𝑧

This reformulation describes a 2-input, 1-output Boolean function whose behaviour is selected by fixing 𝑤, 𝑥, 𝑦
and 𝑧, i.e., connecting each of them directly to either 0 or 1. For instance, if 𝑤 = 𝑥 = 𝑦 = 0 and 𝑧 = 1 then the truth

table becomes

𝑐1 𝑐0 𝑟

0 0 𝑤 = 0

0 1 𝑥 = 0

1 0 𝑦 = 0

1 1 𝑧 = 1

which is of course the same as AND. So depending on how 𝑤, 𝑥, 𝑦 and 𝑧 are fixed (on a per-instance basis) we

can form any 2-input, 1-output Boolean function; this includes NAND and NOR, which we know are universal,

meaning the multiplexer is also universal.

� S79. a The expression for this circuit can be written as

𝑒 = (¬𝑐 ∧ ¬𝑏) ∨ (𝑏 ∧ 𝑑) ∨ (¬𝑎 ∧ 𝑐 ∧ ¬𝑑) ∨ (𝑎 ∧ 𝑐 ∧ ¬𝑑)

which yields the Karnaugh map

00 01 11 10

00

01

11

10

𝑐

𝑎

𝑑

𝑏

1
0

0
1

1
2

1
3

1
4

0
5

1
6

1
7

1
8

1
9

0
10

1
11

1
12

1
13

0
14

1
15

and from which we can derive a simplified SoP form for 𝑒, namely

𝑒 = (𝑏 ∧ 𝑑) ∨ (¬𝑏 ∧ ¬𝑐) ∨ (𝑐 ∧ ¬𝑑)

b The advantages of this expression over the original are that is is simpler, i.e., contains less terms and hence

needs less gates for implementation, and shows that the input 𝑎 is essentially redundant. We have probably

also reduced the critical path through the circuit since it is more shallow. The disadvantages are that we still

potentially have some glitching due to the differing delays through paths in the circuit, although these existed

before as well, and the large propagation delay.

git # b282dbb9 @ 2025-09-03 39

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

c The longest sequential path through the circuit goes through a NOT gate, two AND gates and two OR gates;

the critical path is thus 90ns long. This time bounds how fast we can used it in a clocked system since the clock

period must be at least 90ns. So the shortest clock period would be 90ns, meaning the clock ticks about 11111111

times a second (or at about 11MHz).

� S80. a Examining the behaviour required, we can construct the following truth table:

𝐷2 𝐷1 𝐷0 𝐿8 𝐿7 𝐿6 𝐿5 𝐿4 𝐿3 𝐿2 𝐿1 𝐿0

0 0 0 ? ? ? ? ? ? ? ? ?
0 0 1 0 0 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0 0 0 1 0

0 1 1 1 0 0 0 1 0 0 0 1

1 0 0 1 0 1 0 0 0 1 0 1

1 0 1 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 0 0 1 1 1

1 1 1 ? ? ? ? ? ? ? ? ?

Note that

𝐿3 = 0

𝐿5 = 0

𝐿6 = 𝐿2

𝐿7 = 𝐿1

𝐿8 = 𝐿0

so actually we only need expressions for 𝐿0...2 and 𝐿4, and that don’t care states are used to capture the idea that

𝐷 = 0 and 𝐷 = 7 never occur. The resulting four Karnaugh maps

00 01 11 10

0

1

𝐿0

𝐷1

𝐷2

𝐷0

?
0

0
1

1
2

1
3

0
4

1
5

1
6

?
7

00 01 11 10

0

1

𝐿1

𝐷1

𝐷2

𝐷0

?
0

0
1

0
2

0
3

1
4

0
5

1
6

?
7

00 01 11 10

0

1

𝐿2

𝐷1

𝐷2

𝐷0

?
0

0
1

1
2

1
3

0
4

0
5

1
6

?
7

00 01 11 10

0

1

𝐿4

𝐷1

𝐷2

𝐷0

?
0

1
1

0
2

1
3

0
4

1
5

0
6

?
7

can be translated into the expressions:

𝐿0 = 𝐷2 ∨ (𝐷1 ∧ 𝐷0)
𝐿1 = (𝐷1 ∧ ¬𝐷0)
𝐿2 = 𝐷2

𝐿4 = 𝐷0

b All the LEDs can be driven in parallel, i.e., the critical path relates to the single expression whose critical path is

the most. 𝐿2...6 have no logic involved, so we can discount them immediately. Of the two remaining LEDs, we

find

𝐿0 ; 20ns + 20ns

𝐿1 ; 10ns + 20ns

hence 𝐿0 represents the critical path of 40ns. Thus if one throw takes 40ns, we can perform

1s

40ns

=
1 · 10

9
ns

40ns

= 25000000

throws per-second. Which is quite a lot, and certainly too many to actually see with the human eye!

git # b282dbb9 @ 2025-09-03 40

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

c i A rough block diagram would resemble

+-----+ +-----+ +-----+
co <----------|co ci|<- - - - - |co ci|<----------|co ci|<---------- ci = 0

+--|s y|<----+ +--|s y|<----+ +--|s y|<----+
	x	<-+			x	<-+			x	<-+
+-----+			+-----+			+-----+				
x_{n-1}		x_1		x_0						
y_{n-1}	y_1	y_0								
v v v
r_{n-1} r_1 r_0

ii If we sum 8 values 1 ≤ 𝑥𝑖 ≤ 6, where 𝑥𝑖 is the 𝑖-th throw (or 𝑖-th value of 𝐷 supplied), then the maximum

total is 8 · 6 = 48. We can represent this in 6 bits, hence 𝑛 = 6.

iii Using the left-shift method, we compute 𝐷′ = 2 · 𝐷 by simply relabelling the bits in 𝐷. That is, 𝐷′
0
= 0 and

𝐷′
𝑖+1

= 𝐷𝑖 for 0 ≤ 𝑖 < 3. For example, given 𝐷 = 6(10) = 110(2) we have

𝐷′
0

= 0

𝐷′
1

= 𝐷0 = 0

𝐷′
2

= 𝐷1 = 1

𝐷′
3

= 𝐷2 = 1

and hence 𝐷′ = 1100(2) = 12(10). Since there is no need for any logic gates to implement this method, the

critical path is essentially nil: the only propagation delay relates to (small) wire delays. In comparison to the

larger critical path of a suitable 𝑛-bit adder, this clearly means the left-shift approach is preferable.

� S81. a A basic design would use two building blocks:

• lth_8bit compares two 8-bit inputs 𝑎 and 𝑏 and produces a 1-bit result 𝑟, where 𝑟 = 1 if 𝑎 < 𝑏 and 𝑟 = 0 if

𝑎 ≥ 𝑏:

a b
| |
v v

+-----------+
| lth_8bit |
+-----------+

|
v
r

• mux2_8bit selects between two 8-bit inputs; if the inputs are 𝑎 and 𝑏, the output 𝑟 = 𝑎 if the control signal

𝑠 = 0, or 𝑟 = 𝑏 if 𝑠 = 1:

a b
| |
v v

+-----------+
| mux2_8bit |<-- s
+-----------+

|
v
r

Based on these building blocks, one can describe the component 𝐶 as follows:

x y
| |
v v

+-----------+
| lth_8bit |
+-----------+

y x | x y
| | | | |
v v | v v

+-----------+ | +-----------+
| mux2_8bit |<--+-->| mux2_8bit |
+-----------+ r +-----------+

| |
v v

min(x,y) max(x,y)

git # b282dbb9 @ 2025-09-03 41

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

From a functional perspective, 𝐶 compares 𝑥 and 𝑦 using an instance of the lth_8bit building block, and then

uses the result 𝑟 as a control signal for two instances of mux2_8bit. The left-hand instance selects 𝑦 as the output

if 𝑟 = 0 and 𝑥 if 𝑟 = 1; that is, if 𝑥 < 𝑦 then the output is 𝑥 = min(𝑥, 𝑦) otherwise the output is 𝑦 = min(𝑥, 𝑦).
The right-hand instance swaps the inputs so it selects 𝑥 as the output if 𝑟 = 0 and 𝑦 if 𝑟 = 1; that is, if 𝑥 < 𝑦 then

the output is 𝑦 = max(𝑥, 𝑦) otherwise the output is 𝑥 = max(𝑥, 𝑦).
b The short answer (which gets about half the marks) is that the longest path through the mesh will go through

2𝑛 − 1 of the 𝐶 components: this is the path from the top-left corner down along one edge to the bottom-left and

then along another edge to the bottom-right. So in a sense, if we write the propagation delay associated with

each instance of 𝐶 as 𝑇𝐶 then the overall critical path is

(2𝑛 − 1) · 𝑇𝐶 .

In a bit more detail, the critical path through 𝐶 is through one instance of lth_8bit and one instance of

mux2_8bit. So we could write the overall critical path is

(2𝑛 − 1) · (𝑇lth_8bit + 𝑇mux2_8bit).

To be more detailed than this, we need to think about individual logic gates. Imagine we assume 𝑇𝐴𝑁𝐷 = 50ns,

𝑇𝐴𝑁𝐷 = 20ns, 𝑇𝑂𝑅 = 20ns and 𝑇𝑁𝑂𝑇 = 10ns.

• mux2_8bit is simply eight mux2_1bit instances placed in parallel with each other; that is, the 𝑖-th such instance

produces the 𝑖-th bit of the output based on the 𝑖-th bit of the inputs (but all using the same control signal).

Assuming that the propagation delay of AND and OR gates dominates that of a NOT gate, the critical path

through mux2_1bitwill be 𝑇𝐴𝑁𝐷 + 𝑇𝑂𝑅.

• lth_8bit is a combination of eight sub-components:

x_i y_i x_i y_i
| | | |
v v v v

+----------+ +----------+
| lth_1bit | | equ_1bit |
+----------+ +----------+
| |
| | t_{i-1}
| | |
| v v
| +----------+
| +----| AND |
| | +----------+
v v

+----------+
| OR |
+----------+

|
v
t_i

Each of these sub-components is placed in series so that 𝑡𝑖−1 is an input from the previous sub-component

and 𝑡𝑖 is an output provided to the next.

Based on simple circuits derived from their truth tables, the critical paths for lth_1bit and equ_1bit are

𝑇𝐴𝑁𝐷 + 𝑇𝑁𝑂𝑇 and 𝑇𝑋𝑂𝑅 + 𝑇𝑁𝑂𝑇 respectively. Thus the critical path of the whole sub-component is 𝑇𝑋𝑂𝑅 +
𝑇𝑁𝑂𝑇 + 𝑇𝐴𝑁𝐷 + 𝑇𝑂𝑅 (since the critical path of equ_1bit is longer). Overall, the critical path of lth_8bit is

8 · (𝑇𝑋𝑂𝑅 + 𝑇𝑁𝑂𝑇 + 𝑇𝐴𝑁𝐷 + 𝑇𝑂𝑅),

or more exactly

7 · (𝑇𝑋𝑂𝑅 + 𝑇𝑁𝑂𝑇 + 𝑇𝐴𝑁𝐷 + 𝑇𝑂𝑅) + 𝑇𝐴𝑁𝐷 + 𝑇𝑁𝑂𝑇
because the 0-th sub-component is “special”: there is no input from the previous sub-component.

Using this we can write the overall critical path for the mesh as

(2𝑛 − 1) · (7 · 𝑇𝑋𝑂𝑅 + 8 · 𝑇𝑁𝑂𝑇 + 9 · 𝑇𝐴𝑁𝐷 + 8 · 𝑇𝑂𝑅)

or roughly (2𝑛 − 1) · 770ns if we plug in the assumed delays.

c One problem is that the mesh does not always give the right result! If you were to build a 4 × 4 mesh and feed

5, 6, 7, 8 into the top and 4, 3, 2, 1 into the left-hand side, the bottom reads 5, 6, 7, 8 and the right-hand side reads

4, 3, 2, 1: numbers cannot move from bottom to top or from right to left, so there are some inputs a mesh cannot

sort.

git # b282dbb9 @ 2025-09-03 42

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

Beyond this trick question, the main idea is that the mesh is special-purpose, the processor is general-purpose:

this implies a number of trade-offs in either direction that could be viewed as advantages or disadvantages in

certain cases. For example, depending on 𝑛, one might argue that the processor will be require more logic to

realise it (since it will include features extraneous to the task of sorting). Since it operates a fetch-decode-execute

cycle to complete each instruction, there is an overhead (i.e., the fetch and decode at least) which means it

potentially performs the task of sorting less quickly. On the other hand, once constructed the mesh is specialised

to one task: it cannot be used to sort strings for example, and the size of input (i.e., 𝑛) is fixed. The processor

makes the opposite trade-off; it should be clear that while it might be slower and potentially larger, it is vastly

more flexible.

� S82. a Imagine a component which is enabled (i.e., “turned on”) using the input 𝑒𝑛:

• The idea of the component being level triggered is that the value of 𝑒𝑛 is important, not a change in 𝑒𝑛: the

component is enabled when 𝑒𝑛 has a particular value, rather than at an edge when the value changes.

• The fact 𝑒𝑛 is active high means that the component is enabled when 𝑒𝑛 = 1 (rather than 𝑒𝑛 = 0 which would

make it active low). Though active high might seem the more logical choice, this is just part of the component

specification: as long as everything is consistent, i.e., uses the right semantics to “turn on” the component,

there is sometimes no major benefit of one approach over the other.

b Assume that 𝑀 is a 4-state switch represented by a 2-bit value 𝑀 = ⟨𝑀0 , 𝑀1⟩: ⟨0, 0⟩ means off, ⟨1, 0⟩ means

slow, ⟨0, 1⟩ means fast and ⟨1, 1⟩ means very fast. Also assume there is a clock signal called 𝑐𝑙𝑘 available, for

example supplied by an oscillator of some form.

One approach would basically be to take 𝑐𝑙𝑘 and divide it to create two new clock signals 𝑐0 and 𝑐1 which have

a longer period: each of the clock signals could then satisfy the criteria of toggling the fire button on and off at

various speeds. A clock divider is fairly simple: the idea is to have a counter 𝑐 clocked by 𝑐𝑙𝑘 and to sample the

(𝑖 − 1)-th bit of the counter: this behaves like 𝑐𝑙𝑘 divided by 2
𝑖
. For example the 0-th bit acts like 𝑐𝑙𝑘 but with

twice the period.

A circuit to do this is fairly simple: we need some D-type flip-flops to hold the counter state, and some full-adders

to increment the counter:

+-----+ +-----+
|co ci|<----------|co ci|<-- 0

+--|s y|<-- 0 +--|s y|<-- 1
| | x|<-+ | | x|<-+
| +-----+ | | +-----+ |
| | | |
| c_1 --+ | c_0 --+
| | | |
| +-----+ | | +-----+ |
+->|D Q|--+ +->|D Q|--+
| <|<-+ | <|<-+
| | | | | |
+-----+ | +-----+ |

| |
+-----------------+-- clk

Given such a component which runs freely as long as it is driven by 𝑐𝑙𝑘, we want to feed the original fire button

𝐹0 through to form the new fire button input 𝐹′
0

when 𝑀 = 0, and 𝑐1, 𝑐0 or 𝑐𝑙𝑘 through when 𝑀 = 1, 𝑀 = 2 or

𝑀 = 3 (meaning a slow, fast or very fast toggling behaviour). We can describe this as the following truth table:

𝑀1 𝑀0 𝐹′
0

0 0 𝐹0

0 1 𝑐1

1 0 𝑐0

1 1 𝑐𝑙𝑘

This is essentially a multiplexer controlled by 𝑀, and permits us to write

𝐹′
0

= (¬𝑀0 ∧ ¬𝑀1 ∧ 𝐹0)
(𝑀0 ∧ ¬𝑀1 ∧ 𝑐1)
(¬𝑀0 ∧ 𝑀1 ∧ 𝑐0)
(𝑀0 ∧ 𝑀1 ∧ 𝑐𝑙𝑘)

c i A synchronous protocol demands that the console and controller share a clock signal which acts to synchronise

their activity, e.g., ensures each one sends and receives data at the right time. The problem with this is ensuring

git # b282dbb9 @ 2025-09-03 43

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

that the clock is not skewed for either component: since they are physically separate, this might be hard and

hence this is not such a good option.

An asynchronous protocol relies on extra connections between the components, e.g., “request” and “acknowl-

edge”, that allow them to engage in a form of transaction: the extra connections essentially signal when

data has been sent or received on the associated bus. This is more suitable given the scenario: the extra

connections could potentially be shared with those that already exist (e.g., 𝐹0, 𝐹1, 𝐹2 and 𝐷) thereby reducing

the overhead, plus performance is not a big issue here (the protocol will presumably only be executed once

when the components are turned on or plugged in).

Both approaches have an issue in that

• once the protocol is run someone could just plug in another, fake controller, or

• or simply intercept 𝑐 and 𝑇(𝑐) pairs until it recovers the whole look-up table and then “imitate” it using a

fake controller

so neither is particularly robust from a security point of view!

ii The temptation here is to say that the use of a 3-bit memory (or register) is the right way to go. Although

this allows some degree of flexibility which is not required since the function is fixed, the main disadvantage

is retention of the content when the controller or console is turned off: some form of non-volatile memory is

therefore needed.

However, we can easily construct some dedicated logic to do the same thing. If we say that 𝑦 = 𝑇(𝑥), the we

can describe the behaviour of 𝑇 using the following truth table:

𝑥2 𝑥1 𝑥0 𝑦2 𝑦1 𝑦0

0 0 0 0 1 0

0 0 1 1 1 0

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 1 0 1

1 1 1 0 1 1

This can be transformed into the following Karnaugh maps for 𝑦0, 𝑦1 and 𝑦2

00 01 11 10

0

1

𝑦2

𝑥1

𝑥2

𝑥0

0
0

1
1

1
2

0
3

1
4

0
5

1
6

0
7

00 01 11 10

0

1

𝑦1

𝑥1

𝑥2

𝑥0

1
0

1
1

0
2

0
3

1
4

0
5

0
6

1
7

00 01 11 10

0

1

𝑦0

𝑥1

𝑥2

𝑥0

0
0

0
1

0
2

0
3

1
4

1
5

1
6

1
7

which in turn can be transformed into the following equations

𝑦2 = (𝑥1 ∧ ¬𝑥0) ∨
(𝑥2 ∧ ¬𝑥0) ∨
(¬𝑥2 ∧ ¬𝑥1 ∧ 𝑥0)

𝑦1 = (¬𝑥2 ∧ ¬𝑥1) ∨
(¬𝑥2 ∧ ¬𝑥0) ∨
(𝑥2 ∧ 𝑥1 ∧ 𝑥0)

𝑦0 = (𝑥1)

which are enough to implement the look-up table: we pass 𝑥 as input, and it produces the right 𝑦 (for this

fixed 𝑇) as output.

� S83. This is a classic “puzzle” question in digital logic. There are a few ways to describe the strategy, but the one

used here is based on counting the number of inputs which are 1. In short, we start by computing

𝑡1 = ¬(𝑥 ∧ 𝑦 ∨ 𝑦 ∧ 𝑧 ∨ 𝑥 ∧ 𝑧)
𝑡2 = ¬((𝑥 ∧ 𝑦 ∧ 𝑧) ∨ 𝑡1 ∧ (𝑥 ∨ 𝑦 ∨ 𝑧))

git # b282dbb9 @ 2025-09-03 44

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

which use our quota of NOT gates. The idea is that 𝑡1 = 1 iff. one or zero of 𝑥, 𝑦 and 𝑧 are 1, and in the same way

𝑡2 = 1 iff. two or zero of 𝑥, 𝑦 and 𝑧 are 1. This can be hard to see, so consider a truth table

𝑥 𝑦 𝑧 𝑥 ∧ 𝑦 𝑦 ∧ 𝑧 𝑥 ∧ 𝑧 𝑥 ∧ 𝑦 ∧ 𝑧 𝑥 ∨ 𝑦 ∨ 𝑧
0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1

0 1 0 0 0 0 0 1

0 1 1 0 1 0 0 1

1 0 0 0 0 0 0 1

1 0 1 0 0 1 0 1

1 1 0 1 0 0 0 1

1 1 1 1 1 1 1 1

meaning

𝑥 𝑦 𝑧 𝑥 ∧ 𝑦 ∨ 𝑦 ∧ 𝑧 ∨ 𝑥 ∧ 𝑧 𝑡1 (𝑥 ∧ 𝑦 ∧ 𝑧) ∨ 𝑡1 ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) 𝑡2
0 0 0 0 1 0 1

0 0 1 0 1 1 0

0 1 0 0 1 1 0

0 1 1 1 0 0 1

1 0 0 0 1 1 0

1 0 1 1 0 0 1

1 1 0 1 0 0 1

1 1 1 1 0 1 0

and hence 𝑡1 and 𝑡2 are as required. Now, we can generate the three results as

¬𝑥 = (𝑡1 ∧ 𝑡2) ∨ (𝑡1 ∧ (𝑦 ∨ 𝑧)) ∨ (𝑡2 ∧ 𝑦 ∧ 𝑧)
= (𝑡1 ∧ 𝑡2) ∨ (𝑡1 ∧ 𝑦) ∨ (𝑡1 ∧ 𝑧) ∨ (𝑡2 ∧ 𝑦 ∧ 𝑧)

¬𝑦 = (𝑡1 ∧ 𝑡2) ∨ (𝑡1 ∧ (𝑥 ∨ 𝑧)) ∨ (𝑡2 ∧ 𝑥 ∧ 𝑧)
= (𝑡1 ∧ 𝑡2) ∨ (𝑡1 ∧ 𝑥) ∨ (𝑡1 ∧ 𝑧) ∨ (𝑡2 ∧ 𝑥 ∧ 𝑧)

¬𝑧 = (𝑡1 ∧ 𝑡2) ∨ (𝑡1 ∧ (𝑥 ∨ 𝑦)) ∨ (𝑡2 ∧ 𝑥 ∧ 𝑦)
= (𝑡1 ∧ 𝑡2) ∨ (𝑡1 ∧ 𝑥) ∨ (𝑡1 ∧ 𝑦) ∨ (𝑡2 ∧ 𝑥 ∧ 𝑦)

� S84. Imagine that for some 𝑛-bit input 𝑥, we let 𝑦𝑖 = 𝐶𝑖(𝑥) denote the evaluation of 𝐶𝑖 to get an output 𝑦𝑖 . As

such, the equivalence of 𝐶1 and 𝐶2 can be stated as a test whether 𝑦1 = 𝑦2 for all values of 𝑥; another way to say

the same thing is to test whether an 𝑥 exists such that 𝑦1 ≠ 𝑦2 which will distinguish the circuits, i.e., imply they

are not equivalent.

Using the second formulation, we can write the test as 𝑦1 ⊕ 𝑦2 since the XOR will produce 1 when 𝑦1 differs

from 𝑦2 and 0 otherwise. As such, we have 𝑛 Boolean variables (the bits of 𝑥) and want an assignment that implies

the expression 𝐶1(𝑥) ⊕ 𝐶2(𝑥) will evaluate to 1. This is the same as described in the description of SAT, so if we

can solve the SAT instance we prove the circuits are (not) equivalent.

� S85. a The latency of the circuit is the time taken to perform the computation, i.e., to compute some 𝑟 given 𝑥.

For this circuit, the latency is simply the sum of the critical paths.

b The throughput is the number of operations performed per unit time period. This is essentially the number of

operations we can start (resp. that finish) within that time period.

By pipelining the circuit, using say 3 stages, one might expect the latency to increase slightly (by virtue of having

to add pipeline registers between each stage) but the throughput to increase (by virtue of decreasing the overall

critical path to the longest stage, and hence increasing the maximum clock frequency). The trade-off is strongly

influenced by the number of and balance between stages, meaning careful analysis of the circuit before applying

the optimisation is important.

� S86. a The latency of a circuit is the time elapsed between when a given operation starts and when it finishes.

The throughput of a circuit is the number of operations that can be started in each time period; that is, how long

it takes between when two subsequent operations can be started.

b The latency of the circuit is the sum of all the latencies of the parts,i.e.,

40ns + 10ns + 30ns + 10ns + 50ns + 10ns + 10ns = 160ns.

The throughput relates to the length of the longest pipeline stage; the circuit is not pipelined, so more specifically

we can say it is
1

160·10
−9

.

git # b282dbb9 @ 2025-09-03 45

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

c The new latency is still the sum of all the parts, but now includes the extra pipeline register:

40ns + 10ns + 30ns + 10ns + 10ns + 50ns + 10ns + 10ns = 170ns.

However, the throughput is now more because the longest pipeline stage only has a latency of 100ns (including

the extra register). Specifically, the throughput increases to
1

100·10
−9

which essentially means we can start new

operations more often than before.

d To maximise the throughput we need to minimise the latency of the longest pipeline stage (i.e., the one whose

individual latency is the largest) since this will act as a limit. The latency of part 𝐸 is largest (at 50ns) and hence

represents said limit: the longest pipeline stage cannot have a latency of less than 60ns (i.e., the latency of part

𝐸 plus the latency of a pipeline register).

We can achieve this by creating a 4-stage pipeline: adding two more pipeline registers, between parts 𝐵 and 𝐶
and parts 𝐸 and 𝐹, ensures the stages have latencies of

𝐴 + 𝐵 + 𝑅𝐸𝐺 ; 40ns + 10ns + 10ns = 60ns

𝐶 + 𝐷 + 𝑅𝐸𝐺 ; 30ns + 10ns + 10ns = 50ns

𝐸 + 𝑅𝐸𝐺 ; 50ns + 10ns = 60ns

𝐹 + 𝑅𝐸𝐺 ; 10ns + 10ns = 20ns

Overall, the latency is increased to 190ns but the throughput is
1

60·10
−9

.

Part III: Basics of digital logic: minimisation via Karnaugh maps

� S87. a Reference implementation:

𝑟 = (¬𝑦 ∧ ¬𝑧) ∨
(¬𝑦 ∧ 𝑧) ∨
(𝑦 ∧ 𝑧)

b Annotated Karnaugh map

0 1

0

1𝑦

𝑧

1
0

1
1

0
2

1
3

and associated, optimised implementation:

𝑟 = (¬𝑦) ∨
(𝑧)

� S88. a Reference implementation:

𝑟 = (¬𝑦 ∧ ¬𝑧) ∨
(𝑦 ∧ ¬𝑧) ∨
(𝑦 ∧ 𝑧)

b Annotated Karnaugh map

0 1

0

1𝑦

𝑧

1
0

0
1

1
2

1
3

and associated, optimised implementation:

𝑟 = (¬𝑧) ∨
(𝑦)

git # b282dbb9 @ 2025-09-03 46

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S89. a Reference implementation:

𝑟 = (¬𝑦 ∧ ¬𝑧) ∨
(¬𝑦 ∧ 𝑧)

b Annotated Karnaugh map

0 1

0

1𝑦

𝑧

1
0

1
1

0
2

0
3

and associated, optimised implementation:

𝑟 = (¬𝑦)

� S90. a Reference implementation:

𝑟 = (¬𝑦 ∧ 𝑧) ∨
(𝑦 ∧ ¬𝑧) ∨
(𝑦 ∧ 𝑧)

b Annotated Karnaugh map

0 1

0

1𝑦

𝑧

0
0

1
1

1
2

1
3

and associated, optimised implementation:

𝑟 = (𝑧) ∨
(𝑦)

� S91. a Reference implementation:

𝑟 = (¬𝑦 ∧ 𝑧) ∨
(𝑦 ∧ 𝑧)

b Annotated Karnaugh map

0 1

0

1𝑦

𝑧

0
0

1
1

0
2

1
3

and associated, optimised implementation:

𝑟 = (𝑧)

� S92. a Reference implementation:

𝑟 = (𝑦 ∧ ¬𝑧)
b Annotated Karnaugh map

0 1

0

1𝑦

𝑧

0
0

0
1

1
2

0
3

git # b282dbb9 @ 2025-09-03 47

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

and associated, optimised implementation:

𝑟 = (𝑦 ∧ ¬𝑧)

� S93. a Reference implementation:

𝑟 = (¬𝑦 ∧ 𝑧) ∨
(𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

0 1

0

1𝑦

𝑧

0
0

1
1

1
2

0
3

and associated, optimised implementation:

𝑟 = (𝑦 ∧ ¬𝑧) ∨
(¬𝑦 ∧ 𝑧)

� S94. a Reference implementation:

𝑟 = (¬𝑦 ∧ ¬𝑧) ∨
(𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

0 1

0

1𝑦

𝑧

1
0

0
1

1
2

0
3

and associated, optimised implementation:

𝑟 = (¬𝑧)

� S95. a Reference implementation:

𝑟 = (𝑦 ∧ 𝑧)

b Annotated Karnaugh map

0 1

0

1𝑦

𝑧

0
0

0
1

0
2

1
3

and associated, optimised implementation:

𝑟 = (𝑦 ∧ 𝑧)

� S96. a Reference implementation:

𝑟 = (¬𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

git # b282dbb9 @ 2025-09-03 48

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

0 1

0

1𝑦

𝑧

1
0

0
1

0
2

0
3

and associated, optimised implementation:

𝑟 = (¬𝑦 ∧ ¬𝑧)

� S97. a Reference implementation:

𝑟 = (𝑦 ∧ 𝑧)

b Annotated Karnaugh map

0 1

0

1𝑦

𝑧

0
0

?
1

?
2

1
3

and associated, optimised implementation:

𝑟 = (𝑧)

� S98. a Reference implementation:

𝑟 = (¬𝑦 ∧ 𝑧) ∨
(𝑦 ∧ 𝑧)

b Annotated Karnaugh map

0 1

0

1𝑦

𝑧

0
0

1
1

?
2

1
3

and associated, optimised implementation:

𝑟 = (𝑧)

� S99. a Reference implementation:

𝑟 = (¬𝑦 ∧ ¬𝑧) ∨
(¬𝑦 ∧ 𝑧) ∨
(𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

0 1

0

1𝑦

𝑧

1
0

1
1

1
2

0
3

and associated, optimised implementation:

𝑟 = (¬𝑦) ∨
(¬𝑧)

git # b282dbb9 @ 2025-09-03 49

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S100. a Reference implementation:

𝑟 = (𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

0 1

0

1𝑦

𝑧

0
0

0
1

1
2

?
3

and associated, optimised implementation:

𝑟 = (𝑦)

� S101. a Reference implementation:

𝑟 = (¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ 𝑦 ∧ 𝑧)

b Annotated Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

0
0

0
1

1
2

1
3

1
4

0
5

1
6

1
7

and associated, optimised implementation:

𝑟 = (𝑥 ∧ ¬𝑧) ∨
(𝑦)

� S102. a Reference implementation:

𝑟 = (¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ 𝑦 ∧ 𝑧)

b Annotated Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

0
0

1
1

0
2

0
3

1
4

0
5

0
6

1
7

and associated, optimised implementation:

𝑟 = (¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ ¬𝑧)

git # b282dbb9 @ 2025-09-03 50

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S103. a Reference implementation:

𝑟 = (¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑥 ∧ 𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

0
0

0
1

1
2

1
3

0
4

0
5

1
6

0
7

and associated, optimised implementation:

𝑟 = (𝑦 ∧ ¬𝑧) ∨
(¬𝑥 ∧ 𝑦)

� S104. a Reference implementation:

𝑟 = (¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ 𝑦 ∧ 𝑧)

b Annotated Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

1
0

1
1

1
2

1
3

0
4

1
5

1
6

1
7

and associated, optimised implementation:

𝑟 = (¬𝑥) ∨
(𝑧) ∨
(𝑦)

� S105. a Reference implementation:

𝑟 = (¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑥 ∧ 𝑦 ∧ 𝑧)

b Annotated Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

0
0

0
1

1
2

1
3

0
4

0
5

0
6

0
7

git # b282dbb9 @ 2025-09-03 51

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

and associated, optimised implementation:

𝑟 = (¬𝑥 ∧ 𝑦)

� S106. a Reference implementation:

𝑟 = (¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ 𝑧)

b Annotated Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

0
0

1
1

1
2

0
3

0
4

1
5

0
6

0
7

and associated, optimised implementation:

𝑟 = (¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑦 ∧ 𝑧)

� S107. a Reference implementation:

𝑟 = (¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑥 ∧ 𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

1
0

0
1

0
2

1
3

0
4

0
5

1
6

0
7

and associated, optimised implementation:

𝑟 = (¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ 𝑦 ∧ ¬𝑧)

� S108. a Reference implementation:

𝑟 = (¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ 𝑦 ∧ 𝑧)

b Annotated Karnaugh map

git # b282dbb9 @ 2025-09-03 52

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

00 01 11 10

0

1

𝑥

𝑦

𝑧

0
0

1
1

1
2

1
3

1
4

0
5

1
6

1
7

and associated, optimised implementation:

𝑟 = (¬𝑥 ∧ 𝑧) ∨
(𝑥 ∧ ¬𝑧) ∨
(𝑦)

� S109. a Reference implementation:

𝑟 = (¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑥 ∧ 𝑦 ∧ 𝑧)

b Annotated Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

1
0

0
1

1
2

0
3

1
4

1
5

0
6

1
7

and associated, optimised implementation:

𝑟 = (𝑥 ∧ 𝑧) ∨
(𝑥 ∧ ¬𝑦) ∨
(¬𝑥 ∧ ¬𝑧)

� S110. a Reference implementation:

𝑟 = (¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ 𝑦 ∧ 𝑧)

b Annotated Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

0
0

0
1

1
2

0
3

1
4

0
5

0
6

1
7

and associated, optimised implementation:

𝑟 = (¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ ¬𝑧)

git # b282dbb9 @ 2025-09-03 53

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S111. a Reference implementation:

𝑟 = (¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ 𝑦 ∧ 𝑧)

b Annotated Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

1
0

1
1

0
2

0
3

1
4

0
5

1
6

1
7

and associated, optimised implementation:

𝑟 = (¬𝑥 ∧ ¬𝑦) ∨
(𝑥 ∧ ¬𝑧) ∨
(𝑥 ∧ 𝑦)

� S112. a Reference implementation:

𝑟 = (¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑥 ∧ 𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

?
0

1
1

1
2

1
3

?
4

1
5

1
6

0
7

and associated, optimised implementation:

𝑟 = (¬𝑧) ∨
(¬𝑥) ∨
(¬𝑦)

� S113. a Reference implementation:

𝑟 = (𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ 𝑦 ∧ 𝑧)

b Annotated Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

0
0

?
1

0
2

?
3

1
4

0
5

0
6

1
7

git # b282dbb9 @ 2025-09-03 54

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

and associated, optimised implementation:

𝑟 = (𝑦 ∧ 𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ ¬𝑧)

� S114. a Reference implementation:

𝑟 = (¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑥 ∧ 𝑦 ∧ 𝑧)

b Annotated Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

1
0

0
1

1
2

?
3

1
4

1
5

?
6

1
7

and associated, optimised implementation:

𝑟 = (¬𝑧) ∨
(𝑥)

� S115. a Reference implementation:

𝑟 = (¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑥 ∧ 𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

1
0

0
1

1
2

?
3

?
4

?
5

0
6

?
7

and associated, optimised implementation:

𝑟 = (¬𝑥 ∧ ¬𝑧)

� S116. a Reference implementation:

𝑟 = (¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑥 ∧ 𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

?
0

0
1

?
2

1
3

0
4

0
5

1
6

?
7

git # b282dbb9 @ 2025-09-03 55

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

and associated, optimised implementation:

𝑟 = (𝑦)

� S117. a Reference implementation:

𝑟 = (¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑥 ∧ 𝑦 ∧ 𝑧)

b Annotated Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

1
0

0
1

?
2

1
3

0
4

0
5

0
6

?
7

and associated, optimised implementation:

𝑟 = (𝑦 ∧ 𝑧) ∨
(¬𝑥 ∧ ¬𝑧)

� S118. a Reference implementation:

𝑟 = (¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ 𝑧)

b Annotated Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

?
0

?
1

0
2

1
3

1
4

1
5

?
6

0
7

and associated, optimised implementation:

𝑟 = (¬𝑥 ∧ 𝑧) ∨
(¬𝑦)

� S119. a Reference implementation:

𝑟 = (¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ 𝑧)

b Annotated Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

1
0

0
1

0
2

1
3

1
4

1
5

?
6

?
7

git # b282dbb9 @ 2025-09-03 56

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

and associated, optimised implementation:

𝑟 = (𝑦 ∧ 𝑧) ∨
(𝑥) ∨
(¬𝑦 ∧ ¬𝑧)

� S120. a Reference implementation:

𝑟 = (¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

00 01 11 10

0

1

𝑥

𝑦

𝑧

1
0

0
1

?
2

?
3

1
4

?
5

0
6

0
7

and associated, optimised implementation:

𝑟 = (¬𝑦 ∧ ¬𝑧)

� S121. a Reference implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ 𝑥 ∧ 𝑦 ∧ 𝑧)

b Annotated Karnaugh map

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

0
0

0
1

0
2

1
3

1
4

1
5

1
6

1
7

0
8

0
9

1
10

0
11

0
12

0
13

0
14

1
15

and associated, optimised implementation:

𝑟 = (𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥) ∨
(𝑥 ∧ 𝑦 ∧ 𝑧)

� S122. a Reference implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧)

git # b282dbb9 @ 2025-09-03 57

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

b Annotated Karnaugh map

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

1
0

0
1

0
2

1
3

1
4

1
5

1
6

0
7

1
8

1
9

0
10

0
11

1
12

0
13

0
14

0
15

and associated, optimised implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑦) ∨
(¬𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑧)

� S123. a Reference implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ 𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

0
0

1
1

0
2

0
3

0
4

1
5

1
6

0
7

1
8

0
9

0
10

1
11

0
12

0
13

1
14

0
15

and associated, optimised implementation:

𝑟 = (𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ ¬𝑦 ∧ 𝑧)

git # b282dbb9 @ 2025-09-03 58

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S124. a Reference implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ 𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

0
0

0
1

0
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

0
15

and associated, optimised implementation:

𝑟 = (𝑤 ∧ ¬𝑦) ∨
(¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥) ∨
(𝑤 ∧ ¬𝑧)

� S125. a Reference implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ 𝑥 ∧ 𝑦 ∧ 𝑧)

b Annotated Karnaugh map

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

1
0

1
1

1
2

0
3

1
4

0
5

1
6

1
7

1
8

1
9

0
10

0
11

1
12

0
13

0
14

1
15

git # b282dbb9 @ 2025-09-03 59

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

and associated, optimised implementation:

𝑟 = (¬𝑥 ∧ ¬𝑦) ∨
(¬𝑤 ∧ ¬𝑧) ∨
(𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(¬𝑦 ∧ ¬𝑧)

� S126. a Reference implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ 𝑥 ∧ 𝑦 ∧ 𝑧)

b Annotated Karnaugh map

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

1
0

0
1

0
2

1
3

1
4

0
5

0
6

1
7

0
8

1
9

0
10

0
11

0
12

1
13

1
14

1
15

and associated, optimised implementation:

𝑟 = (𝑤 ∧ 𝑥 ∧ 𝑦) ∨
(𝑤 ∧ ¬𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑦 ∧ 𝑧)

� S127. a Reference implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ 𝑦 ∧ 𝑧)

b Annotated Karnaugh map

git # b282dbb9 @ 2025-09-03 60

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

0
0

0
1

1
2

1
3

1
4

1
5

1
6

0
7

1
8

1
9

1
10

1
11

1
12

1
13

0
14

1
15

and associated, optimised implementation:

𝑟 = (𝑤 ∧ ¬𝑥) ∨
(𝑥 ∧ ¬𝑦) ∨
(¬𝑥 ∧ 𝑦) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑧) ∨
(𝑤 ∧ 𝑧)

� S128. a Reference implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ 𝑥 ∧ 𝑦 ∧ 𝑧)

b Annotated Karnaugh map

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

0
0

1
1

1
2

0
3

1
4

0
5

0
6

0
7

1
8

0
9

1
10

0
11

0
12

1
13

1
14

1
15

and associated, optimised implementation:

𝑟 = (𝑤 ∧ 𝑥 ∧ 𝑦) ∨
(𝑤 ∧ 𝑥 ∧ 𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑧) ∨
(¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧)

� S129. a Reference implementation:

𝑟 = (¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ 𝑧)

git # b282dbb9 @ 2025-09-03 61

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

b Annotated Karnaugh map

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

0
0

0
1

0
2

0
3

1
4

0
5

0
6

0
7

0
8

0
9

1
10

0
11

1
12

1
13

0
14

0
15

and associated, optimised implementation:

𝑟 = (𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦) ∨
(𝑥 ∧ ¬𝑦 ∧ ¬𝑧)

� S130. a Reference implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ 𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

0
0

1
1

0
2

0
3

0
4

0
5

1
6

0
7

0
8

0
9

0
10

1
11

0
12

1
13

1
14

0
15

and associated, optimised implementation:

𝑟 = (𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ 𝑧)

� S131. a Reference implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ 𝑧)

b Annotated Karnaugh map

git # b282dbb9 @ 2025-09-03 62

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

?
0

?
1

0
2

1
3

?
4

0
5

?
6

?
7

?
8

0
9

0
10

1
11

0
12

1
13

0
14

?
15

and associated, optimised implementation:

𝑟 = (𝑤 ∧ 𝑥 ∧ 𝑧) ∨
(𝑦 ∧ 𝑧)

� S132. a Reference implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

1
0

?
1

1
2

1
3

1
4

1
5

0
6

?
7

1
8

?
9

0
10

?
11

?
12

?
13

?
14

?
15

and associated, optimised implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥) ∨
(¬𝑦)

� S133. a Reference implementation:

𝑟 = (¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ 𝑥 ∧ 𝑦 ∧ 𝑧)

b Annotated Karnaugh map

git # b282dbb9 @ 2025-09-03 63

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

?
0

0
1

0
2

?
3

0
4

1
5

0
6

0
7

0
8

0
9

0
10

1
11

1
12

?
13

0
14

1
15

and associated, optimised implementation:

𝑟 = (𝑤 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦) ∨
(𝑥 ∧ ¬𝑦 ∧ 𝑧)

� S134. a Reference implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

1
0

0
1

1
2

1
3

?
4

0
5

1
6

1
7

?
8

0
9

0
10

0
11

1
12

?
13

?
14

0
15

and associated, optimised implementation:

𝑟 = (¬𝑤 ∧ 𝑦) ∨
(¬𝑦 ∧ ¬𝑧)

� S135. a Reference implementation:

𝑟 = (𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ 𝑦 ∧ 𝑧)

b Annotated Karnaugh map

git # b282dbb9 @ 2025-09-03 64

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

?
0

0
1

?
2

0
3

0
4

?
5

?
6

0
7

0
8

1
9

0
10

1
11

?
12

0
13

0
14

1
15

and associated, optimised implementation:

𝑟 = (𝑤 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ 𝑧)

� S136. a Reference implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

?
0

0
1

1
2

?
3

0
4

1
5

0
6

0
7

?
8

0
9

0
10

1
11

1
12

?
13

?
14

?
15

and associated, optimised implementation:

𝑟 = (𝑤 ∧ 𝑥) ∨
(𝑤 ∧ 𝑦 ∧ 𝑧) ∨
(𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ ¬𝑥 ∧ 𝑦)

� S137. a Reference implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ 𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

git # b282dbb9 @ 2025-09-03 65

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

0
0

?
1

1
2

1
3

1
4

0
5

1
6

0
7

0
8

1
9

1
10

0
11

1
12

1
13

1
14

?
15

and associated, optimised implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥 ∧ 𝑧) ∨
(𝑥 ∧ ¬𝑧) ∨
(𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑦 ∧ 𝑧)

� S138. a Reference implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

?
0

0
1

?
2

1
3

1
4

0
5

?
6

?
7

1
8

0
9

?
10

0
11

1
12

0
13

?
14

?
15

and associated, optimised implementation:

𝑟 = (¬𝑧) ∨
(¬𝑤 ∧ 𝑦)

� S139. a Reference implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ 𝑥 ∧ 𝑦 ∧ 𝑧)

b Annotated Karnaugh map

git # b282dbb9 @ 2025-09-03 66

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

?
0

1
1

?
2

0
3

?
4

1
5

?
6

1
7

?
8

0
9

0
10

?
11

1
12

?
13

?
14

1
15

and associated, optimised implementation:

𝑟 = (¬𝑤 ∧ ¬𝑦) ∨
(𝑥)

� S140. a Reference implementation:

𝑟 = (¬𝑤 ∧ ¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ 𝑦 ∧ 𝑧) ∨
(𝑤 ∧ 𝑥 ∧ 𝑦 ∧ ¬𝑧)

b Annotated Karnaugh map

00 01 11 10

00

01

11

10

𝑤

𝑥

𝑦

𝑧

1
0

0
1

0
2

?
3

?
4

?
5

?
6

1
7

0
8

0
9

1
10

1
11

?
12

?
13

1
14

0
15

and associated, optimised implementation:

𝑟 = (𝑥 ∧ ¬𝑧) ∨
(𝑤 ∧ ¬𝑥 ∧ 𝑦) ∨
(¬𝑤 ∧ ¬𝑦 ∧ ¬𝑧) ∨
(¬𝑤 ∧ 𝑥)

Part IV: Basics of computer arithmetic

� S141. First, notice that the function does not use y at all, so the function cannot add x to y. All other options are

plausible: to assess which is correct, one could take a brute-force approach and execute it via

int main(int argc, char* argv[]) {
for(int i = 0; i < 256; i++) {
printf("%3d %3d\n", i, f(i));

}

return 0;
}

Doing so shows that that the function increments x. But why is this? Consider some specific examples:

git # b282dbb9 @ 2025-09-03 67

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

• For x = 14(10) = 00001110(2) , the loop performs 0 iterations then terminates: the value

xm| = 00001110(2) ∨ 00000001(2)
= 00001111(2)
= 15(10)

i.e., x + 1 is returned.

• For x = 7(10) = 00000111(2) , the loop performs 3 iterations

x = x & ~m = 00000111(2) ∧ ¬00000001(2)
= 00000111(2) ∧ 11111110(2)
= 00000110(2)

m = m << 1 = 00000001(2) ≪ 1

= 00000010(2)

x = x & ~m = 00000110(2) ∧ ¬00000010(2)
= 00000110(2) ∧ 11111101(2)
= 00000100(2)

m = m << 1 = 00000010(2) ≪ 1

= 00000100(2)

x = x & ~m = 00000100(2) ∧ ¬00000100(2)
= 00000100(2) ∧ 11111011(2)
= 00000000(2)

m = m << 1 = 00000100(2) ≪ 1

= 00001000(2)

then terminates: the value

xm| = 00000000(2) ∨ 00001000(2)
= 00001000(2)
= 16(10)

i.e., x + 1 is returned.

More generally, the idea is that, as a result of initialising m to 1 and then left-shifting it in each iteration, the while
loop iterates over each LSB of xwhich is 1; while doing so, x is assigned the value x & ~mwhich toggles the current

bit. Once the loop terminates, the value xm| is returned: this sets the current bit of x, which we know is 0 due to

the loop condition, to 1.

� S142. • x == 0 evaluates to non-zero if x = 0, i.e., every bit of x is 0. x == -1 evaluates to non-zero if x =

−1 ≡ 2
32 − 1, i.e., every bit of x is 1: although x is unsigned, the signed value −1 will “wrap around” to the

representation

x ↦→ −2
31 + 2

30 · · · + 2
1 + 2

0 ,

i.e., where every bit of x is 1. (x == 0)| (x == -1)| therefore yields the required behaviour.

• !x evaluates to non-zero if x = 0, i.e., every bit of x is 0. !(~x) evaluates to non-zero if x = −1 ≡ 2
32 − 1, i.e.,

every bit of x is 1: if every bit of x is 1, ~x means every bit is 0 and thus !(~x) evaluates to non-zero in exactly

that case. !x| !(x)| therefore yields the required behaviour.

• This option is arguably trickier, in the sense there is only one term; it is therefore harder to see how it captures

the two cases. To see why it does, you could apply sort of the opposite reasoning to the above. If every bit of

x is 0, then x = 0 and so x+1 = 1; (x + 1) < 2 evaluates to non-zero in this case. If every bit of x is 1, then

x = −1 ≡ 2
32 − 1 and so x+1 = 0; (x + 1) < 2 evaluates to non-zero in this case. Given x is unsigned, all

other representations it could take imply 1 ≤ x ≤ 2
32 − 2 and so 2 ≤ (x + 1) < 2 ≤ 2

32 − 1; in such cases we

conclude that (x + 1) > 2 evaluates to zero.

� S143. Although one could select the correct option by inspection, the easiest approach is simply work through

each one. Doing that via a complete trace (e.g., of each intermediate computation, by each full-adder instance)

is overly verbose, so in the below, we capture the pertinent details only (noting the sequence representing the

git # b282dbb9 @ 2025-09-03 68

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

carry-chain is read left-to-right; this matches the ripple-carry diagram, but might seem odd wrt. the right-to-left

order of digits in the literals):

𝑥 = 0000(2) = 0(10)
𝑦 = 0000(2) = 0(10)
𝑟 = 0000(2) = 0(10)
𝑐 = ⟨0, 0, 0, 0, 0⟩
𝑐2 = 0

𝑥 = 1100(2) = 12(10)
𝑦 = 0001(2) = 1(10)
𝑟 = 1101(2) = 13(10)
𝑐 = ⟨0, 0, 0, 0, 0⟩
𝑐2 = 0

𝑥 = 0100(2) = 4(10)
𝑦 = 0100(2) = 4(10)
𝑟 = 1000(2) = 8(10)
𝑐 = ⟨0, 0, 0, 1, 0⟩
𝑐2 = 0

𝑥 = 1011(2) = 11(10)
𝑦 = 1001(2) = 9(10)
𝑟 = 0100(2) = 4(10)
𝑐 = ⟨0, 1, 1, 0, 1⟩
𝑐2 = 1

𝑥 = 0110(2) = 6(10)
𝑦 = 0101(2) = 5(10)
𝑟 = 1011(2) = 11(10)
𝑐 = ⟨0, 0, 0, 1, 0⟩
𝑐2 = 0

� S144. In general, an overflow condition occurs when the correct result of some arithmetic operation cannot be

represented (meaning the result is then incorrect). Within the context outlined by the question, two instances of

this can occur: either 1) 𝑥 is positive and 𝑦 is positive, but 𝑟 is negative, or 2) 𝑥 is negative and 𝑦 is negative, but 𝑟
is positive. In both instances, the sign of 𝑟 is incorrect because the correct value of 𝑟 has too large a magnitude to

represent in 8 bits.

In two’s-complement the MSB indicates the sign, meaning that 𝑥7, 𝑦7, and 𝑟7 indicate whether 𝑥, 𝑦, and 𝑟 are

positive or negative respectively. Using this information we can translate each condition above into a Boolean

expression, i.e.,

𝑥7 ∧ 𝑦7 ∧ ¬𝑟7
indicates that 𝑥 is positive, 𝑦 is positive, and 𝑟 is negative, while

¬𝑥7 ∧ ¬𝑦7 ∧ 𝑟7

indicates that 𝑥 is negative, 𝑦 is negative, and 𝑟 is positive. As such, simply OR’ing these expressions together

produces the flag we require, i.e.,

𝑓 = (𝑥7 ∧ 𝑦7 ∧ ¬𝑟7) ∨ (¬𝑥7 ∧ ¬𝑦7 ∧ 𝑟7).

� S145. a true. Consider some 𝑤-bit word 𝑥. A logical right-shift (resp. left-shift) of 𝑥 will fill the MSBs (resp.

LSBs) with 0, whereas an arithmetic right-shift will fill the MSBs with 𝑥𝑤−1 (i.e., the existing MSB). The rationale

for the latter is that if 𝑥 is interpreted using a signed representation such as two’s-complement, it will retain the

sign: if 𝑥 represents a positive (resp. negative) value, that value is still positive (resp. negative) after the shift is

applied. Based on this, an arithmetic left-shift is not useful because the LSB does not influence sign in the same

way as the MSB.

b true. A right-shift by 2 bits would move all bits in x 2 places “downward” toward the least-significant end;

in doing so the 2 least-significant bits are discarded, and two 0 bits are introduced to the most-significant end

(because x is unsigned in this case). The action of a right-rotate can be described as a “circular right-shift”, in the

sense that those discarded bits are now moved from the least- back around to the most-significant end.

git # b282dbb9 @ 2025-09-03 69

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

To match the left/right semantics of the shift operators, imagine that we express the bits in x (and also the

intermediate values) as follows

x = 𝑥7 𝑥6 𝑥5 𝑥4 𝑥3 𝑥2 𝑥1 𝑥0

x >> 2 = 0 0 𝑥7 𝑥6 𝑥5 𝑥4 𝑥3 𝑥2

x << 6 = 𝑥1 𝑥0 0 0 0 0 0 0

(x >> 2) (x « 6)| = 𝑥1 𝑥0 𝑥7 𝑥6 𝑥5 𝑥4 𝑥3 𝑥2

First, right-shifting x by 2 bits discards 𝑥1 and 𝑥0 while retaining 𝑥7 to 𝑥2 in the 6 least-significant bits. Second,

left-shifting x by 6 bits discards 𝑥7 to 𝑥2 while retaining 𝑥1 and 𝑥0 in the 2 most-significant bits. Noting that

𝑡 ∨ 0 = 𝑡, third, and finally, OR’ing the right- and left-shifted x retains the same values of each bit in x but now

in a different order: that order matches our description of right-rotation above.

� S146. 𝑂(𝑛) implies the critical path is proportional to the number of bits (including some constant factor) required

to represent each of the operands. The reason is the carry chain which runs through all 𝑛 full-adders in the design:

each 𝑖-th full-adder produces a carry-out used as a carry-into the (𝑖 + 1)-th full-adder. This means each 𝑖-th bit of

the result depends on, and cannot be computed before, all 𝑗-th bits for 0 ≤ 𝑗 < 𝑖.

An alternative, carry look-ahead design separates computation of carries from the full-adder cells themselves;

this allows an organisation whose critical path can be described as 𝑂(log 𝑛), although the number of logic gates

required is less attractive.

� S147. The relationship

𝑥 is a power-of-two ≡ (𝑥 ∧ (𝑥 − 1)) = 0

performs the test which can be written as the C expression

(x & (x - 1)) == 0

This works because if 𝑥 is an exact power-of-two then 𝑥 − 1 sets all bits less-significant that the 𝑛-th to one; when

this is AND’ed with 𝑥 (which only has the 𝑛-th bit set to one) the result is zero. If 𝑥 is not an exact power-of-two

then there will be bits in 𝑥 other than the 𝑛-th set to one; in this case 𝑥 − 1 only sets bits less-significant than the

least-significant and hence there are others left over which, when AND’ed with 𝑥, result in a non-zero result. Note

that the expression fails, i.e., it is non-zero, for 𝑥 = 0 but this is allowed since the question says 𝑥 ≠ 0.

� S148. x is of type char, so is therefore represented using two’s-complement in 8 bits; values for such a rep-

resentation range between 2
𝑛−1 − 1 = 2

8−1 − 1 = 127 and −2
𝑛−1 = −2

8−1 = −128 inclusive. This means that

by

a decrementing xwe get the value before 127, which is 126, or

b incrementing x we get the value after 127, which is −128: the reason for this is that the representation of 127

is 01111111(2), but the next value 10000000(2) is the largest negative value possible. That is, there has been an

overflow with the result “wrapping around”.

� S149. The expression computes the comparison 0 < 𝑥. This is because if 𝑥 < 0 then 𝑥3 = 1, and if 𝑥 = 0 then

𝑥3 = 𝑥2 = 𝑥1 = 𝑥0 = 0. Therefore, 𝑥 > 0 if both 𝑥3 = 0 and one of 𝑥𝑖 ≠ 0 for 𝑖 ∈ {2, 1, 0}. Strictly speaking, it tests

whether 0 < 𝑥 ≤ 7 but the upper bound is implied by the representation of 𝑥: it cannot take a value greater than 7

by definition.

� S150.
The initial temptation is to use six adder components to compute

𝑟 = 7 · 𝑥 = 𝑥 + 𝑥 + 𝑥 + 𝑥 + 𝑥 + 𝑥 + 𝑥

where the size of inputs and outputs increases as one progresses through the computation; a considered approach

might utilise carry save adders to reduce the critical path associated with the multiple summands, but here we

consider ripple-carry designs only.

A more efficient alternative would use three adders to compute

𝑟 = 7 · 𝑥 = 4 · 𝑥 + 2 · 𝑥 + 1 · 𝑥 = 2
2 · 𝑥 + 2

1 · 𝑥 + 2
0 · 𝑥

git # b282dbb9 @ 2025-09-03 70

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

noting that the multiplications by powers-of-two are “free” since they can be achieved by simply relabelling bits

rather than computation. This approach can be further refined to compute

𝑟 = 7 · 𝑥 = 8 · 𝑥 − 1 · 𝑥 = 2
3 · 𝑥 − 2

0 · 𝑥

using just one adder (assuming addition and subtraction can be realised using the same component). Clearly this

will produce the shortest critical path, and relates to the following diagram:

+------------------+ +---+
x -- n-bit -->| 3-bit left-shift |-- (n+3)-bit -->| |

+------------------+ |sub|-- (n+4)-bit --> r
x -- n-bit -------------------------------------->| |

+---+

� S151. The truth table for this operation is as follows:

𝑥1 𝑥0 𝑦1 𝑦0 𝑟3 𝑟2 𝑟1 𝑟0
0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 1

0 1 1 0 0 0 1 0

0 1 1 1 0 0 1 1

1 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0

1 0 1 1 0 1 1 0

1 1 0 0 0 0 0 0

1 1 0 1 0 0 1 1

1 1 1 0 0 1 1 0

1 1 1 1 1 0 0 1

Using four Karnaugh maps to produce each 𝑟𝑖 is overkill, since we can easily derive expressions for 𝑟0 and 𝑟3 by

inspection. Therefore, transcribing the truth table into suitable Karnaugh maps for just 𝑟1 and 𝑟2 gives

00 01 11 10

00

01

11

10

𝑟1

𝑦1

𝑥1

𝑦0

𝑥0

0
0

0
1

0
2

0
3

0
4

0
5

1
6

1
7

0
8

1
9

0
10

1
11

0
12

1
13

1
14

0
15

00 01 11 10

00

01

11

10

𝑟2

𝑦1

𝑥1

𝑦0

𝑥0

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
10

0
11

1
12

1
13

1
14

0
15

from which we can derive the SoP expressions

𝑟0 = (𝑥0 ∧ 𝑦0)

𝑟1 = (𝑥1 ∧ ¬ 𝑦1 ∧ 𝑦0) ∨
(𝑥0 ∧ 𝑦1 ∧ ¬ 𝑦0) ∨
(¬ 𝑥1 ∧ 𝑥0 ∧ 𝑦1) ∨
(𝑥1 ∧ ¬ 𝑥0 ∧ 𝑦0)

𝑟2 = (𝑥1 ∧ ¬ 𝑥0 ∧ 𝑦1) ∨
(𝑥1 ∧ 𝑦1 ∧ ¬ 𝑦0)

𝑟3 = (𝑥1 ∧ 𝑥0 ∧ 𝑦1 ∧ 𝑦0)

git # b282dbb9 @ 2025-09-03 71

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S152. a Clearly we can implement ≠ by negating the result of = and likewise for < and ≥, and > and ≤.

Furthermore, we can build ≥ from > and =, and ≤ from < and =. So essentially we only need two comparisons,

say = and < to be able to compute the rest so long as we have the logic operations as well. The choice of

which three is simply a matter of which ones you want to go faster: the ones built from a combination of other

comparison and logic instructions will take longer to execute. One might take the approach of looking at C

programs and selecting the set most used. For example = and < are used a lot to program typical loops; one

might select them for this reason.

b You can be as fancy as you want with any optimisations or special cases, for example checking for multiplication

by zero, one or a power-of-two might be a good idea. But basically, the easiest way to do this is as follows:

uint16_t mul(uint16_t x, uint16_t y) {
switch(x) {
case 0 : return 0;
case 1 : return y;
case 2 : return y << 1;
case 4 : return y << 2;
case 8 : return y << 3;
case 16 : return y << 4;

}
switch(y) {
case 0 : return 0;
case 1 : return x;
case 2 : return x << 1;
case 4 : return x << 2;
case 8 : return x << 3;
case 16 : return x << 4;

}

uint16_t t = 0;

for(int i = 15; i >= 0; i--) {
t = t << 1;

if((y >> i) & 1) {
t = t + x;

}
}

return t;
}

c A basic implementation might look like the following:

int H(uint16_t x) {
int t = 0;

for(int i = 0; i < 16; i++) {
if((x >> i) & 1) {
t = t + 1;

}
}

return t;
}

but this has a number of drawbacks. First, the overhead of of operating the loop quite high in comparison to the

content; for example the loop body needs only a few instructions, while it takes nearly as many again to test and

increment i during each iteration. Second, the number of branches in the code means that pipelined processors

might not execute them efficiently at all. An improvement is to use some form of divide-and-conquer approach

where we split the problem into 2-bit then 4-bit chunks and so on. The result might look like:

int H(uint16_t x) {
x = (x & 0x5555) + ((x >> 1) & 0x5555);
x = (x & 0x3333) + ((x >> 2) & 0x3333);
x = (x & 0x0F0F) + ((x >> 4) & 0x0F0F);
x = (x & 0x00FF) + ((x >> 8) & 0x00FF);

return (int)(x);
}

� S153. First, note that the result via a naive method would be

𝑟2 = 𝑥1 · 𝑦1

𝑟1 = 𝑥1 · 𝑦0 + 𝑥0 · 𝑦1

𝑟0 = 𝑥0 · 𝑦0.

git # b282dbb9 @ 2025-09-03 72

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

However, we can write down three intermediate values using only three multiplications as

𝑡2 = 𝑥1 · 𝑦1

𝑡1 = (𝑥0 + 𝑥1) · (𝑦0 + 𝑦1)
𝑡0 = 𝑥0 · 𝑦0.

The original result can then be expressed in terms of these intermediate values via

𝑟2 = 𝑡2 = 𝑥1 · 𝑦1

𝑟1 = 𝑡1 − 𝑡0 − 𝑡2 = 𝑥0 · 𝑦0 + 𝑥0 · 𝑦1 + 𝑥1 · 𝑦0 + 𝑥1 · 𝑦1 − 𝑥0 · 𝑦0 − 𝑥1 · 𝑦1

= 𝑥1 · 𝑦0 + 𝑥0 · 𝑦1

𝑟0 = 𝑡0 = 𝑥0 · 𝑦0.

So roughly speaking, over all we use three (𝑛/2)-bit multiplications and four (𝑛/2)-bit additions.

� S154. a In binary, the addition we are looking at is

10(10) = 1010(2)
12(10) = 1100(2) +

10110(2)

where 10110(2) = 22(10). In 4 bits this value is 0110(2) = 6(10) however, which is wrong.

b A design for the 4-bit clamped adder looks like this:

+------+ +------+ +------+ +------+
+-----|co ci|<----------|co ci|<----------|co ci|<----------|co ci|<- 0
| | x|<- x_3 | x|<- x_2 | x|<- x_1 | x|<- x_0
| +--|s y|<- y_3 +--|s y|<- y_2 +--|s y|<- y_1 +--|s y|<- y_0
| | +------+ | +------+ | +------+ | +------+
| | | | |
| | +------+ | +------+ | +------+ | +------+
| +->| OR |-> r_3 +->| OR |-> r_2 +->| OR |-> r_1 +->| OR |-> r_0
| +------+ +------+ +------+ +------+
| | | | |
+---------+------------------+------------------+------------------+

Essentially the idea is that if a carry-out occurs from the most-significant adder, this turns all the output bits to

1 via the additional OR gates. That is, if the carry-out occurs then we get 1111(2) = 15(10) as the result, i.e., the

largest 4-bit result possible.

� S155. Since we know nothing about 𝑁 , there is no obvious short-cut to performing the modular reduction after

the multiplication. Instead, the most simple way to approach the design is to recall that

𝑥 · 𝑦 = 𝑥 + 𝑥 + · · · + 𝑥 + 𝑥︸ ︷︷ ︸
𝑦 copies

.

So to compute 𝑥 · 𝑦 (mod 𝑁), we just have to make sure that each of the additions is modulo 𝑁 ; then we can use

whatever method we want. A circuit for modular addition is actually quite simple:

+-----+ +-----+
x ->| |---+------------->| |

| add | | | sub |---> r
y ->| | | +-->| |

+-----+ | | +-----+
v |

+-----+ +-----+
| | | |

N ->| lth |--->| mux |
| | | |
+-----+ +-----+

^ ^
| |
N 0

git # b282dbb9 @ 2025-09-03 73

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

In short, we add 𝑥 and 𝑦 together, and then compare the result 𝑡 with 𝑁 : if 𝑡 is smaller, we select 0 as the output

from the multiplexer otherwise we select 𝑁 . Then, we subtract the value we selected from 𝑡. The end result is that

we get 𝑥 + 𝑦 − 0 = 𝑥 + 𝑦 (mod 𝑁) if 𝑥 + 𝑦 < 𝑁 , and 𝑥 + 𝑦 − 𝑁 = 𝑥 + 𝑦 (mod 𝑁) if 𝑥 + 𝑦 ≥ 𝑁 .

Recall that an 8-bit, bit-serial multiplier would compute the product 𝑥 · 𝑦 as follows:

Input: An 8-bit multiplicand 𝑥, and 8-bit multiplier 𝑦
Output: The product 𝑥 · 𝑦

1 𝑡 ← 0

2 for 𝑖 = 7 downto 0 do
3 𝑡 ← 𝑡 + 𝑡
4 if 𝑦𝑖 = 1 then
5 𝑡 ← 𝑡 + 𝑥
6 end
7 end
8 return 𝑡

Armed with our modular adder circuit, we can rewrite this as

Input: An 8-bit modulus 𝑁 , a multiplier 0 ≤ 𝑥 < 𝑁 and multiplicand 0 ≤ 𝑦 < 𝑁
Output: The product 𝑥 · 𝑦 (mod 𝑁)

1 𝑡 ← 0

2 for 𝑖 = 7 downto 0 do
3 𝑡 ← 𝑡 + 𝑡 (mod 𝑁)
4 if 𝑦𝑖 = 1 then
5 𝑡 ← 𝑡 + 𝑥 (mod 𝑁)
6 end
7 end
8 return 𝑡

which then simply demand eight iterations, under control of a clock, over the circuit

+---------+ +---------+ +---------+
N ->| | N ->| | N ->| |
t ->| mod add | x ->| mod add |------->| mux |---> t'
t ->| |---+-->| | +--->| |

+---------+ | +---------+ | +---------+
| | ^
+-----------------+ |

y_i

Notice that we first perform the operation 𝑡 + 𝑡 (mod 𝑁), then use a multiplexer to decide if we take 𝑡 + 𝑡 (mod 𝑁)
or 𝑡 + 𝑡 + 𝑥 (mod 𝑁) as the next value of 𝑡. So each iterated use of the circuit represents an iteration of the

algorithm loop. Of course, one could construct a combinatorial multiplier using the same approach, i.e., replacing

any standard adder circuits with modular alternatives.

Part V: Basics of memory technology

� S156. Various clues should (in combination) be strong enough to hint that

𝛼 ↦→ row address buffer

𝛽 ↦→ column address buffer

𝛾 ↦→ row address decoder

𝛿 ↦→ column address decoder

is the correct answer. For example, note that:

• 𝛼 is provided input from 𝐴𝑖 (the address pins), and is controlled (indirectly) by 𝑅𝐴𝑆: this is the row address

strobe. As such, this is likely to be the row address buffer.

• 𝛽 is provided input from 𝐴𝑖 (the address pins), and is controlled (indirectly) by 𝐶𝐴𝑆: this is the column address

strobe. As such, this is likely to be the column address buffer.

• 𝛾 is taking the content of 𝛼 and controlling signals on the left-hand side (horizontal orientation) of the memory

array, suggesting it computes the row address: it is likely to be the row address decoder.

• 𝛿 is taking the content of 𝛽 and controlling signals on the top side (vertical orientation) of the memory array,

suggesting it computes the column address: it is likely to be the column address decoder.

git # b282dbb9 @ 2025-09-03 74

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S157. SRAMs have a lower access latency in part because of their design: by using only transistors means their

operation is very fast. Therefore, the first statement is true. On the other hand, SRAMs are larger than DRAMs

since their design includes more components (typically six or so transistors versus one transistor and a capacitor);

as a result, their density (i.e., how many one can fit into unit area) is lower, and the second statement is true as well.

The third statement is false, and basically nonsense: the access latency should not depend on the order. Finally,

the forth statement is also false. Rather, a stored program or von Neumann architecture holds both instructions

and data in the same memory: a Harvard architecture segregates them into separate memories.

� S158. There are 2
16

addressable bytes, meaning a 16-bit address needs to be supplied. However, in contrast to an

SRAM memory, a DRAM memory will normally use a 2-step (or more, potentially) approach: half the address is

supplied by each of the steps (under control of row and column address strobe signals), which requires only half

the number of address pins.

The memory stores bytes, i.e., 8-bit elements, so we expect there to be 8 duplicated arrays each consisting of

65536 cells. Overall, there will be 8 · 65536 = 524288 cells. So, in summary, an answer of 8-bit address pins, and

524288 cells is correct; the alternative of 16-bit address pins, and 524288 cells is not wrong per se, but certainly less

likely in practice.

� S159. We want a 32KiB memory, i.e., 32 · 1024 = 32768 addressible words each of 8 bits (or 1 byte). The memory

devices we have use a 4-bit data bus and 12-bit address bus: this implies that each one has 2
12 = 4096 addressible

words each of 4 bits. Two such devices could be combined to support an 8-bit word size: we simply take the LSBs

of each byte from one device, and the MSBs from the other. Therefore, to construct the memory required we need

8

4

· 32768

4096

= 2 · 8 = 16

devices.

� S160. a A 1kB, byte-addressable SRAM would usually require 𝑛 = 10 address wires. The 𝑛-bit 𝐴 means

addresses between 0 and 2
𝑛 − 1 = 2

10 − 1 = 1023 are accessible.

Consider a small(er) example of an SRAM where 𝑛 = 3: the addresses

𝐴2 𝐴1 𝐴0 A

0 0 0 000(2) ≡ 0(10)
0 0 1 001(2) ≡ 1(10)
0 1 0 010(2) ≡ 2(10)
0 1 1 011(2) ≡ 3(10)
1 0 0 100(2) ≡ 4(10)
1 0 1 101(2) ≡ 5(10)
1 1 0 110(2) ≡ 6(10)
1 1 1 111(2) ≡ 7(10)

are accessible. Now imagine the 𝑚-th address wire is misconnected where 𝑚 = 1, meaning 𝐴1 = 0: this yields

𝐴2 𝐴1 𝐴0 A

0 0 0 000(2) ≡ 0(10)
0 0 1 001(2) ≡ 1(10)
0 0 0 000(2) ≡ 0(10)
0 0 1 001(2) ≡ 1(10)
1 0 0 100(2) ≡ 4(10)
1 0 1 101(2) ≡ 5(10)
1 0 0 100(2) ≡ 4(10)
1 0 1 101(2) ≡ 5(10)

so now only addresses 0(10), 1(10), 4(10), and 5(10) are accessible. Put another way, 1/2 of the originally accessible

addresses will remain accessible. The same fact applies for any𝑚, so for 𝑛 = 1024 we conclude that 1024/2 = 512

addresses are accessible.

b A 1kB, byte-addressable DRAM would usually require 𝑛 = 5 address wires. The 𝑛-bit 𝐴 means addresses

between 0 and 2
2·𝑛 − 1 = 2

2·5 − 1 = 2
10 − 1 = 1023 are accessible, because the address is communicated via 𝐴 in

two steps: each communicates 𝑛 bits, so produce a (2 · 𝑛)-bit address overall.

git # b282dbb9 @ 2025-09-03 75

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

Consider a small(er) example of a DRAM where 𝑛 = 2: if 𝐴
𝑗

𝑖
denotes the 𝑖-th address wire as used in the 𝑗-th

step, the addresses

𝐴1

1
𝐴1

0
𝐴0

1
𝐴0

0
A

0 0 0 0 0000(2) ≡ 0(10)
0 0 0 1 0001(2) ≡ 1(10)
0 0 1 0 0010(2) ≡ 2(10)
0 0 1 1 0011(2) ≡ 3(10)
0 1 0 0 0100(2) ≡ 4(10)
0 1 0 1 0101(2) ≡ 5(10)
0 1 1 0 0110(2) ≡ 6(10)
0 1 1 1 0111(2) ≡ 7(10)
1 0 0 0 1000(2) ≡ 8(10)
1 0 0 1 1001(2) ≡ 9(10)
1 0 1 0 1010(2) ≡ 10(10)
1 0 1 1 1011(2) ≡ 11(10)
1 1 0 0 1100(2) ≡ 12(10)
1 1 0 1 1101(2) ≡ 13(10)
1 1 1 0 1110(2) ≡ 14(10)
1 1 1 1 1111(2) ≡ 15(10)

are accessible. Now imagine the 𝑚-th address wire is misconnected where 𝑚 = 1, meaning 𝐴1 = 0: this yields

𝐴1

1
𝐴1

0
𝐴0

1
𝐴0

0
A

0 0 0 0 0000(2) ≡ 0(10)
0 0 0 1 0001(2) ≡ 1(10)
0 0 0 0 0000(2) ≡ 0(10)
0 0 0 1 0001(2) ≡ 1(10)
0 1 0 0 0100(2) ≡ 4(10)
0 1 0 1 0101(2) ≡ 5(10)
0 1 0 0 0100(2) ≡ 4(10)
0 1 0 1 0101(2) ≡ 5(10)
0 0 0 0 0000(2) ≡ 0(10)
0 0 0 1 0001(2) ≡ 1(10)
0 0 0 0 0000(2) ≡ 0(10)
0 0 0 1 0001(2) ≡ 1(10)
0 1 0 0 0100(2) ≡ 4(10)
0 1 0 1 0101(2) ≡ 5(10)
0 1 0 0 0100(2) ≡ 4(10)
0 1 0 1 0101(2) ≡ 5(10)

so now only addresses 0(10), 1(10), 4(10), and 5(10) are accessible.

Put another way, 1/4 of the originally accessible addresses will remain accessible. The same fact applies for any

𝑚, so for 𝑛 = 1024 we conclude that 1024/4 = 256 addresses are accessible.

� S161. By checking all possible addresses

0 ≤ 𝐴 < 2
18 = 262144(10) = 40000(16) ,

against the enable signals, we find that

𝑒𝑛0 = 1 for 𝐴 ∈ { 00000(16) , . . . , 07𝐹𝐹𝐹(16) } ⇒ MEM0 is enabled

𝑒𝑛1 = 1 for 𝐴 ∈ { 08000(16) , . . . , 0𝐵𝐹𝐹𝐹(16) } ⇒ MEM1 is enabled

𝑒𝑛2 = 1 for 𝐴 ∈ { 10000(16) , . . . , 1𝐹𝐹𝐹𝐹(16) } ⇒ MEM2 is enabled

𝑒𝑛3 = 1 for 𝐴 ∈ { 3𝐹𝐹𝐸0(16) , . . . , 3𝐹𝐹𝐹𝐹(16) } ⇒ MEM3 is enabled

Since

𝐴 = 48350(10) = 0𝐵𝐶𝐷𝐸(16) ,

this address therefore maps to memory device MEM1 because

08000(16) ≤ 0𝐵𝐶𝐷𝐸(16) ≤ 0𝐵𝐹𝐹𝐹(16).

git # b282dbb9 @ 2025-09-03 76

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

Of course, doing a similar search by hand is very time consuming; a manual solution would therefore use the form
of each 𝑒𝑛𝑖 as a short-cut. For example, we know

𝑒𝑛0 = ¬𝐴17 ∧ ¬𝐴16 ∧ ¬𝐴15 ,

i.e., 𝑒𝑛0 = 1 when the 3 MSBs of 𝐴 are 0. This fact leads to the range

𝐴 ∈ {00000(16) , . . . , 07𝐹𝐹𝐹(16)}

fairly directly, because it captures all 18-bit values whose 3 MSBs are 0, i.e.,

000000000000000000(2) = 00000(16)
000000000000000001(2) = 00001(16)

...
000111111111111111(2) = 07𝐹𝐹𝐹(16)

� S162. a false. The implication of this statement is that a larger word size leads to a higher access latency, because

the two memory devices are identical in all other respects. This argument is not correct, however. The reason

is that a 𝑤-bit memory device is basically constructed using 𝑤 replicated instances of a 1-bit memory device:

each one operates in parallel, performing an access with respect to 1 of the 𝑤 bits in each element. Given the

available information, therefore, there is no real evidence for the claimed difference in access latency.

b true. In essence, the reason for this is that the value stored by a DRAM is maintained in a capacitor: if the

capacitor is charged the value is 1, whereas if the capacitor is dis-charged the value is 0. Even when powered-on

that charge has to be periodically refreshed because it will degrade (or decay); when powered-off the same

sort of degradation occurs, likely at a faster rate, until the charge and value is lost. But in neither case is the

degradation instantaneous. So, for a short period after a DRAM cell has been powered-off, it will retain some

decaying amount of charge and so the value stored.

c false. The address and data bus widths imply this SRAM supports 2
16

addressable words, each of 8 bits (or 1

byte): it therefore has a total capacity of 2
16 · 8 = 524288 bits, or 524288/8 = 64 · 1024 bytes, i.e., 64KiB.

� S163. The main components to include in such a diagram are

a the four internal transistors that form a loop of two NOT gates, and

b the two external transistors that allow access to the loop via the bit- and word-lines.

The diagram is as follows:

wl
|
v

+---------------------+---------------------+
| |
| ----+------------------+----- V_dd |
| | | |
| v v |
| +--------+ +--------+ |
| | P-type |--+ +--| P-type | |
| +--------+ | | +--------+ v
| | | | | +--------+
v | +---|------+--------| N-type |<-- ~bl

+--------+ | | | | +--------+
| N-type |------+-------|---+ |
+--------+ | | | |

+--------+ | | +--------+
| N-type |--+ +--| N-type |
+--------+ +--------+

^ ^
| |

----+------------------+----- VSS

� S164. a Two main answers are clear. First, use of the DRAM device could imply a somewhat more involved,

2-step access algorithm: it is common to latch the row and column buffers (under control of two dedicated row

and column strobes) in two steps, hence allowing half the number of pins to address the same number of cells.

Second, the DRAM cells need to be refreshed periodically since their content will decay. Typically a mechanism

to do this might be built into the device, but if not then the system itself will need to be responsible for doing so.

b The obvious reason an SRAM device might have a lower access latency is because the individual cells have a

lower access latency: since SRAM cells are constructed from transistors, they can be accessed (read from or

written to) more quickly than a capacitor-based DRAM cell (which takes longer to charge and discharge).

git # b282dbb9 @ 2025-09-03 77

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S165. a As the number of cells grows larger, providing enough address pins to identify each physical cell can

become impractical. One way to combat this problem is to multiplex the address pins; roughly this means using

less pins in more steps, e.g., 𝑛′/2 pins in two steps rather than 𝑛′ pins in one step. Thus, under control of the

row and column strobes, two steps will see the (𝑛′/2)-bit row and column addresses latched into the row and

column buffer: once latched, the combined content forms a usable 𝑛′-bit address. So in short, the buffers are

required to retain the row and column addresses during this process.

b Once the row and column buffers are latched with the address, the device is ready to access the identified cell.

However, depending on the geometry, i.e., number of rows and columns, a translation needs to be made: this is

the task of the row and column decoders. Essentially they implement the translation between logical address

and physical cell, activating said cell to perform the required operation (which is either a read or a write).

Part VI: Digital logic design using Verilog

� S166. a wire [7 : 0] a;

b wire [0 : 4] b;

c reg [31 : 0] c;

d reg signed [15 : 0] d;

e reg [7 : 0] e[0 : 1023];

f genvar f;

� S167. a c = 2'b01

b c = 2'b11

c d = 4'b010X

d d = 4'b10XX

e d = 4'b1101

f d = 4'b0111

g c = 2'bXX

h c = 2'b11

i e = 1'b0

j e = 1'b1

� S168. a One potential problem is the if p and q can change at any time, and hence trigger execution of the

processes at any time, the two might change at the exact same time. In this case, it is not clear which values x
and y will be assigned to. Maybe the top assignment to x beats the bottom one, but the bottom assignment to y
beats the top one. Any combination is possible; since it is not clear which will occur, it is possible that x and y
do not get assigned to the values one would expect.

As an attempt at a solution, we can try to exert some control over which block of assignments is executed first.

For example, we might try to place a guard around the assignments:

always @ (posedge p) begin
if(!q) begin
x <= a;
y <= b;

end
end

always @ (posedge q) begin
if(!p) begin
x <= b;
y <= a;

end
end

An alternative might be to combine the two blocks into one:

always @ (posedge p, posedge q) begin
if (p) begin
x <= a;
y <= b;

git # b282dbb9 @ 2025-09-03 78

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

end
else if(q) begin
x <= b;
y <= a;

end
end

since now the process is at least deterministic: if p is equal to 1 then the first block executes, if q is equal to 1

then the second block executes and if both are equal to 1 we execute the first block as the default.

b The problem with this is that the state signal is not initialised; to start with it could be any value which might

either result in the state machine operating in the wrong sequence or, since case is used and not casex or

casez, none of the cases being matched at all. A slightly more minor issue is that we have to assume that no

other process assigns to state. For example, if another process sets state to 3 the state machine process will

malfunction.

The best way to rectify this problem is by introducing a reset signal called rst and initialising the state variable

whenever it is equal to 1:

always @ (posedge clk, posedge rst) begin
if(rst) begin
state = 0;

end
else begin
case(state)
0 : begin do_0; state = 1; end
1 : begin do_1; state = 2; end
2 : begin do_2; state = 0; end

endcase
end

end

� S169. This is a bit of a vague question; it does not mention styles of Verilog and so you can assume any valid

style is allowed. With this in mind, a rough solution might look something like this:

module DDD(clk, rst, bit, out);

input wire clk;
input wire rst;

input wire bit;
output wire out;

reg [3 : 0] t;

assign out = (t >= 0) && (t <= 9);

always @ (posedge clk) begin
if(rst) begin
t = 0;

end
else begin
t = { bit, t[3 : 1] };

end
end

endmodule

� S170. Essentially we want a design that looks, at a high-level, like this:

y
|
v

+-----+
x-->| C |-->min(x,y)

+-----+
|
V

max(x,y)

and thus need some sort of comparison inside; we already know how to design a less than comparison which is

good enough. Thus, the Verilog module could look something like this:

git # b282dbb9 @ 2025-09-03 79

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

module C(min, max, x, y);

parameter n = 8;

output wire r;

output wire [n - 1 : 0] min;
output wire [n - 1 : 0] max;

input wire [n - 1 : 0] x;
input wire [n - 1 : 0] y;

wire [n - 1 : 0] w0 = ~(x ^ y);
wire [n - 1 : 0] w1 = (~x & y);
wire [n - 1 : 0] w2;

assign w2[0] = w1[0];

genvar i;

generate
for(i = 1; i < n; i = i + 1) begin
assign w2[i] = w1[i] | (w0[i] & w2[i - 1]);

end
endgenerate

assign min = (w2[n - 1]) ? x : y;
assign max = (w2[n - 1]) ? y : x;

endmodule

� S171. In software the task is fairly simple; we simply have an 8-bit variable called Qwhich maintains the content

of the shift register, and allow two functions to initialise and update the value (i.e., clock the register) as follows:

uint8_t Q = 0;

void seed(uint8_t s) {
// seed the state
Q = s;

}

uint8_t lfsr() {
// compute outgoing bit
uint8_t r = Q & 1;

// compute incoming bit
uint8_t t = (Q >> 7) ^

(Q >> 5) ^
(Q >> 4) ^
(Q >> 3) ^
(Q >> 0) ;

// update state
Q = (Q >> 1) |

(x << 7) ;

return r;
}

Following this approach, in Verilog the design is also simple: we just need to deal with the required action each

time a positive clock edge triggers an update. For example, the following does more or less the same thing as the

C version:

module lfsr(input wire clk,
input wire rst,

input wire [7 : 0] s,
output reg r);

reg [7 : 0] Q;

always @ (posedge clk) begin
if (rst) begin
// seed the state
Q = s;

end else begin
// compute outgoing bit
r = Q[0] ;

// compute incoming bit, update state
Q = { Q[7] ^

Q[5] ^

git # b282dbb9 @ 2025-09-03 80

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

Q[4] ^
Q[3] ^
Q[0], Q[7 : 1] };

end
end

endmodule

That is, we again have 8-bit register called Q; each time a positive edge occurs on clkwe make a choice

• If rst is true then we initialise the LFSR by setting Q equal to the seed value s,

• If rst is false then we update the LFSR by first setting the output r equal to the 0-th bit of Q, then updating Q
via a concatenation expression (which performs the shift, meaning the (𝑛 − 1)-th bit of the result is the XOR of

the tap bits).

Part VII: Computational machines: Finite State Machines (FSMs)

� S172. Throughout the following, keep in mind that three main component groups can be identified in the

implementation: read from bottom-to-top, these are

• an input register (bottom),

• some combinatorial logic (middle), and

• an output register (top).

We know this is an FSM, so we expect the input register to hold the current state and the combinatorial logic to

compute both the transition and output functions. Specifically, the input register and 𝑥 are provided as input to

combinatorial logic (in the middle-left and -center) that represents the transition function. It computes the next

state, then stored in the output register; the rest of this logic (in the middle-right) clearly represents the output

function, since it computes 𝑟.

a i Saying a signal is digital is the same as saying it takes the values 0 and 1 only; for a clock signal, this is the

same as saying it the form is a perfect square wave.

In practice this is difficult to achieve since transitions between 0 and 1 cannot be perfectly instantaneous. This

implies each edge has a slope, however shallow this is. Even so, the same issue is true for all digital logic

components: if the inputs to an AND gate are neither 0 or 1 (or their associated voltage levels), the output is

undefined. So it is also fair to say this is a requirement for Φ1 and Φ2, at least as far as is practical.

ii Φ1 and Φ2 are said to be non-overlapping in the sense a positive level on one always occurs at the same time

as a negative level on the other.

If this were not true, e.g., Φ1 = Φ2, then a “loop” would form during the overlap: the output register would

be updated with whatever was computed by the combinatorial logic, which is fed by the input register also
being updated at the same time by the output register. This would likely result in a malfunction of some sort:

the input register could not settle into a stable state, for example.

iii To gate any signal, Φ1 and Φ2 included, means to (conditionally) disable them. This is typically realised by

adding extra logic, e.g., an AND gate, so the clock signal can be forced to 0.

This might be useful; it allows one to disable latch updates and so “pause” the FSM (e.g., to save power when

idle). However, doing so is not a requirement and not evident in this implementation.

iv In general, the concept of skew describes a situation where the clock signal arrives at two components at

different times; with a 2-phase clock, we might also find cases where Φ1 and Φ2 can arrive at the same

component at different times.

This is clearly undesirable, since the clock is meant to synchronise the component. If they were not synchro-

nised then malfunction is the likely result: one latch might be updated at a different time, and hence with an

unrelated value, than another, for example.

v The duty cycle of a clock (signal) is the percentage of each clock period in which it has a positive level. For

example, saying that Φ1 has a duty cycle of 33% is the same as saying Φ1 = 1 for a third of the time (and hence

Φ1 = 0 for two thirds of the time).

Here, there is no reason the duty cycle ofΦ1 andΦ2 must be 33%. If is was 40%, for example, the implementation

would still function correctly. Assuming Φ1 and Φ2 have the same form, then of course it must be true their

duty cycles are less than 50% otherwise they would have to overlap. Other than that, however, getting closer

to 50% just means less separation between their positive levels.

b This is not a trick question per se, but the correct answer is that the register might hold any 2-bit value when

powered-on. Although the register must settle into some state, it is not clear how we could predict what

git # b282dbb9 @ 2025-09-03 81

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

this will be: the stored value is basically random, or more precisely determined by physics of the underlying

implementation and fabrication process.

As an aside, this FSM has an related, unattractive design feature: there is no reset input. This means there is no

way to enforce a start state, i.e., whatever value is held in the register at power-on is used as the start state: the

only way to alter this, and hence make the FSM function as required, is to power-cycle the implementation and

hope the initial stored value is the required start state!

c Partly as a result of the multiple-choice format, this question might seem odd. Exactly the same concepts
are involved, but the steps are the opposite way around: rather than derive an implementation from a given

specification, it asks you to reverse engineer a specification from a given implementation.

Each of the registers constitutes 2 D-type latches, so the FSM can be in at most 2
2 = 4 possible states. Denoting

the current (resp. next) state 𝑄 = ⟨𝑄0 , 𝑄1⟩ (resp. 𝑄′ = ⟨𝑄′
0
, 𝑄′

1
⟩), we can write an expression for the next state

and output in terms of the current state and input: this basically just means translating the logic gate symbols

into a Mathematical form. That is, we can write

𝑄′
1

= (𝑄1 ∧𝑄0) ∨ (𝑥 ∧𝑄1) ∨ (𝑥 ∧𝑄0)
𝑄′

0
= (𝑄1 ∧𝑄0) ∨ (𝑥 ∧ ¬𝑄0)

𝑟 = (𝑄1 ∧𝑄0) ∨ (𝑥 ∧𝑄1)

By enumerating the possible values of 𝑥, 𝑄0 and 𝑄1 we find

𝑥 𝑄1 𝑄0 𝑄′
1

𝑄′
0

𝑟

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

1 0 0 0 1 0

1 0 1 1 0 0

1 1 0 1 1 1

1 1 1 1 1 1

i.e., we reverse engineer the transition and output functions, expressed as a truth table. For example, if the

current state is 𝑄 = ⟨0, 0⟩ and the input is 𝑥 = 1 then we can see the next state will be 𝑄′ = ⟨1, 0⟩ and the output

will be 𝑟 = 0.

The truth table encodes the same information as a diagrammatic alternative. The only difference is the use of a

concrete representation, rather than an abstract label for each state. We need the former, because of course the

implementation stores and computes Boolean values: it cannot deal with a label such as 𝑆0 or 𝑆3 means unless

we give that label a value. So imagine we make such an (reverse) assignment, namely

⟨0, 0⟩ ↦→ 𝑆0

⟨1, 0⟩ ↦→ 𝑆1

⟨0, 1⟩ ↦→ 𝑆2

⟨1, 1⟩ ↦→ 𝑆3

Now we can say, for example that if the current state is 𝑆0 and the input is 𝑥 = 1 then the next state will be 𝑆1 and

the output will be 𝑟 = 0. This makes drawing the diagrammatic alternative a little easier: if we draw 4 nodes for

the four states, we join them with edges based on rows of the truth table. The end result, and correct answer, is

S0startstart S1 S2 S3

x = 0

x = 0

x = 0 x = 0

x = 1 x = 1 x = 1

x = 1

d The central difference between Mealy- and Moore-type FSMs stems from how the output function is defined. In

the former, the output is a function of the current state and input; in the latter, only the current state is relevant.

For a set of states 𝑆 and input and output alphabets Σ and Γ, this means for a Mealy-type FSM we have

𝜔 : 𝑆 × Σ→ Γ

whereas for a Moore-type FSM we have

𝜔 : 𝑆→ Γ.

git # b282dbb9 @ 2025-09-03 82

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

For this FSM, we already know from the previous question that the output is described by

𝑟 = (𝑄1 ∧𝑄0) ∨ (𝑥 ∧𝑄1).

As such, it should be obvious 𝑟 = 𝜔(𝑄, 𝑥) is a function of both 𝑄 (the current state) and 𝑥 (the input): this is

therefore a Mealy-type FSM.

e The behaviour of this FSM can be described as repeated iteration over two steps under control of the clock. That

is, it repeatedly does

• Step #1:

– the combinatorial logic compute the next state 𝑄′ = 𝛿(𝑄, 𝑥) and output 𝑟 = 𝜔(𝑄, 𝑥), and

– the output register latches 𝑄′.

Note that the critical path of this step is that from the the 𝑄 output of the input register to the 𝑄 output of the

output register.

• Step #2:

– the input register latches 𝑄′ as 𝑄.

Note that the critical path of this step is that from the the 𝑄 output of the output register to the 𝑄 output of

the input register.

f For example, the first step occurs during the period when Φ1 = 1 and the second when Φ2 = 1. Within every

clock period, i.e., within the “time limit” represented by 𝜌, both steps must be completed. Therefore, we can say

𝜌 ≥ (𝑇
logic

+ 𝑇
latch

) + (𝑇
latch

)

where 𝑇
latch

and 𝑇
logic

are the critical paths associated with a D-type latch and the combinatorial logic

respectively.

Note the critical path runs through the middle-left or middle-center of the combinatorial logic: although the

former includes a NOT gate, the latter includes a 3- versus 2-input OR gate. Either way the delay is 50ns, so we

can write

𝜌 ≥ 50 + 60 + 60ns

≥ 170ns

then compute the maximum clock frequency as

𝑓max = 1/𝜌
= 1/170ns

≃ 5.9MHz

g From the definition of the transition function (above), it should be clear the FSM will progress from left-to-right

as consecutive inputs 𝑥 = 1 are encountered. Moreover, encountering an input of 𝑥 = 0 means restarting in state

𝑆0, and when eventually the FSM reaches state 𝑆3 it stays in that state (whether 𝑥 = 1 or 𝑥 = 0). So it basically

counts the number of consecutive times 𝑥 = 1 until that count is 3 (if it is in state 𝑆𝑖 , then the count is 𝑖). This

already provides the correct answer, but is further confirmed by inspecting the output function: 𝑟 = 1 when the

FSM is in state 𝑆3, i.e., when the count is 3.

� S173. a Before 𝑡0, we can see that a pulse on 𝑟𝑠𝑡 at the same time as Φ2 = 1; this acts as a reset, storing 𝑠 (as a

result of the multiplexers) into the top register. Then, at 𝑡0 we find that Φ1 = 1: during this period, the design

stores a the bottom register as provided by the top register (which, at that point, is fixed since Φ2 = 0). As such,

at 𝑡0 we expect the bottom register to store 𝑠 and hence 𝑟 to be the MSB of 𝑠, i.e., 𝑟 = 𝑠7 = 1.

b At 𝑡1 the design has performed one cycle relative to 𝑡0: the value stored in the bottom register at 𝑡0 is updated

by the middle of the design, then stored in the top register, and finally stored back in the bottom register (ready

for the next cycle). The middle of the design is fairly simple. Ignoring the less-significant end since this does

not impact 𝑟 (yet), it basically just shifts the bits toward the more-significant end. At 𝑡1, we therefore expect the

bottom register to be st. 𝑟 = 𝑠6 = 0.

c This design is a Linear Feedback Shift Register (LFSR); such a design might be used to support a variety of

use-cases, with a common example being the generation of (pseudo-)random bits. As the name suggests, an

LFSR is essentially an 𝑛-bit shift register. After initialising (or seeding) the register state with 𝑠, successive

updates are performed; each such update a) shifts-out an output bit (wlog. the MSB), which forms the LFSR

output, and b) shifts-in an input bit (wlog. the LSB), which is computed using a linear function of the state. A

git # b282dbb9 @ 2025-09-03 83

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

set 𝑇 captures the tap bits, which specify the function of 𝑥 used to compute the input bit; given 𝑛, 𝑇 is selected

to maximise the period of the LFSR, noting that 𝑥 = 0 should be disallowed to avoid trivial behaviour.

Both Fibonacci- and Galois-form LFSR designs are possible; in this case, we have an example of the former, with

𝑛 = 8 and 𝑇 = {3, 4, 5, 7}. Given a state 𝑥, the update process, yielding an output bit 𝑟 and a next state 𝑥′, can be

formalised as

𝑟 = 𝑥7

𝑥′ = (𝑥 ≪ 1) ∥ (
⊕

𝑖∈𝑇 𝑥𝑖)
= (𝑥6 ∥ 𝑥5 ∥ · · · ∥ 𝑥0) ∥ (𝑥3 ⊕ 𝑥4 ⊕ 𝑥5 ⊕ 𝑥7)

As such, we can use a table to trace the state and output as it is updated:

𝑖 𝑥 𝑥′ 𝑟
𝐴6(16) seed 𝑥 with 𝑠

0 𝐴6(16) 4𝐶(16) 1 generate 0-th output bit

1 4𝐶(16) 99(16) 0 generate 1-st output bit

2 99(16) 33(16) 1 generate 2-nd output bit

3 33(16) 66(16) 0 generate 3-rd output bit

4 66(16) 𝐶𝐷(16) 0 generate 4-th output bit

5 𝐶𝐷(16) 9𝐴(16) 1 generate 5-th output bit

6 9𝐴(16) 35(16) 1 generate 6-th output bit

7 35(16) 6𝐴(16) 0 generate 7-th output bit

8 6𝐴(16) 𝐷4(16) 0 generate 8-th output bit

...
...

...
...

Using this table, we can infer that at time 𝑡2 (where the 8-th output bit is generated, which is the first bit which

is computed from 𝑥 vs. matching 𝑠), 𝑟 = 0.

d Within the clock period (i.e., within the “time limit” which 𝜌 dictates), two steps must be completed; those steps

are completed when Φ1 = 1 and Φ2 = 1 respectively, and can be described as 1) the top register must be updated

with a value computed by the middle of the design (i.e., the combinatorial logic) from the value in the bottom

register, then 2) the bottom register must be updated with the value in the top register. So if 𝑇
latch

and 𝑇
logic

are the critical paths associated with a D-type latch and said combinatorial logic respectively, then we can write

𝜌 ≥ (𝑇
logic

+ 𝑇
latch

) + (𝑇
latch

).

Adding more detail, we could then reflect the critical path of components constituting the combinatorial logic:

writing

𝑇
logic

= 𝑇𝑥𝑜𝑟 + 𝑇𝑥𝑜𝑟 + 𝑇𝑚𝑢𝑥

then reflects the fact that the critical path includes two XOR gates and one multiplexer. Overall then, we have

𝜌 ≥ (𝑇xor + 𝑇xor + 𝑇mux + 𝑇latch
) + (𝑇

latch
)

≥ 2 · 𝑇
latch

+ 2 · 𝑇xor + 𝑇mux

Since we have the design of each component, we can, as a next step, be more concrete about each term above:

inspecting the NAND based designs, we can deduce

𝑇
latch

= 4 · 𝑇
nand

= 40ns

𝑇xor = 3 · 𝑇
nand

= 30ns

𝑇mux = 3 · 𝑇
nand

= 30ns

and thus

𝜌 ≥ 2 · 𝑇
latch

+ 2 · 𝑇xor + 𝑇mux

≥ 2 · 40ns + 2 · 30ns + 30ns

≥ 80ns + 60ns + 30ns

≥ 170ns

𝑇
latch

arguably represents the more tricky case, noting that the cross-coupled right-hand side means the path

is through 4 NAND gates. Finally, the maximum clock frequency is inversely proportional to this critical path

so we find

𝑓max = 1/𝜌
= 1/170ns

≃ 5.9MHz

is correct.

git # b282dbb9 @ 2025-09-03 84

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S174. Basically this question is asking us to reverse engineer the FSM implementation into a design and hence

functionality; to do that, we can step backwards through the process we have that would normally step forwards.
The first step is therefore be to inspect the implementation and extract pertinent features: 1) the bottom and top

D-type latches capture 1-bit current and next states, i.e., 𝑄 and 𝑄′, respectivly, 2) between the two we can identify

an output function 𝑟 = 𝜔(𝑄) = ¬𝑄 and a transision function 𝑄′ = 𝛿(𝑄, 𝑟𝑠𝑡) = (¬𝑟𝑠𝑡) ∧ (¬𝑋𝑖 ∨ 𝑄). Note that we

can classify this as a Moore-type FSM, since the output 𝑟 is determined by the current state 𝑄 alone.

The next step is to reconstruct a concrete, tabular description of the FSM, i.e., a truth table, using 𝜔 and 𝛿:

𝛿 𝜔
𝑟𝑠𝑡 𝑋𝑖 𝑄 𝑄′ 𝑟
0 0 0 1 1

0 0 1 1 0

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 1

1 1 1 0 0

Because 𝑄 and 𝑄′ are each represented by a single D-type latch, we can infer the FSM has (at most) two states.

Other assignments are possible provided we are consistent, but the most natural would be to say 𝑄 = 0 ↦→ 𝑆0 and

𝑄 = 1 ↦→ 𝑆1. Given that 𝑟𝑠𝑡 = 1 forces 𝑄′ = 0, we can infer than 𝑆0 is an initial state; Given that 𝑟 = ¬𝑄 and so

𝑟 = 1 iff. 𝑄 = 0, we can infer than 𝑆0 is an accepting state.

The next step is to reconstruct a abstract, diagrammatic description of the FSM:

𝑆0start 𝑆1

𝑋𝑖 = 1

𝑋𝑖 = 0

𝑋𝑖 = 1

𝑋𝑖 = 0

Note that we infer the start state from the behaviour of the reset signal, i.e., the 𝑄′ implied by 𝑟𝑠𝑡 = 1; there is no

accepting state per se.

The final step demands some creativity, in the sense that we need to interpret the functionality realised:

although doing so is not trivial, we can approach it by tring to explain in words what the FSM does step-by-step.

For example, note that the FSM starts in state 𝑆0 and stays there while the input is 𝑋𝑖 = 1. However, as soon as it

encounters an input st. 𝑋𝑖 = 0 it will transistion to state 𝑆1: it stays there whether the input is 𝑋𝑖 = 0 or 𝑋𝑖 = 1. So,

put another way, the FSM

• stays in state 𝑆0 if 𝑋𝑖 = 1 for all 𝑖; if therefore accepts such an input, meaning 𝑟 = 1,

• transistions to and stays in state 𝑆1 if 𝑋𝑖 = 0 for any 𝑖; if therefore rejects such an input, meaning 𝑟 = 0.

This description matches the definition of AND: we have that

𝑟 = 𝑋0 ∧ 𝑋1 ∧ · · · ∧ 𝑋𝑛−1.

� S175. Interpreting the design, we can see that

𝑄′
0

= 𝑥 ∧ (𝑄0 ∨ 𝑄1)
𝑄′

1
= 𝑥 ∧ (¬𝑄0 ∨ 𝑄1)

𝑟 = ¬𝑥 ∧ (𝑄0 ∧ 𝑄1)

where the expressions for 𝑄′
0

and 𝑄′
1

constitute the transition function 𝛿, and the expression for 𝑟 constitutes the

output function 𝜔. This means:

a 3 gates are involved in the output function implementation (2 AND gates, and 1 NOT gate), and

b 5 gates are involved in the transition function implementation (2 AND gates, 2 OR gates, and 1 NOT gate).

git # b282dbb9 @ 2025-09-03 85

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S176. Note that the AND gate labelled ⊙ clearly forms part of the transition function, because the output

function (which generates 𝑟) is independent from it. We can produce a solution in two steps, 1) reproduce a

complete implementation from Figure ??, then 2) match that implementation against Figure ?? to infer what the

placeholder component should be instantiated with. First, we deal with the state. From Figure ?? we can see there

are 4 possible states, which are represented via a binary encoding (per the question) using 2 bits, i.e.,

𝑆0 ↦→ ⟨0, 0⟩
𝑆1 ↦→ ⟨1, 0⟩
𝑆2 ↦→ ⟨0, 1⟩
𝑆3 ↦→ ⟨1, 1⟩

This allows

𝑄 = ⟨𝑄0 , 𝑄1⟩
𝑄′ = ⟨𝑄′

0
, 𝑄′

1
⟩

to define the current and next state respectively: in Figure ??, these are realised using 2-bit registers (each of which

comprises 2 D-type latches) shown toward the bottom and top. Second, we deal with the transition function. From

Figure ?? we can derive the following truth table:

𝑥 𝑄1 𝑄0 𝑄′
1

𝑄′
0

0 0 0 0 0

1 0 0 0 1

0 0 1 1 0

1 0 1 0 1

0 1 0 1 0

1 1 0 1 1

0 1 1 0 0

1 1 1 1 1

Then, using a Karnaugh map for 𝑄′
1

00 01 11 10

0

1

𝑄′
1

𝑄1

𝑥

𝑄0

0
0

1
1

0
2

0
3

1
4

0
5

1
6

1
7

we produce

𝑄′
0

= (𝑥)
𝑄′

1
= (¬𝑥 ∧ ¬𝑄1 ∧ 𝑄0) ∨
(𝑥 ∧ 𝑄1) ∨
(𝑄1 ∧ ¬𝑄0)

Then, third, we match our expressions against Figure ??: it should be clear that left- and right-hand AND gates

implement the first and third terms of the expression above, so the middle AND gate should implement the second

term using the inputs 𝑥 and 𝑄1.

� S177. a true. The question does not specify an FSM style, so, without loss of generality, assume a focus on

Mealy-style FSMs. Fundamentally, such an FSM is driven by a clock signal: during the current clock cycle, it

will 1) compute 𝑟 = 𝜔(𝑄, 𝑥), i.e., an output, and, simultaneously, 2) compute 𝑄′ = 𝛿(𝑄, 𝑥), i.e., a next state, in

both cases using current state 𝑄 and input 𝑥. The same process is repeated in each next clock cycle, once the

current state updated to equal the previously computed next state.

Using the term during is important, in the sense that if the current clock cycle ends (i.e., next clock cycle begins)

before 𝑟 or 𝑄′ is computed, the FSM will malfunction. Put another way, it will malfunction if computation of 𝑟
or 𝑄′ exceeds beyond the current clock cycle; this could occur when the critical path of 𝜔 or 𝛿 is too long. So, to

conclude, the clock period and thus clock frequency is limited by the critical path of 𝜔 or 𝛿 (more specifically,

by whichever is longer).

git # b282dbb9 @ 2025-09-03 86

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

b true. Let 𝛿𝑀(·) and 𝜔𝑀(·) respectively denote the transition and output functions for some FSM labelled 𝑀.

Every Moore-style FSM 𝑋 can be converted into a Mealy-style FSM 𝑌, by defining 𝛿𝑌(𝑄, 𝑥) = 𝛿𝑋(𝑄, 𝑥) and

𝜔𝑌(𝑄, 𝑥) = 𝜔𝑋(𝛿𝑋(𝑄, 𝑥)). That is, the input 𝑥 is accommodated in 𝜔𝑌 by 1) applying 𝛿𝑋 to “look ahead” at the

next state, then 2) applying 𝜔𝑋 to produce the output for said state. However, not every Mealy-style FSM can

be converted into a Moore-style FSM: some can, but even then with a “shift” in when the output is produced.

c true. We can see from the implementation that the transition and output functions are

𝑄′ = 𝛿(𝑄, 𝑥) ↦→
{
𝑄′

0
= 𝑄0 ⊕ 𝑄1

𝑄′
1

= 𝑄0 ∧ 𝑥

and 𝑟 = 𝜔(𝑄) = ¬𝑄0 ∧ ¬𝑄1 respectively. So if the current state is initialised to 𝑄 = ⟨𝑄0 , 𝑄1⟩ = ⟨0, 1⟩ and we fix

𝑥 = 0, then we see that

𝑥 𝑄1 𝑄0 𝑄′
1

𝑄′
0

𝑟

0 1 0 1 1 0

0 1 1 1 0 0

0 1 0 1 1 0

0 1 1 1 0 0

0 1 0 1 1 0

...
...

...
...

...
...

i.e., 𝑄 will alternate between only 2 of 4 possible states: 𝑟 will never equal 1, therefore, because the FSM will

never have a current state of 𝑄 = ⟨𝑄0 , 𝑄1⟩ = ⟨0, 0⟩. A more direct way to see this is to notice that since it is

always true that 𝑥 = 0, it will always be true that 𝑄′
1
= 𝑄0 ∧ 𝑥 = 1 (because NAND only produces an output of

0 if both inputs are 1). Therefore, since it is always true that 𝑄1 = 1 and so that ¬𝑄1 = 0, it will always be true

that 𝑟 = ¬𝑄0 ∧ ¬𝑄1 = 0 (because AND only produces an output of 1 if both inputs are 1).

� S178. A generic, block diagram style framework for FSMs is as follows:

+---------+
+-->| \delta |
| +---------+
| ^ |
| Q | | Q'
| | v
| +---------+

input --+ | state |<-- clock
| +---------+
| |
| Q |
| v
| +---------+
+-->| \omega |--> output

+---------+

st.

• An 𝑛-bit register (middle component) holds 𝑄, the current state of the FSM.

• Within a given clock period, the current state is provided as input to 𝛿, the transition function: based on 𝑄 and

any input, this computes the next state 𝑄′.

• At the same time that 𝛿 is computing the next state, the output function 𝜔 computes any output from the FSM;

depending on the type of FSM, this might be based on 𝑄 only, or on 𝑄 and any input.

• A positive edge of the clock signal causes the state to be updated with the output from 𝛿. That is, the FSM

advances from the current to next state; computation by 𝛿 and 𝜔 is performed in the same way during the

subsequent clock period, once 𝑄 has been updated with 𝑄′.

Note that this framework is assumed in any of the following questions that ask for it.

This FSM can be in one of two states: either the bits of 𝑋 processed so far have an even or odd number of

elements equal to 1; we give each of the states a label, so in this case 𝑆𝑒𝑣𝑒𝑛 and 𝑆𝑜𝑑𝑑 for example. Next we can

describe how the FSM can transitions from some current state to a next state, i.e., how the transition function 𝛿
works: based on an input 𝑋𝑖 provided at each step, we might draw

𝑆𝑒𝑣𝑒𝑛start 𝑆𝑜𝑑𝑑

𝑋𝑖 = 0

𝑋𝑖 = 1

𝑋𝑖 = 0

𝑋𝑖 = 1

git # b282dbb9 @ 2025-09-03 87

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

or equivalently say

𝛿
𝑄 𝑄′

𝑋𝑖 = 0 𝑋𝑖 = 1

𝑆𝑒𝑣𝑒𝑛 𝑆𝑒𝑣𝑒𝑛 𝑆𝑜𝑑𝑑
𝑆𝑜𝑑𝑑 𝑆𝑜𝑑𝑑 𝑆𝑒𝑣𝑒𝑛

where 𝑄 is the current state and 𝑄′ is the next state.

Given the FSM has two states only, we can store the current state using a 1-bit register. Based on a natural

mapping of the abstract to concrete state labels (i.e., 𝑆𝑒𝑣𝑒𝑛 ↦→ 0 and 𝑆𝑜𝑑𝑑 ↦→ 1), we can rewrite the transition

function as a truth table:

𝑋𝑖 𝑄 𝑄′

0 0 0

0 1 1

1 0 1

1 1 0

and see clearly that 𝑄′ = 𝑄 ⊕ 𝑋𝑖 . Inspecting 𝑄 directly provides the output: if 𝑄 = 0 we have (so far) even parity,

and in contrast if 𝑄 = 1 we have odd parity. So in a sense the output function 𝜔 is simply the identity function.

In short, the low-level detail filled into the high-level design is very simple (in this case at least) once the question

has been digested.

One obvious addition would be some form of mechanism to reset the FSM: as stated above, we assume it starts

in the state 𝑆𝑒𝑣𝑒𝑛 when powered-on but clearly this may not be true (the content in 𝑄 will essentially be random

initially).

� S179. a There are several approaches to solving this problem. Possibly the easiest, but perhaps not the most

obvious, is to simply build a shift-register: the register stores the last three inputs, when a new input is available

the register shifts the content along by one which means the oldest input drops off one end and the new input

is inserted into the other end. One can then build a simple circuit to test the current state of the shift-register to

see if the last three inputs match what is required..

Alternatively, one can take a more heavy-weight approach and formulate the solution as a state machine. First

we need to decide on an encoding for our state; when searching though the input we can have matched zero

through three correct tokens we denote this by the integer 𝑆 stored in two bits using 𝑄1 and 𝑄0 as the most-

significant and least-significant respectively. We also need an encoding of the actual input tokens 𝐼 which are

being passed to the matching circuit. Arbitrarily we might select 𝐴 = 0, 𝐶 = 1, 𝐺 = 2 and 𝑇 = 3 although other

encodings are valid and might actually simplify things; we use 𝐼1 and 𝐼0 to denote the most and least-significant

bits of the input token 𝐼. From this we can now create a table describing the mapping between current state 𝑆
and input 𝐼 to next state 𝑆′ which can be roughly written as

𝐼1 𝐼0 𝑄1 𝑄0 𝑄′
1

𝑄′
0

0 0 0 0 0 1

0 1 0 0 0 0

1 0 0 0 0 0

1 1 0 0 0 0

0 0 0 1 0 1

0 1 0 1 1 0

1 0 0 1 0 0

1 1 0 1 0 0

0 0 1 0 0 1

0 1 1 0 0 0

1 0 1 0 0 0

1 1 1 0 1 1

0 0 1 1 0 1

0 1 1 1 0 0

1 0 1 1 0 0

1 1 1 1 0 0

Thus, if we are in state (𝑄1 , 𝑄0) = (0, 0) = 0 and see an 𝐴 input, we move to state (𝑄′
1
, 𝑄′

0
) = (0, 1) = 1 otherwise

we stay in state (𝑄′
1
, 𝑄′

0
) = (0, 0) = 0. Now we can define the transition function from current state to next state

git # b282dbb9 @ 2025-09-03 88

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

as

𝑄0 = (¬𝑄1 ∧ ¬𝑄0 ∧ ¬𝐼1 ∧ ¬𝐼0)∨
(¬𝑄1 ∧𝑄0 ∧ ¬𝐼1 ∧ ¬𝐼0)∨
(𝑄1 ∧ ¬𝑄0 ∧ ¬𝐼1 ∧ ¬𝐼0)∨
(𝑄1 ∧𝑄0 ∧ ¬𝐼1 ∧ ¬𝐼0)∨
(𝑄1 ∧ ¬𝑄0 ∧ 𝐼1 ∧ 𝐼0)

𝑄1 = (¬𝑄1 ∧𝑄0 ∧ ¬𝐼1 ∧ 𝐼0)∨
(𝑄1 ∧ ¬𝑄0 ∧ 𝐼1 ∧ 𝐼0)

with simplifications as appropriate. Finally, the output flag 𝐹 will be set only according to

𝐹 = 𝑄1 ∧𝑄0

to signal when we have matched three characters. As such, we can realise the FSM framework described in

Solution 178 by filling each component with the associated implementation above.

b Making a general-purpose matching circuit will probably use less logic than having three separate circuits; this

will reduce the space required. As an extension one might consider implementing the transition and output

functions as a look-up table instead of hard-wiring them; this will mean the circuit could be used to match

any sequence providing the tables were correctly initialised. Introducing a more complex circuit design could

have the disadvantage of increasing the critical path (the longest sequential path though the entire circuit). If

the critical path is longer, the design will have to be clocked slower and hence will not perform the matching

function as quickly.

� S180. a A basic diagram should show the four states and transitions between them which relate the movement

from one to the other as a result of the washing cycle, and movement as a result of input from the buttons; for

example a (very) basic diagram would be:

+------+ +------+ +------+ +------+
+-->| idle |-->| fill |-->| wash |-->| spin |
| +------+ +------+ +------+ +------+
| | | | |
+------+-----------+----------+----------+

b Since there are four states, we can encode them using one two bits; we assign the following encoding idle = 00,

fill = 01, wash = 10 and spin = 11. We use𝑄1 and𝑄0 to represent the current state, and𝑄′
1

and𝑄′
0

to represent the

next state; 𝐵1 and 𝐵0 are the input buttons. Using this notation, we can construct the following state transition

table which encodes the state machine diagram:

𝐵1 𝐵0 𝑄1 𝑄0 𝑄′
1

𝑄′
0

0 0 0 0 0 0

0 1 0 0 0 1

1 0 0 0 0 0

1 1 0 0 0 0

0 0 0 1 1 0

0 1 0 1 1 0

1 0 0 1 0 0

1 1 0 1 1 0

0 0 1 0 1 1

0 1 1 0 1 1

1 0 1 0 0 0

1 1 1 0 1 1

0 0 1 1 0 0

0 1 1 1 0 0

1 0 1 1 0 0

1 1 1 1 0 0

so that if, for example, the machine is in the wash state (i.e., 𝑄1 = 1 and 𝑄0 = 0) and no buttons are pressed then

the next state is spin (i.e., 𝑄′
1
= 1 and 𝑄′

0
= 1); however if button 𝐵1 is pressed to cancel the cycle, the next state

is idle (i.e., 𝑄′
1
= 0 and 𝑄′

0
= 0).

c From the state transition table, we can easily extract the two Karnaugh maps:

git # b282dbb9 @ 2025-09-03 89

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

00 01 11 10

00

01

11

10

𝑄′
1

𝐵1

𝑄1

𝐵0

𝑄0

0
0

1
1

0
2

1
3

1
4

0
5

1
6

0
7

0
8

0
9

0
10

1
11

0
12

0
13

1
14

0
15

00 01 11 10

00

01

11

10

𝑄′
0

𝐵1

𝑄1

𝐵0

𝑄0

0
0

0
1

1
2

0
3

1
4

0
5

1
6

0
7

0
8

0
9

0
10

0
11

0
12

0
13

1
14

0
15

Basic expressions can be extracted from the tables as follows:

𝑄′
1

= (¬𝑄1 ∧𝑄0 ∧ 𝐵0) ∨ (¬𝑄1 ∧𝑄0 ∧ ¬𝐵1) ∨ (𝑄1 ∧ ¬𝑄0 ∧ 𝐵0) ∨ (𝑄1 ∧ ¬𝑄0 ∧ ¬𝐵1)
𝑄′

0
= (𝑄1 ∧ ¬𝑄0 ∧ 𝐵0) ∨ (𝑄1 ∧ ¬𝑄0 ∧ ¬𝐵1) ∨ (¬𝑄0 ∧ 𝐵0 ∧ ¬𝐵1)

and through sharing, i.e., by computing

𝑡0 = ¬𝐵1

𝑡1 = ¬𝐵0

𝑡2 = ¬𝑄1

𝑡3 = ¬𝑄0

𝑡4 = 𝑡2 ∧𝑄0

𝑡5 = 𝑡3 ∧𝑄1

we can simplify these to

𝑄′
0

= (𝑡5 ∧ 𝐵0) ∨ (𝑡5 ∧ 𝑡0) ∨ (𝑡3 ∧ 𝐵0 ∧ 𝑡0)
𝑄′

1
= (𝑡4 ∧ 𝐵0) ∨ (𝑡4 ∧ 𝑡0) ∨ (𝑡5 ∧ 𝐵0) ∨ (𝑡5 ∧ 𝑡0)

� S181. a The two properties are defined as follows:

i The Hamming weight of 𝑋 is the number of bits in 𝑋 that are equal to 1, i.e., the number of times 𝑋𝑖 = 1. This

can be computed as

HW(𝑋) =
𝑛−1∑
𝑖=0

𝑋𝑖 .

ii The Hamming distance between 𝑋 and 𝑌 is the number of bits in 𝑋 that differ from the corresponding bit in

𝑌, i.e., the number of times 𝑋𝑖 ≠ 𝑌𝑖 :

HD(𝑋,𝑌) =
𝑛−1∑
𝑖=0

𝑋𝑖 ⊕ 𝑌𝑖 .

b There are two main approaches to constructing a flip-flop of this type; since both start with an SR-latch, the

difference is mainly in how the edge-triggered behaviour is realised. Use of a primary-secondary organisation

is probably the more complete solution, but a simpler alternative would be to use a pulse generator. The overall

design can be described roughly as follows:

+---+ +---+
D--+---------------------------->| |---S-->| |
| |AND| |NOR|-->r_0 = ~Q
v +-->| | r_1-->| |

+---+ +------------+ | +---+ +---+
| | | | |
|NOT| en-->| pulse gen. |--+
| | | | |
+---+ +------------+ | +---+ +---+
| +-->| |---R-->| |
| |AND| |NOR|-->r_1 = Q
+---------------------------->| | r_0-->| |

+---+ +---+

There are basically four features to note:

i An SR-latch has two inputs 𝑆 and 𝑅, and two outputs 𝑄 and ¬𝑄. When

• 𝑆 = 0, 𝑅 = 0 the component retains 𝑄,

git # b282dbb9 @ 2025-09-03 90

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

• 𝑆 = 1, 𝑅 = 0 the component updates to 𝑄 = 1,

• 𝑆 = 0, 𝑅 = 1 the component updates to 𝑄 = 0,

• 𝑆 = 1, 𝑅 = 1 the component is meta-stable.

The component is level-triggered in the sense that𝑄 is updated within the period of time when 𝑆 = 1 or 𝑅 = 1

(rather than when they transition to said values).

ii To provide more fine-grained control over the component, the two inputs are typically gated using (i.e.,

AND’ed with) an enable signal 𝑒𝑛: when 𝑒𝑛 = 0, the latch inputs are always zero and hence it retains the

same state, when 𝑒𝑛 = 1 it can be updated as normal.

iii In order to change from the current level-triggered behaviour into an edge-triggered alternative, one approach

is to use a pulse generator. The idea here is to intentionally create a mismatch in propagation delay into the

inputs of an AND gate: each time 𝑒𝑛 changes, the result is that we see a small pulse on the output of the AND

gate. Provided this is small enough, one can argue it acts like an edge rather than a level.

iv Finally, the gated 𝑆 and 𝑅 inputs are tied together and controlled by one input 𝐷 meaning 𝑆 = 𝐷 and 𝑅 = ¬𝐷.

This prevents the component being used erroneously: it can only retain or update the state.

c The power consumed by CMOS transistors can be decomposed into two parts: the static part (which relates

to leakage) and the dynamic part (which relates to power consumed when the transistor switches). In short, a

value switching (i.e., changing from one value to another) consumes much more power than staying the same.

In this case, clearly we have an advantage in the all but one of the 𝑛 bits in the register will stay the same; hence

in terms of power consumption, storing elements of the the Gray code (versus some other sequence for example)

is an advantage.

d See Solution 178.

e As an aside, a potentially neat approach here is to use a Johnson counter. This is basically an 𝑛-bit register

(initialised to zero) whose content is shifted by one place on each clock edge. The new incoming, 0-th bit is

computed as the NOT of the outgoing, (𝑛 − 1)-th bit and every other bit is shifted up by one place (e.g., each 𝑖-th
bit for 1 ≤ 𝑖 < 𝑛 − 1 becomes the (𝑖 + 1)-th bit). For 𝑛 = 3, this produces the sequence

⟨0, 0, 0⟩
⟨1, 0, 0⟩
⟨1, 1, 0⟩
⟨1, 1, 1⟩
⟨0, 1, 1⟩
⟨0, 0, 1⟩

...

which satisfies the Hamming distances property, but does not include all possible values: for example, ⟨1, 0, 1⟩
is not included. So this does not really answer the question in the sense that we require a component that cycles

through the full 2
𝑛
-element sequence, an example of which is

⟨0, 0, 0⟩
⟨1, 0, 0⟩
⟨1, 1, 0⟩
⟨0, 1, 0⟩
⟨0, 1, 1⟩
⟨1, 1, 1⟩
⟨1, 0, 1⟩
⟨0, 0, 1⟩

As a result, we can use an FSM-based approach based on the framework in the question above. For 𝑛 = 3

there are 2
3 = 8 elements in the Gray code, and so a 3-bit state 𝑄 = ⟨𝑄0 , 𝑄1 , 𝑄2⟩ is enough to store the current

element. The output function 𝜔 is basically free: we simply provide the current state 𝑄 as output, which is also

the current element in the Gray code sequence. Based on the inputs 𝑄 and 𝑟𝑠𝑡, the state transition function 𝛿

git # b282dbb9 @ 2025-09-03 91

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

can be described as follows:

𝑟𝑠𝑡 𝑄2 𝑄1 𝑄0 𝑄′
2

𝑄′
1

𝑄′
0

0 0 0 0 0 0 1

0 0 0 1 0 1 1

0 0 1 1 0 1 0

0 0 1 0 1 1 0

0 1 1 0 1 1 1

0 1 1 1 1 0 1

0 1 0 1 1 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 1 0 0 0

1 0 1 1 0 0 0

1 0 1 0 0 0 0

1 1 1 0 0 0 0

1 1 1 1 0 0 0

1 1 0 1 0 0 0

1 1 0 0 0 0 0

From this truth table we can (more easily that usual perhaps) extract Karnaugh maps for each bit of the next

state 𝑄′

00 01 11 10

00

01

11

10

𝑄′
2

𝑟𝑠𝑡

𝑄1

𝑄2

𝑄0

0
0

0
1

0
2

1
3

1
4

0
5

1
6

1
7

0
8

0
9

0
10

0
11

0
12

0
13

0
14

0
15

00 01 11 10

00

01

11

10

𝑄′
1

𝑟𝑠𝑡

𝑄1

𝑄2

𝑄0

0
0

1
1

0
2

0
3

1
4

1
5

1
6

0
7

0
8

0
9

0
10

0
11

0
12

0
13

0
14

0
15

00 01 11 10

00

01

11

10

𝑄′
0

𝑟𝑠𝑡

𝑄1

𝑄2

𝑄0

1
0

1
1

0
2

0
3

0
4

0
5

1
6

1
7

0
8

0
9

0
10

0
11

0
12

0
13

0
14

0
15

and hence Boolean expressions

𝑄′
2

= (¬𝑟𝑠𝑡 ∧ 𝑄2 𝑄0) ∨
(¬𝑟𝑠𝑡 ∧ 𝑄1 ¬𝑄0)

𝑄′
1

= (¬𝑟𝑠𝑡 ∧ ¬𝑄2 ∧ 𝑄0) ∨
(¬𝑟𝑠𝑡 ∧ 𝑄1 ∧ ¬𝑄0)

𝑄′
0

= (¬𝑟𝑠𝑡 ∧ ¬𝑄2 ∧ ¬𝑄1) ∨
(¬𝑟𝑠𝑡 ∧ 𝑄2 ∧ 𝑄1)

Placing the associated combinatorial logic and a 3-bit, D-type flip-flop based register to store 𝑄 into the generic

framework, we end up with a component that cycles through our 3-bit Gray code sequence under control of a

clock signal.

� S182. a See Solution 178.

b There are a few different ways to interpret some parts of the problem definition, but one reasonable approach

is as follows:

git # b282dbb9 @ 2025-09-03 92

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝑆0start 𝑆1 𝑆2 𝑆3

𝐵2 = 1

and

𝐻 = 0

𝐵0 = 1

and

𝐻 = 0

𝐵1 = 1

and

𝐻 = 0

𝐻 = 1

𝐻 = 1

𝐻 = 1

𝐻 = 1

Essentially, the idea is that by pressing buttons we advance from the stating state 𝑆0 toward the final state 𝑆3

(as long as the handle is not turned, which means we go back to the start): when in 𝑆3 the door is unlocked,

otherwise it remains locked. In particular, if the buttons are pressed in the wrong order we get “stuck” half way

along the sequence and never reach 𝑆3. For example if 𝐵1 is pressed while in state 𝑆1, the FSM does not (and

cannot ever) transition into 𝑆2 since the button stays pressed: the only way to “unstick” the FSM is to turn the

handle, reset the mechanism and start again.

There are four states in total; since 2
2 = 4 we can represent the current state 𝑄 as a 2-bit integer, making the

concrete assignment

𝑆0 ↦→ ⟨0, 0⟩
𝑆1 ↦→ ⟨1, 0⟩
𝑆2 ↦→ ⟨0, 1⟩
𝑆3 ↦→ ⟨1, 1⟩

The FSM diagram can be expressed as a truth table, particular to this 𝑃, which captures the various transitions:

𝐻 𝐵2 𝐵1 𝐵0 𝑄1 𝑄0 𝑄′
1

𝑄′
0

0 0 ? ? 0 0 0 0

0 1 ? ? 0 0 0 1

1 ? ? ? 0 0 0 0

0 ? ? 0 0 1 0 1

0 ? ? 1 0 1 1 0

1 ? ? ? 0 1 0 0

0 ? 0 ? 1 0 1 0

0 ? 1 ? 1 0 1 1

1 ? ? ? 1 0 0 0

0 ? ? ? 1 1 1 1

1 ? ? ? 1 1 0 0

Implementing this truth table via a 6-input Karnaugh map is a little more tricky than with fewer inputs; instead,

we simply derive the expressions by inspection (i.e., by forming a term for each 1 entry in a given output) to

yield

𝑄′
0

= (¬𝐻 ∧ 𝐵2 ∧ ¬𝑄1 ∧ ¬𝑄0) ∨
(¬𝐻 ∧ ¬𝐵0 ∧ ¬𝑄1 ∧ 𝑄0) ∨
(¬𝐻 ∧ 𝐵1 ∧ 𝑄1 ∧ ¬𝑄0) ∨
(¬𝐻 ∧ 𝑄1 ∧ 𝑄0)

𝑄′
1

= (¬𝐻 𝐵0 ∧ ¬𝑄1 ∧ 𝑄0) ∨
(¬𝐻 ∧ ¬𝐵1 ∧ 𝑄1 ∧ ¬𝑄0) ∨
(¬𝐻 ∧ 𝐵1 ∧ 𝑄1 ∧ ¬𝑄0) ∨
(¬𝐻 ∧ 𝑄1 ∧ 𝑄0)

with minor optimisation possible thereafter. Returning to the framework, the idea is then that we

i instantiate the middle box with a 2-bit register, using D-type flip-flops for example, to store 𝑄,

ii instantiate the top box to implement 𝛿 using the equations above,

iii instantiate the bottom box to implement 𝜔 using the equation

𝐿 = ¬(𝑄1 ∧𝑄0)

so the door is locked unless the FSM is in state 𝑆3.

git # b282dbb9 @ 2025-09-03 93

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

c The purpose of a clock signal is to control the FSM, advancing it through steps (i.e., transitions) with all

components synchronised. However, the only updates of state occur on positive transistors of 𝐵𝑖 or 𝐻. That is,

the FSM only chances state when one of the buttons is pressed, or the handle turned: in each case, this means

the associated value transitions from 0 to 1. As a result, one could argue the expression

𝐻 ∨ 𝐵0 ∨ 𝐵1 ∨ 𝐵1 ∨ 𝐵2

can be used to advance the FSM (i.e., latch the next state produced by the transition function), rather than

“polling” the buttons and handle at each clock edge to see if their value has changed.

d Among various valid answers, the following are clear:

i The content stored in an SRAM memory is lost if the power supply is removed: such devices depend on a

power supply so transistors used to maintain the stored content can operate. In the context of the proposed

approach, this means if a power cut occurs, for example, then the password will be “forgotten” by the lock.

ii When the power supply comes back online the password might be essentially random due to the way SRAMs

work. If this is not true however, and the SRAM is initialised into a predictable value (e.g., all zero), this could

offer an attractive way to bypass the security offered!

iii Given physical access to the lock, one might simply read the password out of the SRAM. With an FSM hard-

wired to a single password, the analogue is arguably harder: one would need to (invasively) reverse engineer

the gate layout and connectivity, then the FSM design.

Less attractive answers include degradation of performance (e.g., as a result of SRAM access latency) or increase

in cost: given constraints of the application, neither seems particular important. For example the access latency

of SRAM memory is measured in small fractions of a second; although arguably true in general, from the

perspective of a human user of the door lock the delay will be imperceptible.

e This is quite open-ended, but one reasonable approach would be as follows:

i This is a slightly loaded question in that it implies some alteration is needed; as such, marks might typically

be given for identifying the underlying reason, and explaining each aspect of the proposed alteration.

The crucial point to realise is testing implementations of 𝛿 and 𝜔, for example, depends on being able to set

(and possibly inspect) the state 𝑄 which acts as input to both. An example technology to allow this would be

JTAG, which requires an additional interface (inc. TDI, TDO, TCLK, TMS and TRST pins) and also injection

of a scan chain to access all flip-flops. This allows the test process to scan a value into 𝑄 one bit at a time, run

the system normally, then scan out 𝑄 to test it.

ii The idea would be to place each system under the control of a test stimulus that automates a series of tests: the

test stimulus has access to all inputs (i.e., the JTAG interface, each button and the handle) and outputs (e.g.,

the JTAG interface, and the lock mechanism), and is tasked with making sure the overall behaviour matches

some reference.

In this context, the number of states, inputs and outputs is small enough that a brute force approach is

reasonable; this is also motivated by the fact there are no obvious boundary cases and so on. The strategy

would therefore be: for each entry in the truth table

• put the device in test mode,

• scan-in the state 𝑄 and drive each 𝐵𝑖 with the associated values,

• put the device in normal mode, and force an update of the FSM using the clock signal,

• put the device in test mode,

• check the value of 𝐿 matches that expected,

• scan-out and check the value of 𝑄 matches that expected.

An alternative answer might focus on some form of BIST, but in essence this just places all the above inside the

system rather than viewing it as something done externally.

� S183. a At least three advantages (or disadvantages, depending on which way around you view the options) are

evident:

• With option one, extracting each digit of the current PIN to form a guess is trivial; with option two this is

much harder, in that we need to take the integer 𝑃 and decompose it into a decimal representation (through

repeated division and modular reduction).

• With option one, incrementing the current PIN is harder (since the addition is in decimal); with option two

this is much easier, in that we can simply use a standard integer adder.

• With option one, the total storage requirement is 4 · 4 = 16 bits; with option two this is only 14 bits, since

2
14 = 16384 > 9999.

git # b282dbb9 @ 2025-09-03 94

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

Based on this, and reading ahead to the next question, the decimal representation seems more attractive:

designing a decimal adder is significantly easier than a binary divider.

b Given the choice, and although both options are viable, we focus on a design for the second, decimal represen-

tation: this is simpler by some way, so the expected answer. At a high-level, the component can be described as

follows:

P_3 P_2 P_1 P_0
| | | |

G_3 <--+ G_2 <--+ G_1 <--+ G_0 <--+
| | | |
v v v v

+-----------+ +-----------+ +-----------+ +-----------+
| x | | x | | x | | x |
| | | | | | | |
|co add ci|<--|co add ci|<--|co add ci|<--|co add ci|<-- 1
| | | | | | | |
| r | | r | | r | | r |
+-----------+ +-----------+ +-----------+ +-----------+

| | | |
v v v v

P'_3 P'_2 P'_1 P'_0

𝑃𝑖 = 𝐺𝑖 so production of the guess is trivial; the other output is a little harder. The basic idea is to use something

similar to a ripple-carry adder. Each 𝑖-th cell takes a decimal digit 𝑃𝑖 and a carry-in from the previous, (𝑖 − 1)-th
cell; it produces a decimal digit 𝑃′

𝑖
and a carry-out into the next (𝑖 + 1)-th cell. The difference from a binary

ripple-carry adder then is that it only accepts one digit rather than two as input (since it increments 𝑃 rather

than computes a general-purpose addition), plus it obviously works with decimal rather than binary digits.

There are various ways to approach the design of each decimal adder cell, but perhaps the most straightforward

uses two stages:

x_3 x_2 x_1 x_0
| | | |
v v v v

+------------+ +------------+ +------------+ +------------+
| x | | x | | x | | x |
| | | | | | | |
| co ha ci |<--| co ha ci |<--| co ha ci |<--| co ha ci |<-- 0
| | | | | | | |
| r | | r | | r | | r |
+------------+ +------------+ +------------+ +------------+

| | | |
r'_3 r'_2 r'_1 r'_0
| | | |
v v v v

+---+
| |

co <--| modular reduction |
| |
+---+

| | | |
r_3 r_2 r_1 r_0
| | | |
v v v v

The first stage computes an integer sum 𝑟′ = 𝑥+𝑐𝑖. Although this could be realised using a standard ripple-carry

adder, we can make a more problem-specific improvement: a ripple-carry adder normally uses full-adder cells

that compute 𝑥 + 𝑦 + 𝑐𝑖, but we lack the second input 𝑦. Thus we can use half-adder cells instead, which use

half the number of gates; we assume such a half-adder is available as a standard component. The second stage

takes 𝑟′ = 𝑥 + 𝑐𝑖 as input, and produces the outputs 𝑟 and 𝑐𝑜, implementing the modular reduction. The range

of each input means 0 ≤ 𝑟′ < 11, or equivalently that cases where 𝑟′ > 10 are impossible. We can describe the

git # b282dbb9 @ 2025-09-03 95

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

behaviour of the stage using the following truth table:

𝑟′
3

𝑟′
3

𝑟′
3

𝑟′
3

𝑐𝑜 𝑟3 𝑟2 𝑟1 𝑟0
0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 1 0

0 0 1 1 0 0 0 1 1

0 1 0 0 0 0 1 0 0

0 1 0 1 0 0 1 0 1

0 1 1 0 0 0 1 1 0

0 1 1 1 0 0 1 1 1

1 0 0 0 0 1 0 0 0

1 0 0 1 0 1 0 0 1

1 0 1 0 1 0 0 0 0

1 0 1 1 ? ? ? ? ?
1 1 0 0 ? ? ? ? ?
1 1 0 1 ? ? ? ? ?
1 1 1 0 ? ? ? ? ?
1 1 1 1 ? ? ? ? ?

As such, we can produce a set of Karnaugh maps

00 01 11 10

00

01

11

10

𝑟3

𝑟′
3

𝑟′
1

𝑟′
2

𝑟′
0

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

1
8

1
9

?
10

?
11

0
12

?
13

?
14

?
15

00 01 11 10

00

01

11

10

𝑟2

𝑟′
3

𝑟′
1

𝑟′
2

𝑟′
0

0
0

0
1

1
2

1
3

0
4

0
5

1
6

1
7

0
8

0
9

?
10

?
11

0
12

?
13

?
14

?
15

00 01 11 10

00

01

11

10

𝑟1

𝑟′
3

𝑟′
1

𝑟′
2

𝑟′
0

0
0

0
1

0
2

0
3

1
4

1
5

1
6

1
7

0
8

0
9

?
10

?
11

0
12

?
13

?
14

?
15

00 01 11 10

00

01

11

10

𝑟0

𝑟′
3

𝑟′
1

𝑟′
2

𝑟′
0

0
0

1
1

0
2

1
3

0
4

1
5

0
6

1
7

0
8

1
9

?
10

?
11

0
12

?
13

?
14

?
15

which translate fairly easily into Boolean expressions

𝑟3 = 𝑟′
3
∧ ¬𝑟′

1

𝑟2 = 𝑟′
2

𝑟1 = ¬𝑟′
3
∧ 𝑟′

1

𝑟0 = 𝑟′
0

that allow implementation.

c The FSM maintains a current state 𝑄. Given there are five states, we can represent the current state as

𝑄 = ⟨𝑄0 , 𝑄1 , 𝑄2⟩

i.e., three bits (since 2
3 = 8 > 5), so the device could store it in a register comprised of three D-type flip-flops;

doing so accepts there are three unused state representations.

git # b282dbb9 @ 2025-09-03 96

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

We can represent the states as follows

𝑆0 = ⟨0, 0, 0⟩
𝑆1 = ⟨1, 0, 0⟩
𝑆2 = ⟨0, 1, 0⟩
𝑆3 = ⟨1, 1, 0⟩
𝑆4 = ⟨0, 0, 1⟩

and therefore formulate a tabular transition function 𝛿:

𝑏 𝑟 𝑄2 𝑄1 𝑄0 𝑄′
2

𝑄′
1

𝑄′
0

0 ? 0 0 0 0 0 0

1 ? 0 0 0 0 0 1

? ? 0 0 1 0 1 0

? ? 0 1 0 0 1 1

? 0 0 1 1 0 0 1

? 1 0 1 1 1 0 0

? ? 1 0 0 1 0 0

Turning these into Karnaugh maps and then Boolean expressions is a little tricky due to the need for five inputs.

To cope, we assume there are no transitions from 𝑆0 and ignore 𝑏, then patch the equation for 𝑄′
0

(the only bit

of the next state influenced by moving out of 𝑆0) appropriately. That is, we get the following

00 01 11 10

00

01

11

10

𝑄′
2

𝑟

𝑄1

𝑄2

𝑄0

0
0

0
1

1
2

?
3

0
4

0
5

?
6

?
7

0
8

0
9

1
10

?
11

0
12

1
13

?
14

?
15

00 01 11 10

00

01

11

10

𝑄′
1

𝑟

𝑄1

𝑄2

𝑄0

0
0

1
1

0
2

?
3

1
4

0
5

?
6

?
7

0
8

1
9

0
10

?
11

1
12

0
13

?
14

?
15

00 01 11 10

00

01

11

10

𝑄′
0

𝑟

𝑄1

𝑄2

𝑄0

0
0

0
1

0
2

?
3

1
4

1
5

?
6

?
7

0
8

0
9

0
10

?
11

1
12

0
13

?
14

?
15

which then translate into

𝑄′
2

= (𝑟 ∧ 𝑄1 ∧ 𝑄0) ∨
(𝑄2)

𝑄′
1

= (¬ 𝑄1 ∧ 𝑄0) ∨
(𝑄1 ∧ ¬ 𝑄0)

𝑄′
0

= (𝑏 ∧ ¬ 𝑄2 ∧ ¬ 𝑄1 ∧ ¬ 𝑄0) ∨
(¬ 𝑟 ∧ 𝑄1) ∨
(𝑄1 ∧ ¬ 𝑄0)

Part VIII: Computational machines: Register Machines (RMs)

� S184. a First we need to decode the machine code program: using Figure ??, we find that

0𝐴3(16) = 010100011(2) ↦→ L0 : if R2 = 0 then goto L3 else goto L1

060(16) = 001100000(2) ↦→ L1 : R2 ← R2 − 1 then goto L2

080(16) = 010000000(2) ↦→ L2 : if R0 = 0 then goto L0 else goto L3

097(16) = 010010111(2) ↦→ L3 : if R1 = 0 then goto L7 else goto L4

050(16) = 001010000(2) ↦→ L4 : R1 ← R1 − 1 then goto L5

020(16) = 000100000(2) ↦→ L5 : R2 ← R2 + 1 then goto L6

083(16) = 010000011(2) ↦→ L6 : if R0 = 0 then goto L3 else goto L7

0𝐶0(16) = 011000000(2) ↦→ L7 : halt

Next we can produce a trace of execution for the program: starting with the initial configuration given, we find

git # b282dbb9 @ 2025-09-03 97

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

that

𝒞0 = (0, 0, 2, 1, 0)
L0 ; if R2 = 0 then goto L3 else goto L1

𝒞1 = (1, 0, 2, 1, 0)
L1 ; R2 ← R2 − 1 then goto L2

𝒞2 = (2, 0, 2, 0, 0)
L2 ; if R0 = 0 then goto L0 else goto L3

𝒞3 = (0, 0, 2, 0, 0)
L0 ; if R2 = 0 then goto L3 else goto L1

𝒞4 = (3, 0, 2, 0, 0)
L3 ; if R1 = 0 then goto L7 else goto L4

𝒞5 = (4, 0, 2, 0, 0)
L4 ; R1 ← R1 − 1 then goto L5

𝒞6 = (5, 0, 1, 0, 0)
L5 ; R2 ← R2 + 1 then goto L6

𝒞7 = (6, 0, 1, 1, 0)
L6 ; if R0 = 0 then goto L3 else goto L7

𝒞8 = (3, 0, 1, 1, 0)
L3 ; if R1 = 0 then goto L7 else goto L4

𝒞9 = (4, 0, 1, 1, 0)
L4 ; R1 ← R1 − 1 then goto L5

𝒞10 = (5, 0, 0, 1, 0)
L5 ; R2 ← R2 + 1 then goto L6

𝒞11 = (6, 0, 0, 2, 0)
L6 ; if R0 = 0 then goto L3 else goto L7

𝒞12 = (3, 0, 0, 2, 0)
L3 ; if R1 = 0 then goto L7 else goto L4

𝒞13 = (7, 0, 0, 2, 0)
L7 ; halt

where the final configuration halts execution.

As a result, stating that the program will “copy the value in R1 into R2, clearing the value in R1” is the best

match. Note that the program itself is in two parts: L0 to L2 clear (or zero) R2, and L3 to L6 move R1 into R2. Also

note that it depends on having R0 = 0, allowing the construction of unconditional branches in L2 and L6.

b First we need to decode the machine code program: using Figure ??, we find that

0𝐵3(16) = 010110011(2) ↦→ L0 : if R3 = 0 then goto L3 else goto L1

070(16) = 001110000(2) ↦→ L1 : R3 ← R3 − 1 then goto L2

080(16) = 010000000(2) ↦→ L2 : if R0 = 0 then goto L0 else goto L3

097(16) = 010010111(2) ↦→ L3 : if R1 = 0 then goto L7 else goto L4

030(16) = 000110000(2) ↦→ L4 : R3 ← R3 + 1 then goto L5

050(16) = 001010000(2) ↦→ L5 : R1 ← R1 − 1 then goto L6

083(16) = 010000011(2) ↦→ L6 : if R0 = 0 then goto L3 else goto L7

0𝐴𝐵(16) = 010101011(2) ↦→ L7 : if R2 = 0 then goto L11 else goto L8

030(16) = 000110000(2) ↦→ L8 : R3 ← R3 + 1 then goto L9

060(16) = 001100000(2) ↦→ L9 : R2 ← R2 − 1 then goto L10

087(16) = 010000111(2) ↦→ L10 : if R0 = 0 then goto L7 else goto L11

0𝐶0(16) = 011000000(2) ↦→ L11 : halt

Next we can produce a trace of execution for the program: starting with the initial configuration given, we find

git # b282dbb9 @ 2025-09-03 98

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

that

𝒞0 = (0, 0, 3, 2, 1)
L0 ; if R3 = 0 then goto L3 else goto L1

𝒞1 = (1, 0, 3, 2, 1)
L1 ; R3 ← R3 − 1 then goto L2

𝒞2 = (2, 0, 3, 2, 0)
L2 ; if R0 = 0 then goto L0 else goto L3

𝒞3 = (0, 0, 3, 2, 0)
L0 ; if R3 = 0 then goto L3 else goto L1

𝒞4 = (3, 0, 3, 2, 0)
L3 ; if R1 = 0 then goto L7 else goto L4

𝒞5 = (4, 0, 3, 2, 0)
L4 ; R3 ← R3 + 1 then goto L5

𝒞6 = (5, 0, 3, 2, 1)
L5 ; R1 ← R1 − 1 then goto L6

𝒞7 = (6, 0, 2, 2, 1)
L6 ; if R0 = 0 then goto L3 else goto L7

𝒞8 = (3, 0, 2, 2, 1)
L3 ; if R1 = 0 then goto L7 else goto L4

𝒞9 = (4, 0, 2, 2, 1)
L4 ; R3 ← R3 + 1 then goto L5

𝒞10 = (5, 0, 2, 2, 2)
L5 ; R1 ← R1 − 1 then goto L6

𝒞11 = (6, 0, 1, 2, 2)
L6 ; if R0 = 0 then goto L3 else goto L7

𝒞12 = (3, 0, 1, 2, 2)
L3 ; if R1 = 0 then goto L7 else goto L4

𝒞13 = (4, 0, 1, 2, 2)
L4 ; R3 ← R3 + 1 then goto L5

𝒞14 = (5, 0, 1, 2, 3)
L5 ; R1 ← R1 − 1 then goto L6

𝒞15 = (6, 0, 0, 2, 3)
L6 ; if R0 = 0 then goto L3 else goto L7

𝒞16 = (3, 0, 0, 2, 3)
L3 ; if R1 = 0 then goto L7 else goto L4

𝒞17 = (7, 0, 0, 2, 3)
L7 ; if R2 = 0 then goto L11 else goto L8

𝒞18 = (8, 0, 0, 2, 3)
L8 ; R3 ← R3 + 1 then goto L9

𝒞19 = (9, 0, 0, 2, 4)
L9 ; R2 ← R2 − 1 then goto L10

𝒞20 = (10, 0, 0, 1, 4)
L10 ; if R0 = 0 then goto L7 else goto L11

𝒞21 = (7, 0, 0, 1, 4)
L7 ; if R2 = 0 then goto L11 else goto L8

𝒞22 = (8, 0, 0, 1, 4)
L8 ; R3 ← R3 + 1 then goto L9

𝒞23 = (9, 0, 0, 1, 5)
L9 ; R2 ← R2 − 1 then goto L10

𝒞24 = (10, 0, 0, 0, 5)
L10 ; if R0 = 0 then goto L7 else goto L11

𝒞25 = (7, 0, 0, 0, 5)
L7 ; if R2 = 0 then goto L11 else goto L8

𝒞26 = (11, 0, 0, 0, 5)
L11 ; halt

where the final configuration halts execution.

As a result, stating that the program will “add the values in R1 and R2, setting R3 to reflect the result” is the best

match. Note that the program itself is in three parts: L0 to L2 clear (or zero) R3, L3 to L6 add R1 to R3, L7 to L10

add R2 to R3. Also note that it depends on having R0 = 0, allowing the construction of unconditional branches

in L2, L6, and L10.

git # b282dbb9 @ 2025-09-03 99

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S185. First, note that

0𝐴5(16) ≡ 000010100101(2) ↦→ 010100101(2).

We can see that the (red) opcode determines the instruction type, i.e.,

if R𝑎𝑑𝑑𝑟 = 0 then goto L𝑡𝑎𝑟𝑔𝑒𝑡 else goto L𝑖+1.

More specifically, the (green) register address and the (blue) branch target address mean the instruction semantics

are

if R2 = 0 then goto L5 else goto L𝑖+1 ,

i.e., if register 2 equals 0 then goto instruction 5, else goto instruction 𝑖 + 1.

� S186. Once fetched, the instruction 𝑖𝑛𝑠𝑡 = 100111001(2) is provided as input to the decoder: based on the

implementation given, the decoder will therefore produce

• 𝑜𝑝 = 0(10) because 𝑖𝑛𝑠𝑡8,···6 = 100(2) = 4(10),

• 𝑤𝑟 = 1(10) because 𝑖𝑛𝑠𝑡8,···6 = 100(2) = 4(10),

• 𝑎𝑑𝑑𝑟 = 3(10) because 𝑖𝑛𝑠𝑡5,···4 = 11(2) = 3(10),

• 𝑡𝑎𝑟𝑔𝑒𝑡 = 9(10) because 𝑖𝑛𝑠𝑡3,···0 = 1001(2) = 9(10),

• 𝑗𝑚𝑝 = 0(10) because ¬𝑖𝑛𝑠𝑡8 ∧ 𝑖𝑛𝑠𝑡7 ∧ ¬𝑖𝑛𝑠𝑡6 = 0 ∧ 0 ∧ 1 = 0,

• ℎ𝑎𝑙𝑡 = 0(10) because ¬𝑖𝑛𝑠𝑡8 ∧ 𝑖𝑛𝑠𝑡7 ∧ 𝑖𝑛𝑠𝑡6 = 0 ∧ 0 ∧ 0 = 0.

as output. Looking then at the data- and control-path to assess how these outputs are used to execute the

instruction, we conclude that

• since 𝑎𝑑𝑑𝑟 = 3(10), the register R3 is read from,

• since 𝑜𝑝 = 0(10), this value is discarded and a 0 output by the multiplexer is written into register R′,
• since 𝑤𝑟 = 1(10) register R′ is written into register R3,

• since ℎ𝑎𝑙𝑡 = 0(10) the counter machine does not halt,

• since 𝑗𝑚𝑝 = 0(10), the program counter is incremented as normal (i.e., not set to 𝑡𝑎𝑟𝑔𝑒𝑡, which in fact is unused).

In general then, this instruction will writes 0 into register R𝑎𝑑𝑑𝑟 ; given 𝑎𝑑𝑑𝑟 = 3 here,

L𝑖 : R3 ← 0 then goto L𝑖+1

is therefore the correct semantics.

� S187. a Given the information provided and not provided in the question, we need to base our solution on some

assumptions. For example, assume that the 𝑖-th configuration

𝒞𝑖 = (𝑙 , sp)

is such that the 0-th element captures the current label (cf. program counter) and the 1-st element captures

the stack pointer; using this we can define the initial configuration as 𝒞0 = (0, 5) and memory content as

MEM = ⟨𝑎, 𝑏, 𝑐, 𝑑, 0, 0, 0, 0, 0, . . .⟩, and

push(sp, 𝑥) ↦→ MEM[sp] ← 𝑥 ; sp← sp + 1

pop(sp) ↦→ sp← sp − 1 ; 𝑥 ← MEM[sp] ; returnx

Using this starting point, we can then produce a trace which reflects execution of the program:

• ld 0 is translated to 𝑡0 ← MEM[0] = 𝑎 ; push(sp, 𝑎), which, when applied to 𝒞1, yields 𝒞2 = (1, 6) and

MEM = ⟨𝑎, 𝑏, 𝑐, 𝑑, 0, 𝑎, 0, 0, 0, . . .⟩.
• ld 1 is translated to 𝑡0 ← MEM[1] = 𝑏 ; push(sp, 𝑏), which, when applied to 𝒞2, yields 𝒞3 = (2, 7) and

MEM = ⟨𝑎, 𝑏, 𝑐, 𝑑, 0, 𝑎, 𝑏, 0, 0, . . .⟩.
• add is translated to 𝑡0 ← pop(sp) = 𝑏 ; 𝑡1 ← pop(sp) = 𝑎 ; push(𝑎 + 𝑏) which, when applied to 𝒞3, yields

𝒞4 = (3, 6) and MEM = ⟨𝑎, 𝑏, 𝑐, 𝑑, 0, 𝑎 + 𝑏, 𝑏, 0, 0, . . .⟩.
• ld 2 is translated to 𝑡0 ← MEM[2] = 𝑐 ; push(sp, 𝑐), which, when applied to 𝒞4, yields 𝒞5 = (4, 7) and

MEM = ⟨𝑎, 𝑏, 𝑐, 𝑑, 0, 𝑎 + 𝑏, 𝑐, 0, 0, . . .⟩.
• ld 3 is translated to 𝑡0 ← MEM[3] = 𝑑 ; push(sp, 𝑑), which, when applied to 𝒞5, yields 𝒞6 = (5, 8) and

MEM = ⟨𝑎, 𝑏, 𝑐, 𝑑, 0, 𝑎 + 𝑏, 𝑐, 𝑑, 0, . . .⟩.
• sub is translated to 𝑡0 ← pop(sp) = 𝑑 ; 𝑡1 ← pop(sp) = 𝑐 ; push(𝑐 − 𝑑) which, when applied to 𝒞6, yields

𝒞7 = (6, 7) and MEM = ⟨𝑎, 𝑏, 𝑐, 𝑑, 0, 𝑎 + 𝑏, 𝑐 − 𝑑, 𝑑, 0, . . .⟩.

git # b282dbb9 @ 2025-09-03 100

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

• mul is translated to 𝑡0 ← pop(sp) = 𝑐 − 𝑑 ; 𝑡1 ← pop(sp) = 𝑎 + 𝑏 ; push((𝑎 + 𝑏) · (𝑐 − 𝑑))which, when applied to

𝒞7, yields 𝒞8 = (7, 6) and MEM = ⟨𝑎, 𝑏, 𝑐, 𝑑, 0, (𝑎 + 𝑏) · (𝑐 − 𝑑), 𝑐 − 𝑑, 𝑑, 0, . . .⟩.
• st 4 is translated to 𝑡0 ← pop(sp) = 𝑎 + 𝑏 · 𝑐 − 𝑑 ; MEM[4] ← 𝑎 + 𝑏 · 𝑐 − 𝑑 which, when applied to 𝒞8, yields

𝒞9 = (8, 5) and MEM = ⟨𝑎, 𝑏, 𝑐, 𝑑, (𝑎 + 𝑏) · (𝑐 − 𝑑), (𝑎 + 𝑏) · (𝑐 − 𝑑), 𝑐 − 𝑑, 𝑑, 0, . . .⟩.
So, using the instruction semantics listed, the program will therefore compute 𝑟 = (𝑎 + 𝑏) · (𝑐 − 𝑑), and store 𝑟 in

memory at address 4.

b Given the information provided and not provided in the question, we need to base our solution on some

assumptions. For example, assume that the 𝑖-th configuration

𝒞𝑖 = (𝑙 , sp)

is such that the 0-th element captures the current label (cf. program counter) and the 1-st element captures

the stack pointer; using this we can define the initial configuration as 𝒞0 = (0, 5) and memory content as

MEM = ⟨𝑎, 𝑏, 𝑐, 𝑑, 0, 0, 0, 0, 0, . . .⟩, and

push(sp, 𝑥) ↦→ MEM[sp] ← 𝑥 ; sp← sp + 1

pop(sp) ↦→ sp← sp − 1 ; 𝑥 ← MEM[sp] ; returnx

Using this starting point, we can then produce a trace which reflects execution of the program:

• ld 0 is translated to 𝑡0 ← MEM[0] = 𝑎 ; push(sp, 𝑎), which, when applied to 𝒞1, yields 𝒞2 = (1, 6) and

MEM = ⟨𝑎, 𝑏, 𝑐, 𝑑, 0, 𝑎, 0, 0, 0, . . .⟩.
• ld 1 is translated to 𝑡0 ← MEM[1] = 𝑏 ; push(sp, 𝑏), which, when applied to 𝒞2, yields 𝒞3 = (2, 7) and

MEM = ⟨𝑎, 𝑏, 𝑐, 𝑑, 0, 𝑎, 𝑏, 0, 0, . . .⟩.
• st 0 is translated to 𝑡0 ← pop(sp) = 𝑏 ; MEM[0] ← 𝑏 which, when applied to 𝒞3, yields 𝒞4 = (3, 6) and

MEM = ⟨𝑏, 𝑏, 𝑐, 𝑑, 0, 𝑎, 𝑏, 0, 0, . . .⟩.
• st 1 is translated to 𝑡0 ← pop(sp) = 𝑎 ; MEM[1] ← 𝑎 which, when applied to 𝒞4, yields 𝒞5 = (4, 5) and

MEM = ⟨𝑏, 𝑎, 𝑐, 𝑑, 0, 𝑎, 𝑏, 0, 0, . . .⟩.
So, using the instruction semantics listed, the program will therefore swap the values of 𝑎 and 𝑏.

Part IX: Hardware test and debug

� S188. Based on the cited evidence, we find that

𝑥 = 50(16) ↦→ 0 1 0 1 0 0 0 0

𝑦 = 56(16) ↦→ 0 1 0 1 0 1 1 0 +
𝑐 = 0 1 0 1 0 0 0 0 0

𝑟′ = 𝐴6(16) ↦→ 1 0 1 0 0 1 1 0

𝑟 = 86(16) ↦→ 1 0 0 0 0 1 1 0

so clearly the correct output 𝑟′ = 𝑥 + 𝑦 = 𝐴6(16) does not match the observed output 𝑟 = 86(16).
The first description cannot be correct: if it were Andy would observe that 𝑟0 = 𝑥0 ⊕ 𝑦0 ⊕ 𝑐0 = 1 ⊕ 0 ⊕ 0 = 1, but

does not. The second description cannot be correct: if it were Andy would observe that 𝑟1 = 0, but does not. The

third description cannot be correct: if it were Andy would observe that because 𝑐3 = (𝑥2 ∨ 𝑦2) ∨ ((𝑥2 ⊕ 𝑦2) ∨ 𝑐2) =
(0∨ 1) ∨ ((0 ⊕ 1) ∨ 0) = 1 it follows that 𝑟3 = 𝑥3 ⊕ 𝑦3 ⊕ 𝑐3 = 0 ⊕ 0 ⊕ 1 = 1, but does not. The fifth description cannot

be correct: if it were Andy would observe that because 𝑐7 = 0 it follows that 𝑟7 = 𝑥7 ⊕ 𝑦7 ⊕ 𝑐7 = 0 ⊕ 0 ⊕ 0 = 0, but

does not.

This leaves the forth description as the only one consistent with the evidence available: since 𝑐5 = (𝑥4 ∧ 𝑦4) ∧
((𝑥4 ⊕ 𝑦4) ∧ 𝑐4) = (1 ∧ 1) ∧ ((1 ⊕ 1) ∧ 0) = 0 Andy observes 𝑟5 = 𝑥5 ⊕ 𝑦5 ⊕ 𝑐5 = 0 ⊕ 0 ⊕ 0 = 0 which is a mismatch.

� S189. Since 𝑛 is large, exhaustive search through all 𝑥, 𝑦 and 𝑧 is not possible; the approach must therefore be

heuristic, with the aim of a high coverage level in order to achieve the highest confidence possible (trying many

not not all possibilities). There are plenty of reasonable answers, two of which are as follows:

a Pre-compute many 𝑟 based on random selections of 𝑥, 𝑦 and 𝑧 using a second, known-correct device (e.g., do it

in software on a processor you have access to). These act as test vectors: feed each set of 𝑥, 𝑦 and 𝑧 to the circuit

as input, and compare the output with the known-correct 𝑟.

b Use a BIST-type approach, by generating many random 𝑥 and 𝑦 and using the circuit to compute a result with

known arithmetic properties, e.g., test whether

((𝑥 + 𝑦) − 𝑥) − 𝑦 ?

= 0.

git # b282dbb9 @ 2025-09-03 101

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S190. Ignoring any carry-in for the adder, two examples are as follows:

a By selecting 𝑥 = 0000(2) and 𝑦 = 0000(2) as input, we can test whether 𝑟
?

= 0000(2): if the test fails, e.g., 𝑟 = 0001(2),
this suggests the 𝑟0 is not being driven correctly given 𝑥0 = 0 and 𝑦0 = 0.

b By selecting 𝑥 = 0010(2) and 𝑦 = 0010(2) as input, we can test whether 𝑟
?

= 0100(2): if the test fails, e.g., 𝑟 = 0000(2),
this suggests the carry-out that should occur given 𝑥1 = 1 and 𝑦1 = 1 has not been propagated.

In both cases, failure of the associated test lends weight to the original suspicion. It might then be important

however to repeat the tests (e.g., to characterise the faults as permanent or transient) and potential use other forms

of testing (e.g., improve coverage via an exhaustive set of test vectors) to give a more complete, more confident

outcome.

Part X: Processor design: general

� S191. a All of 1) the number of clock cycles elapsed, 2) the amount of energy consumed, 3) the order that

accesses to main memory are performed, and 4) the number of accesses to main memory performed, depend

on the micro-architecture so could plausibly differ CPU0 and CPU1. For example, the number of accesses to

main memory performed might depend on the choice to use or not use cache memory in CPU0 and CPU1; the

number of clock cycles elapsed might depend on the choice to use or not use pipelining in CPU0 and CPU1. In

contrast, the number of instructions executed will likely remain the same: the same 𝑀 is executed by CPU0 and

CPU1, and, to remain compliant with the semantics of the ISA, one typically expects all instructions in 𝑀 to be

executed.

b All of 1) the amount of memory used to store data, 2) the amount of memory used to store instructions, 3)

the content of memory before execution, and 4) the content of memory after execution, depend on 𝑀 and/or

the ISA; given the same 𝑀 is executed by both CPU0 and CPU1, they will likely remain the same. In contrast,

the average Cycles Per Instruction (CPI) depends on the micro-architecture, so could plausibly differ CPU0 and

CPU1.

� S192. The correct order is: fetch, decode, execute, write-back.

� S193. Access to data memory, i.e., loading data from memory, is typically a task performed during execution or a

dedicated memory access phase. Incrementing the program counter is typically associated with instruction fetch

though this is sometimes performed in the decode phase. Thus, the first and last tasks (and possibly the third) are

most associated with instruction decode: loading operands from the register file prepares register operands for

execution, sign extension prepares immediate operands by expanding them from their encoded form into 𝑤-bit

signed values.

� S194. The instruction and data memories can be built in different ways. For example one might remove logic

associated with store operations from the instruction memory, or allow the instruction memory to have a

different resolution (i.e., hold different sized values). This permits the designer to capitalise on differences use

cases and satisfy different metrics for quality (e.g., area, power consumption or performance).

The instruction and data memories can be accessed in parallel. For example, in order to reduce the time taken to

complete a given fetch-decode-execution cycle, the processor might attempt to fetch the next instruction at the

same time as executing the current one. The fact that there are two memories (and hence two memory interfaces)

allows this, whereas in a “pure” stored program architecture one has to perform the accesses in sequence.

Separation of instructions and data can prevent self-modifying programs. Example problems that stem from self-

modifying programs include security threats; these result from the ability for an attacker to alter the program

at run-time in a way the programmer did not intend.

Part XI: Processor design: Instruction Set Architecture (ISA)

� S195. The option that stands out as unlikely to be included in the ISA is execution latency. This is essentially a

performance metric, measuring how long, e.g., number of cycles, an instruction takes to execute. As a result, it is a

property of the micro-architecture not the ISA. Put another way, since the ISA is an interface that allows flexibility

wrt. the micro-architectural implementation, it is unlike the former would include such a measure: doing so

would constrain the later, reducing said flexibility.

git # b282dbb9 @ 2025-09-03 102

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S196. Some of the statements describe other ways to classify a branch; for example, the last statement describes

a conditional branch. Some of the statements are nonsense; for example, the term “relatively far” is subjective so

has no clear meaning in this context.

The semantics of a relative branch instruction can be written as

PC← PC + 𝑥,

st. the branch target (i.e., new program counter), is an offset from the current program counter value. The question

does not specify whether the offset 𝑥 is an immediate, but, either way, the branch target is clearly dependant on

the current program counter value.

� S197. Clearly is must be possible for PC to point at any instruction in memory. There would be 2
32

addressable

bytes in the specified 32-bit address space, but 2
30

addressable instructions as a result of the requirement for

instructions to be aligned. As such, one could argue a 30-bit PC will suffice: since the address 𝑥 of an instruction

is required to satisfy 𝑥 ≡ 0 (mod 4), due to their fixed 32-bit (or 4-byte) length, the 2 LSBs of the full 32-bit PC will

always be 0 and so need not be stored in a D-type latch.

� S198. The correct option is the one related to behaviour vs. function: the ISA cannot specify behavioural

properties of micro-architectures that implement it, so cannot, for example, specify the energy consumed by

execution of any instruction (division included). The reason for this boils down to the by-design separation of

design (the ISA) from implementation (the micro-architecture), which allows flexibility in the latter. For example,

one micro-architecture might focus on minimising instruction execution latency at the expense of increased

energy consumption, whereas another might do the opposite: the former might be intended for server-class

micro-processors, whereas the latter might be intended for embedded-class micro-processors. To support this, the

ISA cannot assume or dictate one or the other. Put another way, and for example, it can specify what execution of

a division instruction means, but not how that meaning is

� S199. For 16 general-purpose registers, 4-bit register addresses would be required since 2
4 = 16; 3 such addresses

are required by the arithmetic instructions, meaning 3 · 4 = 12 bits in total. As a result, there are 16 − 12 = 4 bits

remaining for an opcode: this suggests the ISA specification can include a maximum of 2
4 = 16 such arithmetic

instructions. In reality of, actually using this maximum makes little sense: there would be no encoding space left

to support other instruction classes (e.g., memory access).

� S200. The RHS of the diagram, after execution of the instruction, shows:

• The program counter, i.e., GPR[15], has incremented by 4, i.e., 1 instruction, st. it has the value 00000100(16) =
256(10). Therefore, the instruction cannot have been an unconditional branch to address 100(10) = 00000064(16).

• The memory contents shown has not changed. Therefore, the instruction cannot have been a store of GPR[0]
(irrespective of the addressing mode).

• Although GPR[2] = 00000086(16) = 134(10) is equal to the sum of GPR[1] = 00000082(16) = 130(10) and GPR[2] =
00000004(16) = 4(10), the contents of GPR[0] has also changed. Therefore, the instruction cannot have been an

addition.

• GPR[2] and GPR[1] are not equal either before or after the instruction is executed. Therefore, the instruction

cannot have been a move of GPR[1] into GPR[2].
The remaining instruction ldrh r0, [r1], #4 is a load, with some specific features: 1) it loads a (zero extended)

16-bit half-word, and 2) it uses an auto-indexed addressing mode st. the address in GPR[1] is (post-)incremented

by 4(10). These facts match the state of both general-purpose registers and memory, so is the correct answer.

� S201. If the number of general-purpose registers is halved, then the number of bits required for each register

address is decreased by one: before there are 32 general-purpose registers requiring a 5-bit address, whereas

afterwards there are 16 general-purpose registers requiring a 4-bit address. This change leads to there being 3 and

2 unused bits in the R- and I-type formats respectively.

Some of the statements cannot be true, and some could be but are not likely to be true. We can consider the

statements one-by-one:

• There could be a greater number of R- or I-type instructions. This is unlikely, however, because it implies the

opcode field will become unaligned between fields. Either way, the “must” term is too strong: there is no

requirement for this to be the case, even if it were possible.

git # b282dbb9 @ 2025-09-03 103

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

• There could be a greater number of R-type instructions, but the 3 unused bits would allow at most 8 times as

many.

• MIPS32 uses a fixed-length encoding: based on this, no format can be larger or smaller than another, meaning

it would not be viable for R-type instructions to be smaller (irrespective of how much).

As such, the final statement is correct: there are 2 unused bits in the I-type instruction format, so the 𝑖𝑚𝑚 field

could indeed by 2 bits larger (so 17 bits afterwards, vs. 15 bits before).

� S202. Classifying any ISA in absolute terms can be difficult, and open to opinion and debate. However, this

particular case is fairly clear. In short, this is a load instruction which uses a fairly complex addressing mode.

Rather than including instructions with simple semantics which can be used as a “building‘block” to realise

more complex functionality, that functionality is combined into this single instruction. For example the same

functionality could realised via

GPR[𝑡] ← MEM[GPR[𝑦]]
GPR[𝑡] ← GPR[𝑡] + GPR[𝑧]
GPR[𝑥] ← MEM[GPR[𝑡]]

instead, and hence a simpler indirect addressing mode. However, that same complexity allows a higher code

density because fewer instructions (i.e., 1 vs. 3) are required. Finally, note that the instruction performs two

memory accesses. Since the value loaded by the first is used as an address in the second, these accesses must be

done in sequence; this fact would suggest the instruction has a multi-cycle execution latency. Overall this suggests

that the ISA, or this instruction at least, is best classified as CISC.

� S203. It is of course hard to capture the features of an entire ISA using one instruction. However, the central idea

is that the two instruction differ in one crucial respect: although both perform an addition, instruction 2. uses R1

as source and R0 as destination whereas instruction 1. uses R0 as source and destination. As a result, instruction 2.

clearly represents a register machine (or 3-operand machine: the operands are R0, R1, and 10), whereas instruction

1. could represent a register machine (or 2-operand machine: the operands are R0 and 10) or an accumulator

machine (or 1-operand machine: the operand is 10). The most precise options among those available is therefore

such that instruction 2. represents a register machine whereas instruction 1. represent an accumulator machine.

� S204. The explanation about overflow is nonsense. Beyond that, some other explanations need an argument

or evidence which is hard given the information available. For example, one could argue about how often each

instruction is used and perhaps use of addi is more frequent than subi. But claiming there is never a need for

subi seems too strong; either way, we have no evidence for it. Likewise, there are unused opcodes in MIPS32: by

inspecting the ISA specification, for example, it is clear that some regions of the opcode space marked as reserved

and so could have been allocated to subi. Even without the ISA itself, using the entire opcode space, while not

impossible, is at least unlikely.

However, both explanations related to semantic equivalence are more clear-cut. We can see that

GPR[𝑥] ← GPR[𝑦] − 𝑖𝑚𝑚 ↦→
{

GPR[𝑡] ← GPR[0] + 𝑖𝑚𝑚
GPR[𝑥] ← GPR[𝑦] − GPR[𝑡]

and

GPR[𝑥] ← GPR[𝑦] − 𝑖𝑚𝑚 ↦→ GPR[𝑥] ← GPR[𝑦] + (−𝑖𝑚𝑚)

for example. Given the latter equivalence, which is correct due to the properties of two’s-complement representa-

tion, we can see that subi and addi are the same instruction: the difference is that the programmer either uses the

immediate as is for addi, or negates it for subi. Versus the former equivalence, this seems the more plausible ex-

planation because it both avoids increasing the number of instructions (and probably execution latency therefore)

and use of any temporary registers (i.e., GPR[𝑡]).

� S205. The question here is basically “which instructions can update PC”, and the answer is all the instructions.

For some of the options, the reason is obvious:

• j r3 is an unconditional, computed branch, whose semantics are

PC← GPR[3].

So if GPR[3] = 𝑥, execution of it would satisfies the requirement that PC = 𝑥 afterwards.

git # b282dbb9 @ 2025-09-03 104

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

• mv pc, r7 is a register-to-register move, whose semantics are

PC← GPR[7].

So if GPR[7] = 𝑥, execution of it would satisfies the requirement that PC = 𝑥 afterwards.

The remaining option is therefore add r15, r15, r2, whose semantics are

GPR[15] ← GPR[15] + GPR[2].

However, ARMv7-A exposes PC as GPR[15]: they are the same register. Therefore, the semantics are actually

PC← PC + GPR[2].

So if GPR[2] = −8, execution of it would also satisfy the requirement that PC = 𝑥 afterwards: this is because

adding −8 “undoes” the act of incrementing PC (i.e., adding +8) during the fetch stage.

� S206. The question itself is quite verbose. This is intentional, in the sense that the challenge involved is broad

and shallow as a result (vs. narrow and deep). Put another way, there is a lot of information to absorb; however,

neither it nor the steps involved in producing a solution are very complicated.

First, there are 120 instructions that we know of, so, given 2
7 = 128 > 120 > 64 = 2

6 , we need at least a 7-bit

opcode to identify them. Next, each operand is comprised of 1) an immediate-based base, plus 2) a register-based

offset. Since the are 64 · 1024 = 2
16

addressable bytes in the memory, we need a 16-bit base; since there are 16 = 2
4

registers we need a 4-bit offset. Overall then, we need at least

7 + 3 · (16 + 4) = 7 + 3 · 20 = 67

bits to encode each 3-address instruction.

� S207. a A RISC-style ISA is usually comprised of primitive instructions with simple “building-block” semantics,

from which complex functionality (i.e., solutions) can be synthesised. This approach aligns with that of a

load-store architecture, in which only a small set of dedicated instructions can access operands in memory: all

others instructions can access operands held in registers only. A smaller number of less complex addressing

modes is typical. As such, this statement can be aligned with the CISC design philosophy where an alternative,

register-memory architecture (allowing operands held in a mixture of registers and memory), may be preferred:

a larger number of more complex addressing modes is possible.

b In full, Wulf claims it is better for an ISA to “provide good primitives from which solutions to code generation
problems can be synthesized than to provide the solutions themselves”. This statement can be aligned with the RISC

design philosophy: a RISC-style ISA is usually comprised of primitive instructions with simple “building-block”

semantics, from which complex functionality (i.e., solutions) can be synthesised. In contrast, a CISC-style ISA

might provide said functionality directly as an instruction.

� S208. The 16-bit immediate is left-shifted by 2 bits, i.e., padded with 2 least-significant zero bits. The reason for

this is to ensure the offset is 4-byte (or 32-bit) aligned, meaning the new PC is always a multiple or 4 and thus

points to an instruction (vs. say part way through an instruction). It is then sign-extended from 18 to 32 bits, so

that adding it to PC yields the intended result.

Either way, recall that an 𝑛-bit signed integer represented by using two’s-complement will be in the range

−2
𝑛−1 ≤ 𝑖𝑚𝑚 < +2

𝑛−1 − 1.

So, in this case, where 𝑛 = 16, we know

−32768 ≤ 𝑖𝑚𝑚 < +32767

−131072 ≤ (𝑖𝑚𝑚 ≪ 2) < +131071

where the former describes the range of instructions, whereas the latter describes the range of bytes: given that

131072 = 128 · 1024, a reasonable description of the latter range would therefore be ±128KiB.

git # b282dbb9 @ 2025-09-03 105

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

� S209. Two stages of the fetch-decode-execute cycle are clearly relevant to the question, namely execute and fetch.

First, this instruction is a zero-extended, half-word (or rather 16-bit), post-indexed load: the semantics are

GPR[0] ← ext
32

0
(MEM[GPR[1]]2)

GPR[1] ← GPR[1] + GPR[2]

So, the ISA suggests 2 bytes will be transferred during execution. There is a caveat, in the sense that the micro-

architecture may opt to, e.g., perform a word-sized transfer then extract the half-word from the result; in terms of

the ISA, however, implementation detail of this type is not considered. Second, modulo extensions such as Thumb

(noting that this post-indexed addressing mode is only available in the 32-bit ARM encoding), ARMv7A uses a

fixed-length, 32-bit instruction encoding. As such, fetching the instruction in the first place implies transfer of 4

bytes. So, across the entire fetch-decode-execute cycle, the ISA suggests that 2 + 4 = 6 bytes will be transferred

between the micro-processor and memory.

� S210. A pointer is just an address, so the fact that

sizeof(p) = 8

means each addresses is 8 bytes or 64 bits. As such, the program can access addresses ranging from 0 to 2
64 − 1;

the total number of addressable elements (bytes in this case) is therefore 2
64

.

� S211. For clarity, imagine that MEM[101] and MEM[102] contain the variables a and b, whose initial values are

𝛼 ≥ 0 and 𝛽 ≥ 0 respectively; MEM[100] contains the variable t, which represent some uninitialised, intermediate

storage.

a Based on this, we can produce a trace of execution

PC = 0 ; sbn 100, 100, 0 ↦→ t← t − t = 0

PC← PC + 1 = 1

PC = 1 ; sbn 100, 101, 2 ↦→ t← t − a = 0 − 𝛼 = −𝛼
PC← 2 = 2

PC = 2 ; sbn 102, 100, 3 ↦→ b← b − t = 𝛽 − −𝛼 = 𝛽 + 𝛼
PC← PC + 1 = 3

PC = 3

...

As such, one can see that the program adds the content of a (or MEM[101]) to b (or MEM[102]) using t (or

MEM[100]) for intermediate storage; the result is stored in b (or MEM[102]).
b Based on this, we can produce a trace of execution

PC = 0 ; sbn 100, 100, 0 ↦→ t← t − t = 0

PC← PC + 1 = 1

PC = 1 ; sbn 100, 101, 2 ↦→ t← t − a = 0 − 𝛼 = −𝛼
PC← 2 = 2

PC = 2 ; sbn 102, 102, 0 ↦→ b← b − b = 𝛽 − 𝛽 = 0

PC← PC + 1 = 3

PC = 3 ; sbn 102, 100, 4 ↦→ b← b − a = 0 − −𝛼 = 𝛼
PC← PC + 1 = 4

PC = 4

...

As such, one can see that the program copies the content of a (or MEM[101]) into b (or MEM[102]) using t (or

MEM[100]) for intermediate storage.

� S212. There are basically 3 decision points here: 1) whether the instruction is a load or a store, 2) what the access

granularity is (e.g., 8-, 16-, or 32-bit, meaning byte, half-word, or word), and 3) what the address mode is (i.e., how

the effective address is formed).

git # b282dbb9 @ 2025-09-03 106

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

a Re. 1), it is clear that MEM is the same before and after execution of the instruction whereas GPR has changed:

this instruction is therefore more likely to be a load than a store. Re. 2), use of ARM-style assembly language

implies the target register of the load is GPR[0]. However, the value loaded, i.e., 39 does not appear in MEM:

this suggests an 8-bit access granularity was not used. The next option would be 16-bit, and, in this case, we

find that

(MEM[5] ≪ 8) + (MEM[4] ≪ 0) = (2 ≪ 8) + (7 ≪ 0) = 32 + 7 = 39.

As such, a 16-bit load using the effective address 4 could result in the value 39 we find in GPR[0]. Re. 3), the

question is basically how the effective address 4 was computed using GPR[0], GPR[1], and GPR[2]. Assuming

no implicit access to other registers, the only way to do that is GPR[1] + GPR[2] = 3 + 1 = 4. But GPR[2] is also
updated, from 1 to 3. Using both facts, we can conclude that the instruction is using an auto-indexed addressing

mode: as well as the load into GPR[0], GPR[2] is incremented by 2 (matching the access granularity). As such,

this is an auto-indexed, 16-bit load: we could describe the semantics more formally as

GPR[0] ← MEM[GPR[1] + GPR[2]]2; GPR[2] ← GPR[2] + 2.

b Re. 1), it is clear that MEM is the same before and after execution of the instruction whereas GPR has changed:

this instruction is therefore more likely to be a load than a store. Re. 2), use of ARM-style assembly language

implies the target register of the load is GPR[0]. The only occurance of 7 in MEM is at address 4: the load could

have used an 8-bit access granularity, therefore. No other options are possible. For example, a 16-bit load from

address 4 implies MEM[5] would also be accessed; doing so would results in

(MEM[5] ≪ 8) + (MEM[4] ≪ 0) = (2 ≪ 8) + (7 ≪ 0) = 32 + 7 = 39.

Re. 3), the question is basically how the effective address 4 was computed using GPR[0], GPR[1], and GPR[2].
Assuming no implicit access to other registers, the only way to do that is GPR[1] + GPR[2] = 4 + 0 = 4. Note

that only GPR[0] changes, which basically rules out use of an auto-indexed addressing mode (which would

typically aim to update either GPR[1] and/or GPR[2] somehow). As such, this is an indexed, 8-bit load: we

could describe the semantics more formally as

GPR[0] ← MEM[GPR[1] + GPR[2]]1.

� S213. Given a predicate 𝑝 and an instruction 𝐼, execution via predicated execution is such that

if 𝑝 = true then 𝐼 else nop.

As such, clearly the semantics of nop remain unchanged: we end up with

if 𝑝 = true then nop else nop

and so execute nopwhether or not 𝑝 = true.

� S214. a false. A load-store architecture might be termed register-register, because it divides instructions into

two classes: these are storage-related, i.e., load a value from memory into the general-purpose register file or

store a value into memory from the general-purpose register file, and compute-related, e.g., arithmetic on values

in the general-purpose register file. So, in a register-register architecture we can say that 1) only storage-related

instruction access memory, and 2) storage-related instructions are divided strictly cases which load from or
store into memory. If an instruction were to both load from and store into memory, it would have semantics

similar to MEM[𝑥] ← 𝑓 (MEM[𝑦]) and so the underlying architecture would have to be memory-memory or

register-memory. Put another way, this differs from a register-register architecture which would not support

instructions with such semantics.

b false. To show why, it suffices to offer a counter-example: glossing over the impact on flags (since the question

refers to the state of r0 alone), instructions such as xor r0, r0, r0 and sub r0, r0, r0 suffice.

c false. It is important to distinguish between 1) has a general purpose, and 2) is addressable as a general-purpose

register. The program counter does have a special purpose, i.e., to keep track of the next instruction to execute,

and so is not an instance of 1). However, this purpose may or may not be realised via 2). Put another way, in

some ISAs one can explicitly read from or write into PC by using it in a general-purpose instruction in the same

way as some GPR[𝑖]: an example would be ARMv7-A, where

mov rd, r15 ↦→ GPR[𝑟𝑑] ← PC

reads PC, because GPR[15] acts as an alias for it. In other ISAs this is not possible. Instead one must implicitly
read from or write into PC by using a special-purpose instruction: an example would be MIPS, where

jalr rs ↦→ GPR[31] ← PC + 4; PC← GPR[𝑟𝑠].
reads and writes PC, even though it is not referenced as an operand.

git # b282dbb9 @ 2025-09-03 107

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

d true. One pitfall here is interpreting micro-architecture as (physical) hardware, i.e., a design which is manufac-

tured. Then, altering a specific instance of that hardware may be quite tough of course: hardware is typically

immutable, modulo use of techniques such as micro-code. So it might seem that altering the ISA, which is just a

specification of course, would be “easier”.

But the question specifically refers to the micro-architectural design. By definition, an ISA is exposed to software

(or the developer of it) whereas a micro-architecture design is abstracted from software (or the developer of it),

i.e., the implementation detail is “hidden” behind the interface-like ISA. As such, altering an ISA potentially

implies alteration of software: to be executed as intended the software must comply with the ISA, so, if the

ISA is altered, the software might need to be altered to match. The implication is wider, however, because

other components, e.g., compilers, operating systems, etc., might also need to be altered for the same reason.

In contrast, altering a micro-architecture design implies no alteration of software: provided both it and the

software still comply with the same ISA, the software will be executed correctly.

Another way of looking at this is that altering an ISA implies that one must alter a micro-architecture which

implements it (so it remains compliant): the former must be at least as hard as the latter therefore.

e true. The reason for this is fairly simple. We know the program is stored in memory; a von Neumann architecture

implies use of a unified memory, storing both data and instructions. Execution of each instruction demands

the micro-processor completes a fetch-decode-execute cycle: this means it will 1) fetch the instruction, i.e, load

from and increment the Program Counter (PC) via IR← MEM[PC] and PC← PC+ 1, 2) decode the instruction,

i.e., decide what IR means, then 3) execute the instruction, i.e., do what IR means. Therefore, execution of each

instruction requires at least one access to memory (to load said instruction, during the fetch stage), and, as a

result, the latency of each fetch-decode-execute cycle is limited by the latency of that access. Put another way,

the the number of instructions it executes per unit of time is limited by how quickly those instructions can be

fetched (and hence the access latency of memory).

f false. One could view doubling the word size as increasing the “amount of work done” by execution of

instructions that operate on word-sized values: those values are larger, so, in a sense, more computation is being

done.

In that sense, the execution latency of some programs might be reduced. An example is computation using

multi-precision integers: given a word size 𝑤 these are 𝑛-bit integers for 𝑛 > 𝑤, and so too large to represent

using one word, represented instead by using a sequence of 𝑚 = 𝑛/𝑤 words. Addition of two such integers will

take 𝑂(𝑚2) steps: larger 𝑤 allows a smaller 𝑚, and so fewer steps therefore. But this is not true of all programs.

An example might be a program which sorts an array of 𝑤-bit integers, e.g., by using the quicksort algorithm.

For an 𝑚-element array, the number of steps will be 𝑂(𝑚 log𝑚): this means 𝑚 (the number of values), not 𝑤
(their size) is the central factor here.

� S215. Since a variable-length scheme allows instructions that can grow and shrink to suit the number of operands,

it is easy to conclude the first statement is true. It is almost certainly true that a fixed-length scheme will imply less

complex instruction decoding; a simple example is the fact there will typically only ever be one access to memory

per-fetch (versus multiple accesses depending on the variable length). Therefore the second statement is also true.

With a fixed-length scheme, 𝑃𝐶 must always point at an address which is some multiple of the instruction length;

a variable-length scheme typically does not have such a restriction. This is only one example, but acts as enough

motivation to conclude the fourth statement is probably true in general. A fixed-length scheme only has a fixed

amount of bits to allocate for an immediate operand, hence it cannot be true it would allow larger operands in

general: the third statement is the incorrect one.

� S216. a An immediate addressing mode allows fixed constants to be encoded within the instruction itself. One

might use such an addressing mode within a C statements such as

a=b+10;

where the instruction would include the register addresses for a and b, and the immediate 10.

b A direct addressing mode is where we pass an address to the memory and get back the value at exactly that

address, i.e., we provide the effective address 𝑥 and get back MEM[𝑥]. This might be used to load a variable

from memory. Considering the statement

a = b + 10;

again, if awere held in memory rather than a register then it might be loaded using a direct addressing mode if
we know the exact address, e.g., if awere global and hence existed within the static data section.

c An indirect addressing mode employs a two-stage process; we pass the effective address 𝑥 and load MEM[MEM[𝑥]]
so the access is like a pointer dereference. That is, if we want to dereference a pointer p which is stored at a

particular address 𝑥 in memory, we first load p from MEM[𝑥] and then dereference the pointer loading from

where it points to; in C this is essentially the expression *p.

git # b282dbb9 @ 2025-09-03 108

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

d Finally, indexed addressing means that the value we get back is located at an address formed from the sum of

a base and an offset. For example we might load from A[10] by accessing MEM[&A + 10], i.e., using &A as the

base and 10 as the offset.

� S217. a The basic idea behind predicated execution is that each instruction as a simple predicate function

associated with it. When the instruction is fetched and is ready to be executed, the predicate function is

evaluated: if it evaluates to true, the instruction is executed, otherwise it is discarded.

Assume the symbols t, x, i and n are allocated the registers GPR[1], GPR[2], GPR[3] and GPR[4]. The ARM

scheme for predicated execution represents a somewhat standard approach: execution of each arithmetic

instruction updates a status register which contains flags that detail whether the result generated a carry (𝐶),

generated an overflow (𝑂), was negative (𝑁) or was zero (𝑍). Each instruction can include a predicate which

allows execution or non-execution based on these flags. As such, we could translate the fragment into the

assembly language style operations:

. . .
GPR[1] ← 0

GPR[3] ← 0

𝑙𝑜𝑜𝑝 : if GPR[3] ≥ GPR[4], 𝑃𝐶 ← 𝑒𝑥𝑖𝑡
GPR[5] ← GPR[2] ≪ GPR[3]
GPR[5] ← GPR[5] ∧ 1

if 𝑍 = false,GPR[1] ← GPR[1] + 1

GPR[3] ← GPR[3] + 1

𝑃𝐶 ← 𝑙𝑜𝑜𝑝
𝑒𝑥𝑖𝑡 : . . .

Two conventional branches have been used to implement the loop: the reasoning is that they transfer control-

flow over a (fairly) large number of dissimilar instructions which might themselves update the status register.

Furthermore, the branches can be fairly accurately predicted using even static techniques so one would not

expect too much of a problem in terms of their preventing effective speculative execution. On the other hand,

the branch over the single instruction update of t is essentially random (for arbitrary x) so branch prediction

is difficult and expensive in relation to the instruction which the change of control-flow is skipping over. As a

result, predicated execution is used to skip the instruction based on the 𝑍 flag which would have been set via

calculation of the conditional expression.

b Roughly speaking, code density refers to the number of instructions (or amount of work done) per-unit of

memory. That is, if we have 100 instructions that fit into 100B of memory the code density is the ratio of the two,

i.e.,
100

100
= 1. If we fit more instructions into our 100B, say 150, then the code density increases to

150

100
= 1.5. Good

code density is viewed as an advantage because it typically reduces the code footprint for programs, i.e., the

amount of memory they consume, or means that instructions are smaller, and hence easier or faster to retrieve.

There are plenty of ways to improve code density. One very involved example is to redesign the ISA so that

each instruction can accomplish more; this is roughly the approach of CISC processors. In this way, since each

instruction performs more useful work, there need be less instructions in total. Another way is to write better

programs, or use a better compiler, that is able to use less instructions to achieve the same high-level goal.

Clearly there is a limit to how successful this can be, but clever programming can often drive the code footprint

underneath some fixed barrier that prevents execution; perhaps the processor has 100kB of memory for example

and the program needs 101kB before one optimises it.

The concept of variable length instruction potentially increases code density at the cost of increased complexity

within the instruction decoding stage. By allowing each instruction to be as long or short as required, instructions

that might normally consume a lot of space because they are forced to be the same length as others, can be

smaller and hence save space.

� S218. First we look at the types of instruction required:

a 0 registers, 1 immediate of 7 bits to store 0 . . . 127 (e.g., LDA).

b 1 registers, 1 immediate of 4 bits to store −8 . . . 7 (e.g., BEZ).

c 2 registers, 0 immediate (e.g., MOV).

d 1 registers, 0 immediate (e.g., NOT, NEG).

e 0 registers, 0 immediate (e.g., NOP).

Given register indicies are representing as 2-bit operands, a possible encoding has 5 instruction types:

a 0xxxxxxx

git # b282dbb9 @ 2025-09-03 109

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

b 10rrxxxx

c 11ccrrrr ↦→ 1100rrrr . . . 1110rrrr
d 1111ccrr ↦→ 111100rr . . . 111110rr
e 111111cc ↦→ 11111100 . . . 11111111
where c represents space for opcodes, x represents space for an immediate and r represents space for register

indicies. From this we can see that there are

• 3 possible instructions with 2 register operands (i.e., the encodings 1100rrrr, 1101rrrr and 1110rrrr),

• 4 possible instructions with 1 register operand (i.e., the encodings 111100rr, 111101rr and 111110rr, and

10rrxxxx), and

• 5 possible instructions with 0 register operands (i.e., the encodings 11111100, 11111101 and 11111110, 11111111,
and 0xxxxxxx).

From this we can start encoding the actual instructions already given:

LDA x ↦→ 0xxxxxxx
MOV R S ↦→ 1100RRSS
NOT R ↦→ 111100RR
NOP ↦→ 11111100
NEG R ↦→ 111101RR
BEZ R x ↦→ 10RRxxxx

As such, we can add

• 2 extra instructions with 2 register operands (since we only use 1 encoding for MOV),

• 1 extra instructions with 1 register operands (since we only use 3 encodings for NOT, NEG and BEZ), and

• 3 extra instructions with 0 register operands (since we only use 2 encodings for LDA and NOP).

The additional instructions should ideally come from the obvious classes: so far we have no load or store

instructions, no add instruction which is quite fundamental, and no comparisons.

� S219. This is quite a vague question and demands that you make (stated) assumptions about anything that is

unclear.

A basic approach is as follows; there are 64 squares on the board so one can encode a board position as a 6-bit

integer. To encode a move, we simply use two such board positions, a source 𝑠 and a target 𝑡 with the meaning

that one moves the piece at board position 𝑠 to board position 𝑡. This is a 12-bit representation which is not too

compact but is quite easy to decode.

To be more compact, we need to be more clever. Firstly, note that the robot keeps track of whose turn it is so to

identify a piece, in some sense we don’t need to encode its colour: this is implicit in whose move it is. Secondly

note that each piece cannot move to an arbitrary board position: the movement rules constrain how many places

it can end up. For example, a king can only move to the squares directly around it: 8 possible moves in total not

64. Drawing a table for the other pieces we find that

Piece Moves log
2
(Moves)

King 8 3

Queen 27 5

Bishop 13 4

Knight 8 3

Rook 14 4

Pawn 4 2

That is, for example, a queen can move in 27 possible ways and we can encode these ways as a 5-bit integer. So,

gathering the different types together we find that there are First we look at the types of instruction required and

find there are four:

a 1 instruction (move queen) with 5-bit operands.

b 4 instructions (move bishop or rook) with 4-bit operands.

c 3 instructions (move king and knight) with 3-bit operands.

d 8 instructions (move pawn) with 2-bit operands.

With four types, we can produce an encoding using 8-bit integers:

a 00cxxxxx ↦→ 000xxxxx . . . 001xxxxx
b 01ccxxxx ↦→ 0100xxxx . . . 0111xxxx

git # b282dbb9 @ 2025-09-03 110

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

c 10cccxxx ↦→ 10000xxx . . . 01111xxx
d 11ccccxx ↦→ 110000xx . . . 011111xx
where c represents space for opcodes, x represents space for an immediate. This is slightly harder to decode but is

much more compact. One can probably form a 7-bit encoding by simply enumerating the possible pieces against

their possible moves and associating an integer with each combination. However, this could be harder to decode

(although this is maybe debatable it one simply has a big look-up table).

� S220. a A fixed length encoding is where each instruction is of the same length; this is an advantage in that the

decode and fetch mechanisms within the processor can be simple and each instruction typically only requires

one access to memory. A variable length encoding allows the instructions to be longer or shorter depending

on how many operands and so on they require. This makes the processor more complex but can potentially

improve the code density of programs.

Following the MIPS32 instruction set architecture, we can define three fixed length instructions formats (which

roughly correspond to the MIPS32 I, R and J formats) as follows:

6 5 5 16
+------+------+------+--------------------+
|opcode| rs | rt | imm | Format #1
+------+------+------+--------------------+

6 5 5 5 5 6
+------+------+------+------+------+------+
|opcode| rs | rt | rd |shamt |funct | Format #2
+------+------+------+------+------+------+

6 26
+------+----------------------------------+
|opcode| imm | Format #3
+------+----------------------------------+

Format #1 is for immediate based memory access instructions and conditional branches, #2 is used for ALU and

register based memory instructions, and #3 is for unconditional jumps. Having three formats is preferable to

more in that fewer formats means less complex instruction decoding, as does fixed width 32-bit formats and

organising the instruction fields so they are aligned; for example the opcode is always the most-significant 6 bits

and the next 5 bits is always a source register operand.

Other advantages include the facility for large immediate values in both branch and ALU instructions; disad-

vantages include a waste of space in some cases which could be put to better use if more information about the

processor requirements was given (for example maybe the space could be used to implement predicate flags for

predicated execution).

b To encode the “add immediate” we would use format #3 from our design; assume that the opcode for this

instruction is 3 and that immediate values are held in two’s-complement form. Thus, the encoded instructions

would look like

GPR[4] ← GPR[8] + 10 ↦→ 000011 01000 00100 0000000000001010(16)
GPR[4] ← GPR[8] − 10 ↦→ 000011 01000 00100 1111111111110110(16)

Notice the subtle sign case of −10 in the sense that we need to encode this as a 15-bit signed value.

c This function computes the population count or Hamming weight of 𝑥, denoted by HW(𝑥) say, i.e., the number

of bits in the binary expansion of 𝑥 that equal one.

One simple way to help the customer achieve good performance in their application is to support this function

in hardware as an ALU operation rather than have them implement it as a C function. We need to expose this

operation to the programmer via the instruction set so that, for example, an instruction of the form pop $1,$2
would take the value in general-purpose register #2, perform the population count operation and write the

result into general-purpose register #1. The customer could then replace every call to the C function with a

single, fast machine instruction.

Of course, an appropriate circuit is required within the ALU to perform the population count operation. A

clocked circuit to do this would roughly mirror the C implementation, but this would take 32 clock cycles to

complete which is still quite slow. A better approach would be to build a combinatorial circuit; the goal with

a such a circuit would be to minimise the critical path so that the operation can complete in one cycle. One

approach would be to construct a binary adder tree which starts (at the leaves of the tree) by adding two bits of

the input together: this gives the number of bits set in that region. Roughly, the circuit computes:

((𝑥0 + 𝑥1) + (𝑥2 + 𝑥3)) · · · ((𝑥28 + 𝑥29) + (𝑥30 + 𝑥31))

so that the end result is the number of bits set to 1. This circuit would have a depth of log
2
(32) = 5 adders where

each need only add together 5-bit numbers.

git # b282dbb9 @ 2025-09-03 111

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

d First note that the memory is byte addressed, thus when we store the 32-bit constant at address 0 we are

actually storing the constituent bytes at addresses 0 . . . 3. Also note that the decimal value 305419896(10) equals

12345678(16).

A little-endian byte ordering convention places the least-significant byte at the lowest address and the most-

significant byte at the highest address; thus one would expect to find the memory to look like

MEM[0] = 78(16)
MEM[1] = 56(16)
MEM[2] = 34(16)
MEM[3] = 12(16)

after the instruction completes. A big-endian byte ordering convention uses the opposite ordering; it places the

least-significant byte at the highest address and the most-significant byte at the lowest address to give

MEM[0] = 12(16)
MEM[1] = 34(16)
MEM[2] = 56(16)
MEM[3] = 78(16)

e If the number of registers is increased from 32 to 64 then one more bit per-register operand will be required to

address them; so each register operand will require 6 bits in an encoded instruction rather than 5. Assuming

that the actual instructions are not changed, this will result in less opcode space in the instruction formats and

hence the instruction set will be able to support less instructions. If the number of registers is decreased from

32 to 16 then one less bit per-register operand will be required to address them and the converse is true: there

will be more space in the instruction formats for the opcode. A larger (or richer) set of instructions (that support

more addressing modes for example) means a given program can probably be shorter. Potentially this means

the program can execute faster, if the micro-architecture can execute all instructions as fast as before, and that

the code density is better. The converse is true of a smaller (or more sparse) set of instructions.

An additional implication for having less registers is that the programmer (or compiler) will be able to keep less

data items in the fast registers and will need to keep more in the slower main memory; this is termed spilling

in the context of compilers. So with less registers there will probably be more memory accesses which result in

worse performance (and visa versa).

� S221. a This is an open-ended question, and many characteristics (as long as they are well motivated and

explained) are viable answers. A limited list of examples is as follows:

• RISC processors typically have an ISA that includes a small set of simple instructions; each instruction can be

executed efficiently (often using pipelining).

• RISC processors typically employ a fixed-length instruction encoding scheme that includes a small number

of formats.

• RISC processors typically have a low Cycles Per Instruction (CPI) rating, but also low code density as a result

of their ISA design.

• RISC processors typically have large general-purpose register files.

• RISC processors typically utilise a small number of simple addressing modes within the ISA, and separate

register-based arithmetic and logic instructions from memory access (i.e., load and store).

b i Various advantages and disadvantages can be stated; in a sense the two options represent a compromise

between efficiency and invasiveness.

For example, explicit access means alteration to the ISA is limited; instructions to transfer the status register to

and from the general-purpose register file are enough since they permit any subsequent computation involving

and update to the content. This means less pollution of the instruction encoding, and hence more space for

other instructions. In contrast the use of implicit access can imply lower overhead, represented for example

by instructions required to load then extract a specific flag from the status register.

ii Examples of other flags included in a typical status register include:

• overflow flag (e.g., to signal when arithmetic overflow occurs, during unsigned integer addition),

• zero, positive and negative flags (to signal when some arithmetic operation produces a zero positive or

negative result, which can be useful for producing comparisons),

• error flags (e.g., signalling conditions such as division by zero).

These are often complemented by additional fields including processor mode (i.e., user or kernel) and config-

uration (e.g., interrupt masks).

git # b282dbb9 @ 2025-09-03 112

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

c i Instead of signalling a carry as an implicit side effect of an instruction, an integer addition for example, add a

second instruction to explicitly generate the carry-out.

For example, imagine an addition instruction of the form

GPR[𝑥] ← GPR[𝑦] + 𝐺𝑃𝑅[𝑧]

implicitly signals a carry by using the status register. If the status register (and hence update) is removed, an

extra instruction of the form

GPR[𝑥] ← (GPR[𝑦] + GPR[𝑧]) / 2
32

could still generate the associated carry, and store it into a general-purpose register. Along similar lines, one

could permit 4-address instructions (two source operands, and two targets rather than one) so as to produce

the sum and carry.

ii This is a tough question, but the idea is as follows:

GPR[6] ← GPR[1] + GPR[2]
GPR[7] ← GPR[6] < GPR[1]
GPR[4] ← GPR[6] + GPR[3]
GPR[8] ← GPR[4] < GPR[6]
GPR[5] ← GPR[7] ∨ GPR[8]

The basic idea is that instructions #1 and #3 perform the actual additions of 𝑥 + 𝑦 and then 𝑐𝑖; each addition is

followed by a comparison, in instructions #2 and #4. Each comparison checks whether the associated addition

caused an overflow: if the output is smaller than one of the inputs, clearly overflow has occurred since this

implies the output has “wrapped around” from a large value to a smaller value. If overflow occurs in either

of the additions, this implies a carry-out overall: instruction #5 stores this, OR’ing the two partial carries

together.

� S222. a i General-purpose registers are accessible for general-purpose tasks: essentially they are under control

of the programmer and used to perform computation and form addresses. Examples in this case are 𝐴 and

𝐵. In contrast, special-purpose registers are used for specific tasks typically under control of the processor.

Examples in this case are the program counter 𝑃𝐶, which is used to specify the next instruction that will be

executed and is automatically incremented during the decode phase.

ii An absolute branch means the branch target is given directly: an absolute branch to 𝑥 means updating 𝑃𝐶 to

𝑥. In contrast, a relative branch means the branch target is formed by adding an offset to the current value of

𝑃𝐶; the idea is that a relative branch to 𝑥 means updating 𝑃𝐶 to 𝑃𝐶 + 𝑥.

b i The first case uses 𝐵, an 8-bit register, as the effective address; as a result, the largest address is the maximum

value 𝐵 can assume, i.e.,

2
8 − 1 = 255.

The second cases uses 𝑖 as the effective address; this needs a bit more thought. Clearly 𝑖 < 2
8

since it needs

to be encoded within the load instruction. The problem is, some space is also required for an opcode (i.e., to

identify this instruction type). The theoretical minimum number of bits needed for such an opcode would be

one, though of course this depends on a variety of other issues; probably it would have to be two or more in

reality. Following this line of reasoning however, the theoretical maximum value 𝑖 can assume (which is also

the largest address) is

2
7 − 1 = 127.

ii Clearly there are a wide variety of approaches: the key thing is good reasoning about both how the instructions

solve the problem, and what the impact is on the processor design (e.g., potential disadvantages). Here are

two examples:

i. The two registers could be combined into one effective address; for example, an instruction with the

semantics

𝐴← MEM[𝐴 + (𝐵 ≪ 8)]
could be included. This essentially allows 𝐴 and 𝐵 to be combined into a single 16-bit address and works a

little like segmented memory model. The largest effective address they can combine to specify is

(28 − 1) + (28 − 1) ≪ 8 = (28 − 1) + (28 − 1) · 28 = 255 + 65280 = 65535.

The advantage is that no extra space is required in the instruction encoding: 𝐴 and 𝐵 can both be implicit

in the instruction type. However, given that the processor only has two registers, one could argue this

approach has to resolve the problem of register pressure. One idea would be to add an extra, dedicated

segment register rather than use 𝐵.

git # b282dbb9 @ 2025-09-03 113

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

ii. The requirement for fixed-length instructions could be replaced to allow variable-length alternatives; this

could allow the use of larger immediate operands. The theoretical maximum in our original example was

a 7-bit immediate; if we encode the load instruction as two 8-bit instruction parts rather than one, this

increases the maximum to 15 bits. The largest effective address from such an immediate is then

2
7 + 2

8 = 2
15 = 32768.

As an aside, it is tempting to answer with some form of scaled access only, i.e., something like

𝐴← MEM[𝐵 ≪ 𝑖].

This clearly grants the ability to access larger addresses; the disadvantage however is that there are some “gaps”

in the range of accessible addresses. For example, say 𝑖 = 8: how do we access address (255 · 28) + 1 = 65281?

c The processor cannot accommodate 16-bit data-types in the sense that it only has 8-bit registers: one cannot for

example load i into 𝐴 or 𝐵.

We have already described a load instruction where a 16-bit effective address to be formed from 𝐴 and 𝐵.

Therefore, S[i] (i.e., loading the 𝑖-th character of the string S) is possible if we store the least-significant 8-bits

of i in 𝐴 and the most-significant 8-bits in 𝐵. However, we also need to increment i; to achieve this, we need a

carry-flag (say 𝐶) and also some instructions that use it. Specifically, we need an add instruction

𝐶, 𝐴← 𝐴 + 𝑖

that computes the sum into 𝐴 and the carry-out into 𝐶, and an add-with-carry instruction

𝐵← 𝐵 + 𝐶

that adds the carry flag to 𝐵. Armed with these additions, and given we have i stored as described above, the

increment can be performed as follows:

𝐶, 𝐴 ← 𝐴 + 1

𝐵 ← 𝐵 + 𝐶
First we add 1 to 𝐴 and, if there was a carry-out from the addition, we add this to 𝐵 since in such a case 𝐶 = 1.

� S223. a i A logical right-shift of some 𝑛-bit 𝑥 by 𝑑 bits discards the least-significant 𝑑 bits, and fills the most-

significant 𝑑 bits with a zero.

ii An arithmetic right-shift of some 𝑛-bit 𝑥 by 𝑑 bits discards the least-significant 𝑑 bits, and fills the most-

significant 𝑑 bits with the sign of 𝑥, i.e., 𝑥𝑛−1.

As a result, one can view them as unsigned and signed shifts respectively; as a result, the operation A[i] >> j
requires a logical right-shift operation since A[i] is an unsigned integer.

b Basically,

𝐶𝑃𝐼 =
∑
𝑡∈𝑇
ℱ𝑡 · ℒ𝑡

where ℱ𝑡 and ℒ𝑡 denote the frequency of execution and latency of instruction type 𝑡 respectively, and here we

have that 𝑇 = {arithmetic, branch,memory access}. Hence,

𝐶𝑃𝐼 = (0.5 · 1) + (0.1 · 4) + (0.4 · 2)
= 1.7

c There are a variety of valid answers here, for example:

i immediate, for t = t + 1,

ii indexed, for A[i],

iii scaled, for A[i] given each element is 32-bit, or

iv auto-indexed, combining A[i] and i++.

d There are a variety of valid answers here, for example:

In software:

• Simply remove the branch, and alter the next instruction to read

GPR[2] ← GPR[2] + GPR[5].

This works because GPR[5] is either 1 when we want to add 1 to GPR[2], or 0 otherwise: so we can simply

add it rather than checking it and conditionally adding 1.

git # b282dbb9 @ 2025-09-03 114

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

In hardware:

• Offer a facility for predicated execution, then remove the branch and alter the next instruction to read

something like

if 𝑍 = false,GPR[2] ← GPR[2] + 1.

That is, if the zero flag 𝑍 is false (meaning the result of the previous operation was not zero) perform the

addition, otherwise skip the addition.

e There are a variety of valid answers here, for example:

In software:

• Optimise the program by moving the load from A[i] out of the inner-loop (since it is fixed for all j).

• Optimise the program by using some form of pre-computation so that one can look-up the Hamming weight

rather than compute it.

• Depending on the probability of a given A[i] being zero, early abort from such iterations via a single

instruction test (i.e., A[i] == 0) rather than checking each bit when we know the outcome.

In hardware:

• Offer a single instruction that extracts the j-th bit of some x, i.e., computes (x >> j) & 1.

• Offer a means of SIMD-style parallelism, e.g., via vector unit, whereby multiply elements in the array can

be processed simultaneously.

• Employ a cache or more advanced memory system so that the 4-cycle latency of (each) memory access is

reduced.

Part XII: Processor design: basic micro-architecture

� S224. If there are more read ports, a register file will need more logic to implement it and hence the imple-

mentation cost will be higher: each read port is roughly equivalent to a multiplexer which, based on the register

address acting as a control signal, decides which of 𝑛 registers to feed through to a single output. If there are

more read ports, one can perform more reads in parallel which therefore typically means less sequential reads.

Finally, if there are 𝑛 registers then one needs ⌈log
2
𝑛⌉ bits to address them using a basic scheme; some 𝑚 > 𝑛

will potentially need more bits and hence larger register addresses. The incorrect statement is therefore the third:

more registers typically implies less register pressure because with more registers, it is more likely we have a free

register and therefore less likely we have to spill one into memory.

� S225. a We have a total of 16 registers to address; each address therefore requires 4 bits. There are 16 instructions

in total; the opcode therefore requires 4 bits. To accommodate this, we can define three formats:

4 4 4 4
+------+------+------+------+
|opcode| src | dst | imm | Format #1
+------+------+------+------+

4 4 4 4
+------+------+------+------+
|opcode| src | dst | src | Format #2
+------+------+------+------+

4 4 8
+------+------+-------------+
|opcode| src | imm | Format #3
+------+------+-------------+

Format #1 is for immediate based memory access instructions, #2 is used for ALU and register based instructions,

and #3 is for the branch instructions. Having three formats is preferable to more in that fewer formats means

less complex instruction decoding, as does fixed width 16-bit formats and organising the instruction fields so

they are aligned; for example the opcode is always the most-significant 4 bits and the next 4 bits is always a

source register operand.

b A reasonable diagram might resemble:

git # b282dbb9 @ 2025-09-03 115

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

+---------+ +---------+
| | +---->| |
| | | | ALU |-----+
| | | +->| | |
| | | | +---------+ |
| | A Bus | | B Bus | C Bus
| | | | +---------+ |
| CONTROL |-----> | +--| | |
| UNIT | | | GPR |<----+
	+-----		
		+---------+	
		+---------+	
	+-----	PC	<----+
+---------+ | +---------+ |

+-----| IR |<----+
+---------+ | +---------+ |
| |<----> +-----| MBR |<----+
| MEMORY | | +---------+ |
| |<----- +-----| MAR |<----+
+---------+ +---------+

where

• 𝐴𝐿𝑈 is the Arithmetic and Logic Unit.

• 𝐺𝑃𝑅 is the General-Purpose Register file.

• 𝑃𝐶 is the Program Counter.

• 𝐼𝑅 is the Instruction Register.

• 𝑀𝐵𝑅 is the Memory Buffer Register.

• 𝑀𝐴𝑅 is the Memory Address Register.

A register file holds general-purpose, addressable registers which store data operated on by instructions. The

program counter stores the address of the next instruction to be executed; the instruction register holds the

instruction currently being executed. The memory data and address registers operate the interface to memory:

the processor sends and receives data in the memory data register; it offers the address for loads and stores in

the memory address register. The control unit operates the data-path signals to actually make the processor

run. The arithmetic and logic unit performs computation on source values to produce results so that meaningful

processing can be carried out. The components are connected with several buses, most notably between the

ALU and the registers; between memory and the processor. Smaller control signals connect the control unit

with all the components so it can operate them.

c The fetch stage loads the instruction from memory. The processor first copies the program counter to the memory

address and then starts the access cycle to retrieve the instruction. The program counter is then incremented

to point at the next instruction. The decode stage decides what the fetched instruction means in terms of what

the processor must do to execute it. Typically this will include extracting and sign-extending any immediate

values and fetching source values from the register file. The execute stage performs the actual computation of

the instruction, in this case the processor sends the source values through the ALU which adds them together

and stores the result into a latch register before writing them into the register file.

d Hard-wiring the control logic means to explicitly encode all the conditions the processor must make when

controlling the data-path signals into dedicated logic. This is easier from a design perspective but has the

drawback that once implemented, is much harder to change. A micro-code based design takes the opposite

approach and stores the information the control unit needs in the form of a very simple program that controls

the data-path signals. This program is much lower-level than that which is exposed to the programmer and

must be stored in some dedicated on-chip memory. The advantage is that the micro-code can change, and hence

the processor operation can be altered, without changing the actual data-path logic.

� S226. a Quite often, ARM included, the latency of multiplication is higher than that of other arithmetic instruc-

tions: it takes multiply cycles to complete one multiplication, whereas it might take only one cycle to complete

an addition. As such, it can be attractive to decompose multiplication by known constants into additions. For

example, if we want to evaluate the expression

x * 3

this might be achieved via

x + (x * 2)

git # b282dbb9 @ 2025-09-03 116

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

or

x + (x << 1)

This is possible because

𝑥 + (𝑥 ≪ 1) = 𝑥 + (𝑥 · 21) = 𝑥 + (2 · 𝑥) = 3 · 𝑥.
Notice that in the former case, we need two additions whereas in the latter we need one addition and one shift.

However, using the form of instruction we have available in the ARM, the cost of the shift is zero and hence we

can perform the multiplication for the cost of a single addition.

b This is a composite addressing mode: it uses direct access to memory via a address taken from 𝐺𝑃𝑅[∗][𝑦].
In the second stage, it updates 𝐺𝑃𝑅[∗][𝑦] to point at the next byte in memory; this is an example of auto-

indexing (postfix rather than prefix in this case). As an example, consider the following contrived fragment that

implements a strcpy-like function:

void strcpy(char* dst, char* src) {
while(*src != '\0') {
*(dst++) = *(src++);

}

*dst = '\0';
}

Notice that the operation *(src++)maps directly onto the instruction we have: the meaning is to load a byte

from wherever the pointer src says to, and then increment src to point at the next byte.

An alternative use might be as a stack pop operation: if the stack pointer is held in 𝐺𝑃𝑅[∗][𝑦] then we essentially

load an element from the top of the stack, then increment the stack pointer.

c The most obvious answer is that since ARM targets the mobile and embedded market, issues of low-power

and low-area are paramount: excluding caches can reduce power consumption and area and is therefore a

reasonable choice. A second reason might be to do with deterministic performance. When a data or instruction

cache is included, it is harder to reason about how many cycles a program will take to execute: this depends

on the cache behaviour, e.g., the number of cache-hits and cache-misses. In some situations, such a feature is

viewed as disadvantageous even if it means higher performance on average; examples include real-time control

systems which one might argue are within the remit of embedded processors. Finally, if the clock speed of the

processor is low (which for an embedded processor seems possible) then the difference between the processor

and main memory speed is less apparent; as such, it may not be as worthwhile having a cache as if there was a

larger difference (as in a desktop processor).

d By making the program counter a general-purpose register, the trade-off made is that with a fixed register

address size,

• one has less addressable general-purpose registers (since the program counter uses one up), but

• there is no need for special-purpose addressing modes or instructions to access the program counter.

As such, there is no need for a “branch using register” instruction (since this can simply be a move into GPR[15]),
and no need for “program counter relative” offset addressing modes (since one can simply use GPR[15] as the

base address). When viewed across the entire instruction set, a general trend is toward fewer special-purpose

instructions (and therefore arguably greater flexibility); this has a knock-on effect of freeing space within the

instruction encoding for use elsewhere.

Part XIII: Processor design: advanced micro-architecture

� S227. First, note that the question is deliberately deceptive by mixing the use of indexed and aliased register

identifiers. In particular, because

GPR[0] ≡ r0 ≡ a1
GPR[2] ≡ r2 ≡ a3

the sub instruction should be interpreted as using the operands GPR[0] and GPR[2] as produced by the ldr and

add instructions respectively; it does not use GPR[0] as produced by the mov instruction, because ldr overwrites

it and therefore yields the most recent value.

Assuming no stalls occur, e.g., due to the memory access, if the sub instruction has reached the execute stage,

then add instruction has reached the memory access stage, the ldr instruction has reached the write-back stage,

git # b282dbb9 @ 2025-09-03 117

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

and the mov instruction has completed execution (i.e., is no longer in-flight within the pipeline). This implies that,

with respect to the sub instruction,

• GPR[0] is forwarded from the pipeline register between memory access and write-back stages (i.e., M/W),

• GPR[2] is forwarded from the pipeline register between execute and memory access stages (i.e., E/M).

� S228. Although the question is under-defined in the sense that a correspondence between the fetch-decode-

execute cycle and bus cycles is unclear, notice that the processor uses a pipelined micro-architecture: as such, it

will fetch an instruction close to every cycle. This suggests it will access memory one per cycle, irrespective of

whether the instruction executed is a ldr, str, or indeed nop.
The most plausible explanation is therefore that the processor has an L1 cache: this means instruction fetches

and data accesses can often (based on the principle of locality) be satisfied by the cache without a need for

interaction between the processor and memory via the bus.

� S229. a The idea is that the original data-path is split up into stages which match the sequential steps it takes. By

operating these stages in parallel with each other, the pipeline can be executing instruction #1 while decoding

instruction #2 and fetching instruction #3 for example. Although there are some caveats to this, for example

dependencies between instructions might prevent the pipeline from advancing, generally this will improve

performance significantly. For example, the instruction throughput of an 𝑛 stage pipelined design will approach

an 𝑛-fold improvement on the multi-cycle design given suitably written programs.

The basic design for a pipelined processor data-path can be split into five stages with pipeline registers between

them to prevent a stage updating the working data for another stage:

+-+ +-+ +-+ +-+
+---+ |R| +---+ |R| +---+ |R| +---+ |R| +---+
|FET| |E| |DEC| |E| |EXE| |E| |MEM| |E| |WRI|
+---+ |G| +---+ |G| +---+ |G| +---+ |G| +---+

+-+ +-+ +-+ +-+

---- flow of instructions ---->

The fetch stage will perform an instruction fetch, it will house the 𝑃𝐶 and an interface to the instruction memory

and typically an adder to increment the 𝑃𝐶. The decode phase decodes the instruction and fetches register

operands, therefore it houses the GPR. The execution stage does the actual instruction execution and will

therefore house the 𝐴𝐿𝑈 that performs arithmetic and comparisons. The memory stage simply has to perform

data memory access so only needs an interface to the data memory. Finally, the write-back stage houses no

actual components but has hooks back into the GPR in the decode stage so it can write values. The 𝐼𝑅 is sort

of spread along the whole pipeline in the pipeline registers; each stage is operating on a different instruction so

each stage has its own 𝐼𝑅 in some sense.

b A structural dependency is where two stages of the pipeline need to access a single hardware module at the same

time. For example, this is commonly caused when one needs to increment the program counter and perform

an ALU operation at the same time. A control dependency exists since the processor does not know where to

fetch instructions from until the branch is executed and so could, if not controlled, execute instructions from

the wrong branch direction. A data dependency is where a computational instruction is being processed by the

pipeline but the source values have not been generated or written-back to the register file.

c The solution for structural dependencies is simple: one either replicates the hardware module so both competing

stages have their own, dedicated device; or one ensures somehow that they use one single device in different

phases of the same cycle. One way of dealing with control dependencies is to delegate the problem to the compiler

and ensure that the delay slot following the branch is either filled with null operations whose execution does

not effect either branch direction, or valid instructions scheduled from before the branch. We can also reduce

the chance of stall by better predicting which direction the branch will take and hence lessening the chance of

having to squash invalid instructions in the pipeline. A branch target buffer of some sort will usually accomplish

this. Data dependencies are usually solved by forwarding results directly from within the pipeline back to the

execution unit. Using this technique, the results do not need to be written-back before they are used during

execution. Using these techniques, the processor seldom needs to stall as a result of any dependency although

clearly they complicate the actual processor operation.

d A branch delay slot is the space in time between when a branch is fetched and when it is executed. During this

time the processor might have to stall since it cannot know instructions that would be fetched actually need

to be executed. However, if the processor does not stall but just carries on fetching and executing instructions

regardless, there is an opportunity to place instructions we want to execute in the branch delay slot. The

advantage of doing so is that there is less wasted time but in order to realise this improvement we must be able

git # b282dbb9 @ 2025-09-03 118

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

. . .
. . .

. . .
G

PR
[1
]←

0

G
PR
[3
]←

M
EM
[]
B
+

G
PR
[1
]]

G
PR
[4
]←

M
EM
[]
C
+

G
PR
[1
]]

G
PR
[1
]←

G
PR
[1
]+

1

G
PR
[5
]←

M
EM
[]
B
+

G
PR
[1
]]

G
PR
[6
]←

M
EM
[]
C
+

G
PR
[1
]]

G
PR
[7
]←

G
PR
[3
]+

G
PR
[4
]

M
EM
[]
A
+

G
PR
[1
]]
←

G
PR
[7
]

G
PR
[1
]←

G
PR
[1
]+

1

G
PR
[3
]←

M
EM
[]
B
+

G
PR
[1
]]

G
PR
[4
]←

M
EM
[]
C
+

G
PR
[1
]]

G
PR
[8
]←

G
PR
[5
]+

G
PR
[6
]

M
EM
[]
A
+

G
PR
[1
]]
←

G
PR
[8
]

G
PR
[1
]←

G
PR
[1
]+

1

G
PR
[5
]←

M
EM
[]
B
+

G
PR
[1
]]

G
PR
[6
]←

M
EM
[]
C
+

G
PR
[1
]]

G
PR
[7
]←

G
PR
[3
]+

G
PR
[4
]

M
EM
[]
A
+

G
PR
[1
]]
←

G
PR
[7
]

G
PR
[1
]←

G
PR
[1
]+

1

G
PR
[3
]←

M
EM
[]
B
+

G
PR
[1
]]

G
PR
[4
]←

M
EM
[]
C
+

G
PR
[1
]]

G
PR
[8
]←

G
PR
[5
]+

G
PR
[6
]

M
EM
[]
A
+

G
PR
[1
]]
←

G
PR
[8
]

G
PR
[1
]←

G
PR
[1
]+

1

. . .
. . .

. . .

Figure 2: A VLIW implementation of the vector addition loop body.

to reorder instructions in the program so that the slot is filled; if we cannot fill the slot then NOPs must be placed

there instead to ensure correct execution. This all means that the processor can be simpler due to the lack of

stall condition, but the programmer must do more work to extract the improvement in performance and ensure

correctness.

In most RISC architectures, alteration of control-flow is done explicitly using dedicated branch instructions.

Predicated execution offers an alternative to this model by associating a predicate function to each instruction

and only executing the instruction if the predicate is true. Rather than set the 𝑃𝐶 to some new value, this

approach allows one to skip over instructions based on the associated predicate. It is ideal for conditional

execution of short sections of code due to the low overhead associated. In this case, both the processor and

programmer must be more complicated; the processor must be able to decode and evaluate predicates and

discard instructions which fail, the programmer must be able to write programs in a style that takes advantage

of this feature.

Branch prediction reduces the number of stalls by guessing which way a branch will complete and continuing

to fetch instructions from that path; if the prediction is wrong then the fetched instructions must be squashed

but if it is right execution can continue with no loss of time. Common prediction mechanisms are simple, for

example one might predict that backwards branches (that model loops) are always true: this will be correct

most of the time because a loop only exists once and iterates many times. The complexity in branch prediction

is entirely in the processor; the programmer need do nothing more than normal unless the ISA allows hints to

be passed about the probably direction of branches.

� S230. After partially unrolling the loop by a factor of four, it is clear that the four additions that represent the

git # b282dbb9 @ 2025-09-03 119

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

new loop body are independent. With a vector processor, either dedicated or in the form of an extension to a

conventional processor (e.g., MMX/SSE), these can be executed in parallel. Starting with the scalar implementation

. . .
GPR[1] ← 0

GPR[2] ← 400

𝑙𝑜𝑜𝑝 : if GPR[1] ≥ GPR[2], 𝑃𝐶 ← 𝑒𝑥𝑖𝑡
GPR[3] ← MEM[]B + GPR[1]]
GPR[4] ← MEM[]C + GPR[1]]
GPR[5] ← GPR[3] + GPR[4]
MEM[]A + GPR[1]] ← GPR[5]
GPR[1] ← GPR[1] + 1

𝑃𝐶 ← 𝑙𝑜𝑜𝑝
𝑒𝑥𝑖𝑡 : . . .

the basic idea would be to utilise the vector register file and associated ALUs to load and execute four additions at

once. This could be described as

. . .
GPR[1] ← 0

GPR[2] ← 400

𝑙𝑜𝑜𝑝 : if GPR[1] ≥ GPR[2], 𝑃𝐶 ← 𝑒𝑥𝑖𝑡
VR[1] ← MEM[]B + 0 + GPR[1] . . . B + 3 + GPR[1]]
VR[2] ← MEM[]C + 0 + GPR[1] . . . C + 3 + GPR[1]]
VR[3] ← VR[1] + VR[2]
MEM[]A + 0 + GPR[1] . . . A + 3 + GPR[1]] ← VR[3]
GPR[1] ← GPR[1] + 4

𝑃𝐶 ← 𝑙𝑜𝑜𝑝
𝑒𝑥𝑖𝑡 : . . .

whereby we get roughly a four fold improvement in performance as a result. Of course this depends on being able

to load and store operands quickly enough (this is assisted by the regular nature of such accesses), and that there

are enough ALUs to execute the parallel additions.

The case for VLIW is more complicated, in part because such an architecture is less well defined. Imagine we

have a VLIW processor which can accept instruction bundles that include two memory accesses and one arithmetic

operations. The idea here would be to software pipeline the loop so that we “skew” the iterations: this allows us to

load the operands for iteration 1 at the same time as performing the addition for iteration 0 for example. Reading

operations on the same row as being executed in parallel (the first two columns being memory access and the third

being arithmetic), an example code sequence is show in Figure 2. Notice that by overlapping the loop iterations,

we are roughly executing one iteration in two instruction bundles rather than via five conventional instructions as

above (even though there are some empty slots in selected bundles).

� S231. a Consider an example function which sums elements from two arrays and stores the result into a third:

void add(int* A, int* B, int* C, int p) {
for(int i = 0; i < p; i++) {
A[i] = B[i] + C[i];

}
}

On a scalar processor, each iteration of the loop is executed separately. The use of processor designs such

as superscalar might capitalise on the implicit parallelism between loop iterations but essentially any given

operation only deals with one (scalar) data item at a time. The idea of a vector processor is to make this

parallelism explicit and equip the processor with the ability to operate on many data items (vector) using a

single operation. As such, instead of executing many scalar operations of the form

A[0] ← B[0] + C[0]
A[1] ← B[1] + C[1]
A[2] ← B[2] + C[2]

...
A[p-1] ← B[p-1] + C[p-1]

git # b282dbb9 @ 2025-09-03 120

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

𝑟 0
=
(

𝐷
,

𝐶
,

𝐵
,

𝐴
)

𝑟 1
=
(

2
𝐷

,
2
𝐶

,
2
𝐵

,
2
𝐴

)
a
d

d
𝑟 0

a
n

d
𝑟 0

𝑟 2
=
(

2
𝐷
+

1
,

2
𝐶
+

1
,

2
𝐵
+

1
,

2
𝐴
+

1
)

a
d

d
𝑟 1

a
n

d
1

𝑟 3
=
(

𝐷
(2
𝐷
+

1
)

,
𝐶
(2
𝐶
+

1
)

,
𝐵
(2
𝐵
+

1
)

,
𝐴
(2
𝐴
+

1
)

)
m

u
l
𝑟 2

a
n

d
𝑟 0

𝑟 4
=
(
(𝐷
(2
𝐷
+

1
))
≪

5
,

(𝐶
(2
𝐶
+

1
))
≪

5
,
(𝐵
(2
𝐵
+

1
))
≪

5
,

(𝐴
(2
𝐴
+

1
))
≪

5
)

r
o
t
a
t
e
𝑟 3

b
y

5

A
t

t
h

i
s

p
o
i
n

t
w

e
r
e
n

a
m

e
t
h

e
s
u

b
-
w

o
r
d

s
t
o

m
a
k
e

l
i
f
e

e
a
s
i
e
r

𝑟 4
=
(

𝐷
′

,
𝐶
′

,
𝐵
′

,
𝐴
′

)
𝑟 5

=
(

𝐶
′

,
𝐷
′

,
𝐴
′

,
𝐵
′

)
s
h

u
ffl

e
𝑟 4

𝑟 6
=
(

𝐶
′

,
𝐵
′

,
𝐴
′

,
𝐷
′

)
s
h

u
ffl

e
𝑟 4

𝑟 7
=
(

𝐷
⊕
𝐶
′

,
𝐶
⊕
𝐷
′

,
𝐵
⊕
𝐴
′

,
𝐴
⊕
𝐵
′

)
X

O
R
𝑟 5

a
n

d
𝑟 0

𝑟 8
=
(
(𝐷
⊕
𝐶
′)
≪

𝐶
′

,
(𝐶
⊕
𝐷
′)
≪

𝐵
′

,
(𝐵
⊕
𝐴
′)
≪

𝐴
′

,
(𝐴
⊕
𝐵
′)
≪

𝐷
′

)
r
o
t
a
t
e
𝑟 7

b
y
𝑟 6

𝑟 9
=
(

0
,

𝐾
[𝑖
+

1
]

,
0

,
𝐾
[𝑖
+

0
]

)
l
o
a
d

r
o
u

n
d

k
e
y

𝑟 1
0

=
(
(𝐷
⊕
𝐶
′)
≪

𝐶
′

,
((𝐶
⊕
𝐷
′)
≪

𝐵
′)
+
𝐾
[𝑖
+

1
]

,
(𝐵
⊕
𝐴
′)
≪

𝐴
′

,
((𝐴
⊕
𝐵
′)
≪

𝐷
′)
+
𝐾
[𝑖
+

0
]
)

a
d

d
𝑟 8

a
n

d
𝑟 9

𝑟 1
1

=
(

𝐴
,

𝐶
,

𝐷
,

𝐵
)

s
h

u
ffl

e
𝑟 0

𝑟 1
2

=
(
(𝐵
⊕
𝐴
′)
≪

𝐴
′

,
((𝐷
⊕
𝐶
′)
≪

𝐶
′)
+
𝐾
[𝑖
+

1
]

,
(𝐴
⊕
𝐵
′)
≪

𝐷
′

,
((𝐶
⊕
𝐷
′)
≪

𝐵
′)
+
𝐾
[𝑖
+

0
]
)

s
h

u
ffl

e
𝑟 8

𝑟 1
3

=
(
(𝐴
⊕
𝐵
′)
≪

𝐷
′

,
𝐷

,
(𝐶
⊕
𝐷
′)
≪

𝐵
′

,
𝐵

)
u

n
p

a
c
k
𝑟 1

1
a
n

d
𝑟 1

2

A
t

t
h

i
s

p
o
i
n

t
w

e
r
e
n

a
m

e
t
h

e
s
u

b
-
w

o
r
d

s
t
o

m
a
k
e

l
i
f
e

e
a
s
i
e
r

𝑟 1
3

=
(

𝐴
′′

,
𝐷
′′

,
𝐶
′′

,
𝐵
′′

)

Figure 3: A vector implementation of the RC6 loop body.

git # b282dbb9 @ 2025-09-03 121

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

the vector processor executes one vector operation of the (pseudo-C) form

A[0 ... p-1]← B[0 ... p-1] + C[0 ... p-1].

To achieve this, the processor needs two key components: a vector register file capable of storing vectors (i.e.,

many data items rather than single data items), and a number of processing elements each of which operates on

one element of the input vectors to produce one element of the output vector. The processing elements can be

sub-pipelined if if there are less of them than there are elements in a vector, they may need to be used iteratively

to operate across the entire vector content.

Typically these components are gathered together into a single co-processor type unit which is invoked by

a standard scalar processor (i.e., rather than use the scalar register and ALU) when vector instructions are

encountered. This approach needs careful management of memory access so that a single interface to memory

can be used effectively to load and store vector data.

b The use of a vector processor can yield higher performance than a scalar processor (for a selected class of

programs) because:

• Parallelism in the program is explicit. The processor can therefore take advantage of this parallelism, with

very little effort or overhead in terms of hardware complexity, by using multiple processing elements. That

is, processing element 𝑖 can operate on element 𝑖 of the input vectors to produce element 𝑖 of the output at

the same time as other elements 𝑗 ≠ 𝑖 are being produced in parallel. Consider a processor that operates

on vectors of length 𝑝 with 𝑟 processing elements; the processor achieves a theoretical peak performance

improvement of 𝑝/𝑟 over the scalar processor if the program is easily vectorised.

• In scalar, multiple-issue architectures such as superscalar, the demand for new instructions is very high: they

must be fetched from memory fast enough to satisfy the aim of issuing one operation per-cycle. Although

cache memories and other techniques can help, this can present a problem. In contrast, the amount of work

done by per-operation in a vector is much higher (e.g., a factor of 𝑝 higher if we work with vectors of length

𝑝). As such, the pressure for operations to be fetched quickly is less and hence the impact of the bottleneck

represented by main memory is less pronounced.

• Access to vector data held in memory is typically more regular than that to scalar data. That is, if we load a

𝑝 element vector at address 𝐴, we explicitly load from addresses 𝐴 + 0 . . . 𝐴 + 𝑝 − 1. The memory hierarchy

can capitalised on this feature via specialist cache design and operational policies, prefetch and striding, burst

access and so on. In the case of access to scalar is not as easy to deal with: single accesses are disjoint and

cannot be easily related to the overall task of access to the larger vector.

c Say we represent the input at the start of the loop body as (𝐷, 𝐶, 𝐵, 𝐴), i.e., a packed 128-bit register of 32-bit

sub-words. We assume that the array 𝐾 has been padded with space so that when elements are loaded during

iteration 𝑖, we get the vector (0, 𝐾[𝑖 + 1], 0, 𝐾[𝑖 + 0]). Finally, we assume that all computation is performed

component-wise on sub-words (i.e., using strict SIMD) but that there are a number of standard sub-word

organisation operations such as shuffle and pack. Equipped as such, we can implement the loop body using the

operation sequence in Figure 3 so that at the end, we have the vector (𝐴′′, 𝐷′′, 𝐶′′, 𝐵′′) which is used as input to

the next iteration.

d Implementation of the loop body using 3-address style RISC operations can be achieved using the following

git # b282dbb9 @ 2025-09-03 122

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

sequence

𝑡0 ← 𝐵 + 𝐵
𝑡1 ← 𝑡0 + 1

𝑡2 ← 𝐵 · 𝑡1
𝑡3 ← 𝑡2 ≪ 5

𝑡4 ← 𝐷 + 𝐷
𝑡5 ← 𝑡4 + 1

𝑡6 ← 𝐷 · 𝑡5
𝑡7 ← 𝑡6 ≪ 5

𝑡8 ← 𝐴 ⊕ 𝑡3
𝑡9 ← 𝑡8 ≪ 𝑡7
𝑡10 ← MEM[](𝐾 + 0) + 𝑖]
𝑡11 ← 𝑡9 + 𝑡10

𝑡12 ← 𝐶 ⊕ 𝑡7
𝑡13 ← 𝑡12 ≪ 𝑡3
𝑡14 ← MEM[](𝐾 + 1) + 𝑖]
𝑡15 ← 𝑡13 + 𝑡14

𝐴 ← 𝐵
𝐵 ← 𝑡13

𝐶 ← 𝐷
𝐷 ← 𝑡8

This scalar sequence requires 20 operations; the vector equivalent requires 13 operations. However, the four

move operations at the end of the scalar implementation are essentially just renaming intermediate variables:

the actual moves are not required. Therefore by unrolling the loop somewhat it should be possible to remove

these and reduce the operation count to 16. Although the sequences are not scheduled intelligently, it seems

possible that with some rearrangement (plus possibly some software pipelining) it is possible to execute roughly

one operation per-cycle. As such, the vectorisation has produced roughly an 19% improvement in performance

(versus roughly 35% without unrolling).

The theoretical limit is a four-fold improvement in performance since one would expect roughly four operations

to occur in parallel in the vector case. The two main factors which prevent the improvement being higher are

wasted work in computing values we do not need (e.g., the (𝐷(2𝐷 + 1))≪ 5 sub-word of 𝑟4), and the amount

of shuffle type operations required to move sub-words into the right place for actual computation. In short, the

loop looks easily vectorisable but the architecture (i.e., packing four 32-bit sub-words into 128-bit registers) does

not capitalise on this well. One might change the processor to pack two 32-bit sub-words into 64-bit registers;

this would prevent wasted computation and reduce either the amount of processing elements required if there

is one processing element for each sub-word (e.g., two rather than four), or the time taken for each operation if

there are less processing elements than sub-words (e.g., in the initial design, having two processing elements

rather than four means iterating twice for each operation).

� S232. a Speculative execution is a mechanism that acts to reduce the cost of branches. The problem caused by

branches is that until any branch condition and target are known, the processor cannot proceed: it cannot know

where to fetch the next instructions from and hence the front-end becomes stalled. In turn, this can lead to

under utilisation of the computational resources which are idle until provided with work.

The basic idea is to construct a group of components that guess which way a branch will direct control-flow, and

execute instructions from that path. If the guess turns out to be correct, then execution can continue more or less

as normal: the instructions allowed into the pipeline really were those the programmer intended to execute so

in a sense no execution time has been wasted. If the guess turns out to be incorrect however, the instructions in

the pipeline are invalid (i.e., they are from the wrong path) and need to be deleted. After cleaning up, execution

is restarted along the correct path and although there is a associated cost, this is not significantly more than the

case without speculation. As a result, as long as guesses made by the processor are correct more often than

not, performance is improved because more often than not the front-end does not stall and can supply a more

consistent stream of work to the back-end.

Note that use of a reorder buffer makes speculation much easier: we can simply include a flag in the RoB to

mark speculatively executed instructions and only allow them to complete (i.e., exit the RoB) if the associated

condition turns out to be true.

b The case of static (rather than fixed) branch prediction demands that the compiler and/or programmer does

some analysis of the program to work out the probable control-flow. For example, the compiler might:

• Examine a particular loop statement and reason that since the loop bound is large, a branch from the end of

the loop body back to the start is much more likely to be taken than not taken.

git # b282dbb9 @ 2025-09-03 123

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

• Examine a particular conditional statement and reason that the condition is very unlikely to evaluate to false,

and hence that a branch that skips the conditional body is very unlikely to be taken.

The idea is to pass the results of this analysis to the processor in order to guide any decisions. One mechanism to

do this is to allow “hints” or predicates in the branch instructions that inform the processor that they are likely

or unlikely to be taken: based on such a “hint”, the processor might speculatively execute one control-flow path

rather than another. Disadvantages of this approach is include the fact that data-dependent behaviour of the

program is not considered (unless we use some form of profiling), and that there is a limited amount of space

in any instruction encoding with which to accommodate the “hints”.

Use of dynamic branch prediction means that the processor tries to perform analysis of the program behaviour

at run-time. Although this requires extra hardware to implement the scheme, it means that any data-dependent

behaviour can be detected and capitalised upon. Typically the processor would include a mechanism for

predicting whether a branch is taken or not and where the branch target is. The branch target is possible simpler:

a cache-like structure called the Branch Target Buffer (BTB) can be maintained whereby the address of a branch

is mapped to a predicted target. If the branch address has no mapping in the BTB then the processor simply has

to guess, but if there is a mapping (e.g., the branch was executed recently) then the processor can speculatively

use the previous target. Predicting the direction of a branch can be achieved using a Branch Prediction Buffer

(BPB) which maps the address of a branch to a history of that branches behaviour, i.e., a history of whether it was

taken or not. Based on this history, one can make predictions about whether it will be taken or not in the future.

Examples include the use of saturating counters which effectively treat the problem like a state machine where

the branch history represents the current state (which acts as the prediction), each executed branch updates the

state in a manner that depends on the real behaviour.

c i Assuming for example that the “call” and “return” instructions operate in a similar way to those in MIPS, a

simple calling convention could be:

caller: push arguments
call callee
pop return value
pop arguments
...

callee: push return address
push space for locals
...
pop space for locals
pop return address
push return value
return to caller

In this case, the “call” places the return address in a specific register (this is a so-called “jump and link”) while

the “return” is implemented via a branch to an address held within any register: the address is popped from

the stack into a register and then used.

ii The “call” instruction is essentially an unconditional branch: it does not require any branch prediction since

it is always taken and the branch target is always known if it can be encoded as an immediate operand. The

“return” instruction is more tricky: although unconditional, in this case the processor will not know the

branch target (i.e., the return address) until it is retrieved from the stack.

One approach would be to employ a system whereby there is segregation between data and address related

stack content, i.e., use a dedicated return address stack. This would require the “call” instruction to push the

return address onto the address stack and the “return” instruction to pop it: these operations could form part

of the instruction semantics. Since the address stack will probably be more constrained in terms of size and

use, it could be possible to retain some of it on-chip (rather than in memory) so that access to the last say 𝑛
return addresses is very fast.

Although there are potentially some disadvantages, the main advantage is that we can now “snoop” the

address stack for a return address. That is, as soon as the “return” instruction is fetched we can look at the

on-chip address stack and retrieve the associated branch target quickly and accurately.

Part XIV: The memory hierarchy

� S233. Note that the bus connects the processor and memory, or, at least from a logical perspective, the cache

(which, since it is an L1 cache, would be internal to the processor) and memory because the processor will access

memory via the cache. This means the number of transactions across the bus basically means the number of

accesses the cache makes to memory.

git # b282dbb9 @ 2025-09-03 124

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

The first choice is write-through vs. write-back. The former writes to the cache and memory, whereas the latter

only writes to the cache: it defers writing to memory until “dirty” content is evicted. As such, write-through

would generate more accesses to memory. The second choice is write-allocate vs. write-around, which relate to

what happens when a write causes a cache-miss. The former means a cache-miss is similar to a cache-hit, in the

sense the associated line is filled from memory, whereas the latter means the cache state is unchanged. As such,

write-allocate would generate more accesses to memory. In combination then, write-through plus write-allocate

is the combination that would generate more accesses to memory.

� S234. Each cache line is 64B = 2
6
B, so we need 6 bits to identify a specific word (i.e., byte) in a given line. The

total total capacity is 128KiB = 2
17

B, and there are 8 = 2
3

cache lines per set; this means there are 2
17/(26 · 23) =

2
17/26+3 = 2

17−(6+3) = 2
8

sets, so we need 8 bits to identify a specific set. The tag is essentially the rest of the

address, i.e., the bits which are not used to identify the set or sub-word: such a tag is therefore 32 − (8 + 6) = 18

bits.

� S235. The memory hierarchy is arranged like a pyramid with higher levels relying on the performance and

functionality of lower levels. The idea is that higher levels are smaller and more expensive but faster, lower levels

are large and inexpensive but slower. The principles of locality means that we can keep the working set of a

program, i.e., the data and instructions used most often, in the small, fast areas of the hierarchy. This means

the most often used data can be accessed very quickly but we can still store very large amount of data since the

hierarchy is backed by large, inexpensive storage.

^
/ \
/ \
/ \
/ \
/ \
/ registers \ smallest fastest expensive
/-------------\ | | |
/ cache \ | | |
/-----------------\ | | |
/ main memory \ | | |
/---------------------\ V V V
/ disk and tape \ largest slowest inexpensive

At the top of the hierarchy are registers, these are word sized areas of on-chip memory used to produce operands

for instructions. Typically they total around 1kB in size. The next level is cache memory, typically made from

SRAM, which can be on or off-chip and ranges in size from around 512kB upto several megabytes. Beyond any

cache structures is the main RAM memory which is typically built from DRAM and is of the order of gigabytes in

size. Finally, at the bottom of the hierarchy are the longer terms storage options such as disk and tape which are

multi-gigabyte in size.

� S236. a To address cache lines with 8 words (i.e., 8B in each line) we need a 3-bit word address since 2
3 = 8.

There are a total of 512B which means there are 512/8 = 64 lines; this means we need a 6-bit line number since

2
6 = 64. This means there are 32 − 3 − 6 = 23 bits remaining which form the tag.

b To address cache lines with 8 words (i.e., 8B in each line) we need a 3-bit word address since 2
3 = 8. Since there

are 64 lines, assuming that access in each of the 64/2 = 32 sets is fully-associative, we need an 5-bit set number

since 2
5 = 32. This means there are 32 − 3 − 5 = 24 bits remaining which form the tag.

c To address cache lines with 8 words (i.e., 8B in each line) we need a 3-bit word address since 2
3 = 8. Since there

are 64 lines, assuming that access in each of the 64/4 = 16 sets is fully-associative, we need an 4-bit set number

since 2
4 = 16. This means there are 32 − 3 − 4 = 25 bits remaining which form the tag.

d To address cache lines with 8 words (i.e., 8B in each line) we need a 3-bit word address since 2
3 = 8. In a fully

associative cache lines can be placed anywhere so there is no need to derive them from the address; this means

there are 32 − 3 = 29 bits remaining which form the tag.

� S237. • Compulsory misses are caused by the first access to some content held in memory. In a sense these seem

unavoidable: before an element 𝑋 is accessed by the program, how can the processor know it will be accessed

and therefore prevent the cache-miss? The answer is to take a speculative approach and pre-fetch content into

the cache that has a reasonable probability of use; if the speculation is correct then the associated compulsory

miss is prevented, if it is incorrect then there will be a cache-miss which is no worse than our starting point.

The major disadvantage of incorrect speculation is the potential for cache pollution which can increase conflict

misses. Thus, some balance needs to be arrived at between the two approaches.

git # b282dbb9 @ 2025-09-03 125

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

• Capacity misses are misses that are independent of all factors aside from the size of the cache; essentially the

only solution is to increase the cache size so a larger working set can be accommodated.

• Conflict misses are caused by the eviction of resident cache content by a newly accessed content that maps to

the same cache line. The implication is that if element 𝑋 is evicted by element 𝑌, there has been a conflict in

the address translation: since both map to the same line the access to 𝑌 causes a cache-miss. This effect can

continue in the sense that if 𝑋 is accessed again later, it will cause another cache-miss. The use of set-associative

caches can reduce the level of contention in the cache by allowing conflicting addresses to coexist within a

fully-associative set. Alternatively one might take a software approach and skew the addresses at which 𝑋 and

𝑌 are placed so they no longer map to the same cache line.

� S238. a There are 4 bytes per-line so we need 2 bits to address these since 2
2 = 4. These are taken from the

least-significant end of the address. There are 256 lines since the cache is 1kB in size; we need 8 bits to address

these lines since 2
8 = 256. These are again taken from the least-significant end, starting after the bits for the

word address. The tag constitutes the rest of the bits so we can uniquely identify a given address in a line, it is

therefore 22 bits in size.

b Spatial locality is the tendency that if one item is accessed, those items close to it in memory are also accessed.

For example if A[1] is accessed there is a good chance A[0] or A[2] will be accessed rather than say

A[1000]. Temporal locality is the tendency that if one item is accessed, it will be accessed again in the near

future. For example, when the add instruction which implements the addition of B[i] and C[i] is accessed,

it has a high probability of being accessed again since it is in a loop. Cache interference is where items compete

for space in the cache. If two items map to the same line and one is loaded into the line, an access to the other

will evict or displace the original since the line cannot hold both.

c The load access to B[0] will miss since this item is not in the cache. Such a miss means the item is loaded

into cache line one, along with the values B[1], B[2] and B[3]. The load access to C[0] also misses

but since it maps to the same line as B[0], the data loaded evicts the values of B loaded in the previous load.

Finally, the store to A[0]misses and again maps to the same line as C[0] so again evicts the current values.

The loop continues in this manner, essentially never producing any cache-hits because each access evicts the

previous data.

d i This alteration changes matters entirely since now, A[0] maps to line 0, B[0] maps to line 1 and C[0]
maps to line 2. As a result each access to B[i]will provoke one miss to load the values into the line, followed

by three hits as the values B[i + 1], B[i + 2] and B[i + 3]will sit in the same line. The same is true

for accesses to C[i] and A[i] so that the program will run much faster due to the decreased number of

accesses to main memory.

ii The basic problem here is one of cache interference: we want to prevent or reduce the probability of two

addresses mapping to the same line in the cache and evicting each other. Associative caches are one solution

to this problem; they allow any address to map to any line and include some decisional mechanism that places

them. For example, Least Recently Used (LRU) or random placement both solve the interference problem.

The problem will associative caches is that they require significant resource to build. As a compromise, set-

associative caches are a better option. A set-associative cache has number of sets each of which is like a small

cache; inside each set look-up is fully associative but since the sets are small, the resulting cost is manageable.

The idea is that we select the set a data item will go into using some more bits from the address: items that

would map to the same line like A, B and C now map into the same line within different sets so don’t interfere.

� S239. a Consider the example program

void vecvec_add(float* A,
const float* B,
const float* C,

int n) {
for(int i = 0; i < n; i = i + 1) {
A[i] = B[i] + C[i];

}
}

which performs the addition of B and C, two n-element vectors, to produce A.

i Temporal locality is the tendency that if one address is accessed, it will be accessed again in the near future.

For example, when the instruction which performs the addition of B[i] and C[i] is fetched, there is a

good chance that it will be fetched again since it is within a loop.

ii Spatial locality is the tendency that if one address is accessed, those addresses close to it are also accessed.

For example given an access to A[1], there is a good chance that either A[0] or A[2] will be accessed

next rather than say A[1000].

git # b282dbb9 @ 2025-09-03 126

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

b First, note that

2
2 = 4

2
3 = 8

2
4 = 16

so in the first case there are 8 lines each of 8 words, and in the second case there are 4 lines each of 16 words;

either way the cache holds 𝑡 = 64 bytes in total.

i For 𝑙′ = 3 and 𝑤′ = 3, the least-significant 3 bits of 𝑥 are the word number and the next least-significant

3 bits of 𝑥 are the line number; this implies the most-significant 8 − 3 − 3 = 2 bits of 𝑥 are the tag. Since

𝑥 = 42 = 00101010(2), the word number is 010(2) = 2, the line number is 101(2) = 5, and the tag is 00(2) = 0.

ii For 𝑙′ = 2 and 𝑤′ = 4, the least-significant 4 bits of 𝑥 are the word number and the next least-significant

2 bits of 𝑥 are the line number; this implies the most-significant 8 − 4 − 2 = 2 bits of 𝑥 are the tag. Since

𝑥 = 8 = 01010001(2), the word number is 0001(2) = 1, the line number is 01(2) = 1, and the tag is 01(2) = 1.

c i For larger 𝑙 and smaller 𝑤, example answers include

• A smaller line size (i.e., smaller𝑤) means that each time a line is filled from or written-back to main memory,

less content is transferred. This might be viewed as an advantage if the latency of access to main memory

is particularly high (e.g., if there is no facility for burst access) and there are numerous accesses (e.g., there

is a high miss-ratio or a write-through policy is used).

• If the level of spatial locality is low, a smaller line size (i.e., smaller 𝑤) might be advantageous: there is less

effort wasted by fetching content from main memory that will not be used.

ii For larger 𝑤 and smaller 𝑙, example answers include

• For this cache, one always has the same sized tag: for an 𝑛-bit address, the tag is formed by taking the

𝑛 −𝑤′ − 𝑙′most-significant bits. Given this fact, if there are less lines (i.e., smaller 𝑙) there there are less tags

to store; hence a smaller 𝑙 might imply a more space-efficient implementation.

• If the level of spatial locality is high, a larger line size (i.e., larger𝑤) might be advantageous: there is a higher

chance that the next address accessed will be within the same cache-line as the current previous address

(and hence a cache-hit).

d i The idea a segregated cache architecture is that there are separate data and instruction caches: instruction

fetches are performed through the instruction cache (or “I-cache”), data loads and stores are performed

through the data cache (or “D-cache”). The alternative is a unified architecture where all access are performed

through a single cache. In a stored-program or von Neumann architecture it is important to note that there is

still a single main memory which backs both caches in a segregated architecture; there are simply two interfaces

to this memory.

Use of a segregated architecture can provide a variety of advantages. For example:

• A dedicated instruction cache can often allow a more efficient implementation since it does not (necessarily)

need to cater for stores: the only operations performed are instruction fetches which are essentially loads

from memory.

• The fact that there are two interfaces to memory (and these are used by different stages of the fetch-decode-

execute cycle) means that instruction fetches and data load/store operations can be performed at the same

time. This is particularly advantageous where the micro-architecture is pipelined and there are separate

fetch and memory access stages: the two interfaces mean that the two stages are not “blocked” by each

other.

• Since the instruction and data cache are separate, they can operate using different geometries and policies

(e.g., line size, write policy etc.) that suite their use. For example, one might reason that a stream

of instruction fetches has a high(er) degree of spatial locality and hence use a long(er) line size for the

instruction cache to capitalise on this; such a choice can be made independently from the line size selected

for the data cache.

ii Imagine we want to write an encoded instruction 𝑖 into address 𝑥 in memory; subsequent execution of the

instruction could be performed by simply branching to it, e.g., setting 𝑃𝐶 = 𝑥. In order to store 𝑖 in memory,

we actually need to execute a store instruction, e.g.,

MEM[𝑥] ← 𝑖.

Such a store will be performed through the data cache, and (at least) two issues occur:

i. If the data cache employs a write-through policy, the store of 𝑖 into MEM[𝑥]will cause MEM[𝑥] to be allocated

space in the data cache but also for 𝑖 to be written into main memory. If however a write-back policy is

git # b282dbb9 @ 2025-09-03 127

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

used, main memory may not be updated by the time we set 𝑃𝐶 = 𝑥. That is, if the data cache content is not

evicted and thereby written into main memory, any fetch from MEM[𝑥] will not “see” the new value.

ii. If the instruction cache holds MEM[𝑥] at the time when the store is executed, and it has not been evicted by

the time we set 𝑃𝐶 = 𝑥, then, even if the data cache is flushed and hence main memory correctly reflects

the store, a fetch will yield the stale value held in the instruction cache rather than 𝑖.

Beyond the obvious approach of unifying the two caches, the concept of cache flushing could help: the idea

is that once self-modification is complete, i.e., after each 𝑖 has been stored, the caches are emptied of content.

This means that all values within either cache will be written into main memory, and neither cache will hold

values relating the instructions written. This can be achieved in (at least) two ways:

i. With suitable hardware support, one can rely on the hardware to perform the flushing operation. For

example, x86 includes an instruction called clflush to do just this.

ii. If there is no support from hardware, one can still flush the caches by forcing eviction of data; most simply,

this can be achieved (in the case of the data cache for example) by loading or storing values from or into a

“dummy” array of the same size as the cache:

void flush() {
uint8_t* T = (uint8_t*)(malloc(CACHE_SIZE)), t;

for(int i = 0; i < CACHE_SIZE; i++) {
t = T[i];

}
}

After the function executes, the contents of the cache will have been filled with T hence forcing eviction of

any data previously resident.

� S240. a The motivation for including a cache in the processor design is the relatively high latency of access to

main memory in comparison with the length of a processor cycle: since the processor will potentially access

memory as often as every cycle, this problem acts as a limit to how fast instructions (and hence programs) can be

executed. Access to a cache memory can have a lower latency provided the working set of data can be retained

in it (given the cache is typically has a much smaller capacity).

The description of the cache as general-purpose refers to the fact it holds data and instructions, rather than

segregating the cache into special-purpose devices for each type of access.

b The theme in this part of the question is how the cache satisfies the motivation above, i.e., how it is able to reduce

access latency.

i Consider the example program

void vecvec_add(float* A,
const float* B,
const float* C,

int n) {
for(int i = 0; i < n; i = i + 1) {
A[i] = B[i] + C[i];

}
}

which performs the addition of B and C, two 𝑛-element vectors, to produce A.

i. Spatial locality is the tendency that if one address is accessed, those addresses close to it are also accessed.

For example given an access to A[1], there is a good chance that either A[0] or A[2]will be accessed

next rather than say A[1000].

ii. Temporal locality is the tendency that if one address is accessed, it will be accessed again in the near future.

For example, when the instruction which performs the addition of B[i] and C[i] is fetched, there is a

good chance that it will be fetched again since it is within a loop.

These features mean that if the cache keeps a small (relative to the size of main memory) set of data resident,

there will be a high probability that a given access can be satisfied by the cache alone (i.e., be a cache-hit)

rather than require an access to main memory (i.e., be a cache-miss).

ii One class of (or reason for) cache-misses is termed “capacity misses” and occur purely because the cache is not

large enough to hold the working set; if the cache were larger, the cache-miss might be turned into a cache-hit

by virtue of the cache having more resident data.

As such, a potential advantage of the larger cache is less cache-misses and hence lower overall latency. This

does not happen without an associated cost however: the larger cache requires more physical area and will

probably consume more power, both of which represent tangible disadvantages.

git # b282dbb9 @ 2025-09-03 128

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

iii Following the above, another class of cache-miss are those described as “conflict misses” whereby an access

to one address causes the eviction of data associate with another; the addresses conflict, or interfere with each

other.

The concept of associativity can help reduce conflicts by allowing an address to map into one of many lines

rather than one as in the case of a direct-mapped cache. Instead an address first maps into a set (which can

be the same size as the cache for fully-associative designs) which is then searched for the corresponding line

(via comparison of tags). As a result, addresses that might have previously mapped to the same line of a

direct-mapped cache and hence implied conflict, they can coexist within a set.

c Keeping in mind that the processes uses 32-bit addresses, we find:

i the word address requires 2 bits, since there are 4 words per-line,

ii the line address requires 0 bits, since a set-associative cache does not directly map an address to a line,

iii the set address requires 9 bits, since a total of 8192/4 = 2048 lines are shared into 2048/4 = 512 sets, and

iv the tag requires 32 − 2 − 9 = 21 bits.

d The obvious alternative would be a write-back approach. The idea is to associate another flag (in addition to the

valid flag) with each cache line: the “dirty” flag keeps track of whether the data in a cache line has been altered

or not. Initially, the dirty bit for each line is set to false. To deal with a store into address 𝑥, the cache operates

as follows:

i Translate 𝑥 into a set number 𝑥𝑠𝑒𝑡 and (sub)word address 𝑥𝑤𝑜𝑟𝑑.

ii Check whether 𝑥 is resident within 𝑥𝑠𝑒𝑡 ; if not, a fetch is performed to make it resident. To implement the

write-back policy, if a line is evicted during the fetch then the associated dirty flag is checked. If the flag is true
then the data held by the line has been altered and needs to be stored in main memory to ensure consistency;

otherwise no store is required (since the cache and main memory are already consistent).

iii Updates word 𝑥𝑤𝑜𝑟𝑑 within the appropriate line in 𝑥𝑠𝑒𝑡 with the data, and sets the dirty flag to true so the line

is viewed as altered.

The advantage of this approach is a reduction in accesses to main memory (even though the latency can be

hidden, the extra accesses made by a write-through policy can still imply unnecessary power consumption);

disadvantages include the extra space required for the additional dirty flags, and extra complexity in the

algorithms for access (e.g., to check and update said flags).

� S241. a The main components to include in such a diagram are

i the four internal transistors that form a loop of two NOT gates, and

ii the two external transistors that allow access to the loop via the bit- and word-lines.

The diagram is as follows:

wl
|
v

+---------------------+---------------------+
| |
| ----+------------------+----- V_dd |
| | | |
| v v |
| +--------+ +--------+ |
| | P-type |--+ +--| P-type | |
| +--------+ | | +--------+ v
| | | | | +--------+
v | +---|------+--------| N-type |<-- ~bl

+--------+ | | | | +--------+
bl -->| N-type |------+-------|---+ |

+--------+ | | | |
+--------+ | | +--------+
| N-type |--+ +--| N-type |
+--------+ +--------+

^ ^
| |

----+------------------+----- VSS

b The algorithm consists of three main parts, namely address translation, line filling and line access. Assuming

CACHE[𝑖] denotes the 𝑖-th line, and CACHE[𝑖]𝑣𝑎𝑙𝑖𝑑 and CACHE[𝑖]𝑑𝑎𝑡𝑎 denote associated valid flag and data (i.e.,

the sequence of words), the algorithm is as follows:

git # b282dbb9 @ 2025-09-03 129

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

Input: An 32-bit address 𝑥
Output: The 𝑤-bit value held in MEM[𝑥]

1 𝑥𝑤𝑜𝑟𝑑 ← 𝑥 mod 𝑤
2 𝑥𝑙𝑖𝑛𝑒 ← ⌊𝑥/𝑤⌋ mod 𝑙
3 𝑥𝑡𝑎𝑔 ← ⌊(𝑥/𝑤)/𝑙⌋
4 𝑥𝑤𝑜𝑟𝑑𝑙𝑒𝑠𝑠 ← ⌊𝑥/𝑤⌋ · 𝑤
5 if CACHE[𝑥𝑙𝑖𝑛𝑒]𝑣𝑎𝑙𝑖𝑑 = false or CACHE[𝑥𝑙𝑖𝑛𝑒]𝑡𝑎𝑔 ≠ 𝑥𝑡𝑎𝑔 then
6 for 𝑖 from 0 upto 𝑤 − 1 do
7 CACHE[𝑥𝑙𝑖𝑛𝑒]𝑑𝑎𝑡𝑎[𝑖] ← MEM[𝑥𝑤𝑜𝑟𝑑𝑙𝑒𝑠𝑠 + 𝑖]
8 end
9 CACHE[𝑥𝑙𝑖𝑛𝑒]𝑣𝑎𝑙𝑖𝑑 ← true

10 CACHE[𝑥𝑙𝑖𝑛𝑒]𝑡𝑎𝑔 ← 𝑥𝑡𝑎𝑔
11 end
12 return CACHE[𝑥𝑙𝑖𝑛𝑒]𝑑𝑎𝑡𝑎[𝑥𝑤𝑜𝑟𝑑]

c i First, we find that

i. the word address requires 3 bits, since there are 2
3 = 8 words per-line,

ii. the line address requires 7 bits, since there are 2
7 = 128 lines, and

iii. the tag requires 22 bits, since of a 32-bit address 10 are used to specify the word and line address.

The total number of bits required to store the data is 𝑙 · 𝑤 · 8 = 128 · 8 · 8 = 8192. In addition, meta-data

consisting of a 1-bit valid flag and 22-bit tag is required for each line; this totals 𝑙 · (1 + 22) = 128 · 23 = 2944

bits. Overall, this means 11136 bits and hence the same number of SRAM cells.

ii This is an open-ended question, but two obvious example policies are as follows:

i. A basic policy would be to set the control-signal for each cell in a given line equal to the associated valid

flag: if the line is valid the cells operate as normal, but are in low-power mode otherwise. Put another way,

if the line contains no valid data no power is wasted storing it.

ii. A more advanced idea would be to maintain a counter for each line; this would be analogous to the Least

Recently Used (LRU) counter maintained by a set-associative cache. Once the counter associated with a

given line reaches a threshold, the cells are turned into low-power mode: the intuition is that if the content

in a line has not been accessed for a long time, there is less chance it will be accessed in the future and hence

we can save power by evicting the content. The trade-off is that by doing so, a subsequent access that would

have been cache-hit may now be a cache-miss.

Part XV: Performance measurement

� S242. a MIPS stands for Millions of Instructions Per Second; it is calculated by measuring how many instructions

are executed in a one second period. The advantages of this are that it is easy to calculate but is is not a good

measure of performance since it ignores how much work gets done during execution: a processor executing

many simple instructions per second might do exactly the same amount of work as another processor which

executes fewer more complex instructions in the same time period. CPI stands for Cycles Per Instruction. The

idea is to decompose the performance in to the product of how long each instruction type takes to execute and

how often that instruction type is executed. Typically, a RISC processor will have a low CPI rating whereas a

CISC processor will have a high CPI rating. The advantages are that we can now factor in how much work is

being done by each instruction and ignore clock rate, the disadvantage is that it relies on an average program

which clearly never exists in real-life.

b We know that the overall CPI can be computed using

𝐶𝑃𝐼 =
∑
𝑡∈𝑇
ℱ𝑡 · ℒ𝑡

where ℱ𝑡 and ℒ𝑡 denote the frequency of execution and latency of instruction type 𝑡 respectively, and here we

have that 𝑇 = {arithmetic, branch, load, store}. So applying this formula to the initial numbers, we find:

git # b282dbb9 @ 2025-09-03 130

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

Arithmetic ℱ · ℒ = 0.5 · 1 = 0.5
Branch ℱ · ℒ = 0.2 · 2 = 0.4
Load ℱ · ℒ = 0.2 · 5 = 1.0
Store ℱ · ℒ = 0.1 · 3 = 0.3
Total 2.2

Using the same method on the numbers after the change, we find:

Arithmetic ℱ · ℒ = 0.55 · 1 = 0.55

Branch ℱ · ℒ = 0.25 · 2 = 0.50

Load ℱ · ℒ = 0.10 · 5 = 0.50

Store ℱ · ℒ = 0.10 · 3 = 0.30

Total 1.85

The speed-up can be calculated as the ration of the new and old performance: we have that the new processor

is 1.19 times faster than the old one, i.e., about a 16% improvement.

� S243. • Firstly, it is sometimes difficult to know what one should be measuring. Latency (i.e., execution time)

is often the most important factor, but throughput for example is also a valid performance metrics. Without

some idea of what the interesting feature of performance is, constructing a benchmark program to measure it is

difficult.

• Next it is difficult, if not impossible, to find a suite of benchmark programs that perfectly represent “typical”

workloads. Within a restricted domain (e.g., scientific or media kernels) this is more tractable, but generally one

can always point at examples that are somehow atypical and hence which are not modelled by the benchmark.

• Even once the benchmark programs themselves are selected, the problem of input data is important. Processor

features such as branch prediction and cache memories have data-dependent behaviour; this implies that

benchmarking them with worst-case input will yield much different behaviour than best-case.

• Finally, it can often be difficult to actually perform measurements if a high degree of accuracy is required; often

this requires support from the processor (e.g., performance counters) and long experimental trials to smooth

over any local anomalies.

Following the description above, one might clearly “cheat” by using input data which is best-case in some way and

hence does not represent typical use of the benchmark. Another approach might be to develop a special-purpose

compiler that behaves in some special way for the benchmark program. A compiler is supposed to be general-

purpose, but if it can make assumptions about the input (i.e., that the input is a particular benchmark program),

it can potentially generate much more efficient output than one might expect.

Part XVI: Techniques for efficient implementation

� S244. a A basic approach would be to use c as an index into an array which we initialise with the right value.

For example, the C function would be

uint16_t choose(bool c, uint16_t y, uint16_t z) {
uint16_t T[2] = { z, y }

return T[c];
}

Depending on the characteristics of memory access, this might be slow however: although it is straight-line and

hence does not suffer from pipeline stalls from branch instructions, it includes three memory accesses (depending

on the addressing modes in the processor. An improvement might be constructed by first considering a mask

value m = c − 1 so that if c = 0 we have that m=-1 and if c = 1 then m = 0.

Because of the way the two’s-complement representation works, if c = 0 then m is a value where all the bits are

set to 1 and if c = 0 then m is a value where all the bits are set to 0. We can use this mask value to select the right

result from y and z using the logical expression

x = (m ∧ z) ∨ (¬m ∧ y).

That is, if c = 0 then m is a value with all bits set to 1 and we have that m ∧ z = z and ¬m ∧ y = 0 so

(m ∧ z) ∨ (¬m ∧ y) = z. Conversely, if c = 1 then m is a value with all bits set to 0 and we have that m ∧ z = 0 and

¬m ∧ y = y so (m ∧ z) ∨ (¬m ∧ y) = y. So we can implement the function in C as

git # b282dbb9 @ 2025-09-03 131

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

uint16_t choose(bool c, uint16_t y, uint16_t z) {
uint16_t m = (uint16_t)(c) - 1;

return (m & z) | (~m & y);
}

This is both straight-line and memory access free; it can be executing using only five instructions.

b A basic approach might be to find an addition chain for 15 so that we can decompose the multiplication into a

series of additions. By forcing summands to be powers-of-two (which can be efficiently generated using shifts),

we can implement the operation as

uint16_t mul(uint16_t x) {
return (x << 3) +

(x << 2) +
(x << 1) +
(x) ;

}

such that the return value is

x · 23 + x · 22 + x · 21 + x · 20 = x · 8 + x · 4 + x · 2 + x · 1 = x · 15

However, a more efficient addition chain can be constructed by noticing 15 = 16− 1; since we can generate x · 16

efficiently, we can rewrite our solution as

uint16_t mul(uint16_t x) {
return (x << 4) -

(x) ;
}

which uses two less shifts and two less additions.

c The basic approach here is to iterate through all the bits in x, incrementing a counter if for each one that we find

is equal to 1. For example, the C function would be

int H(uint16_t x) {
int t = 0;

for(int i = 0; i < 16; i++) {
if((x >> i) & 1) {
t = t + 1;

}
}

return t;
}

However, this is inefficient for a number of reasons. Specifically, the cost of operating the loop is high in

comparison with the cost of the loop body: the overhead is significant. Furthermore, the instruction sequence

required will include several branches which might stall the processor pipeline and degrade performance. A

better approach is the straight-line C function

int H(uint16_t x) {
x = (x & 0x5555) + ((x >> 1) & 0x5555);
x = (x & 0x3333) + ((x >> 2) & 0x3333);
x = (x & 0x0F0F) + ((x >> 4) & 0x0F0F);
x = (x & 0x00FF) + ((x >> 8) & 0x00FF);

return (int)(x);
}

This works using a divide-and-conquer approach; each line of the function is counting bits within a subset of

the original value. We mask xwith the constant 5555(16) which extracts all the low bits in 2-bit regions within x;
we also shift x right by one and again mask to extract all the corresponding high bits. These values are added

to count the number of bits within the 2-bit regions. We divide-and-conquer again by considering 4-bit regions

and so on until we end up with a total for the full 16-bit region.

git # b282dbb9 @ 2025-09-03 132

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

d Perhaps the easiest example to understand is the population count function. Since the input x is only 16-bits,

there are only 2
16

potential values the caller can use for x. Thus, we can easily compute HW(x) for every one

of these inputs, store them in a table and then look them up rather than running the original function. For

example, the C functions could be

int* T = NULL;

void precomp() {
T = (uint16_t*)(malloc(65536 * sizeof(int)));

for(int i = 0; i < 65536; i++) {
uint16_t x = i;

x = (x & 0x5555) + ((x >> 1) & 0x5555);
x = (x & 0x3333) + ((x >> 2) & 0x3333);
x = (x & 0x0F0F) + ((x >> 4) & 0x0F0F);
x = (x & 0x00FF) + ((x >> 8) & 0x00FF);

T[i] = (int)(x);
}

}

int H(uint16_t x) {
return T[x];

}

In the first function, we run through all possible values of x and store the results HW(x) in the table T. Then, in

the actual function for HW(x) we look the value up from the table. Clearly this only produces an improvement

if we use the function very often otherwise we have wasted time computing all the possible results; additionally

we have made a trade-off in terms of time and space. That is, our pre-computation requires some memory to

hold T so although it takes less time per-call to HW(x), it requires more space than the initial version.

� S245. Obviously combinations of the optimisation techniques can be applied, here we simply treat each one

separately.

Offline pre-computation means doing some one-off computation before the function is called so that we can

accelerate execution when it is called; since the pre-computation is offline in this case, it should be possible at

compile-time i.e., before the program is even execute. In this context, we can pre-compute a table, say T, where

each T[i] is the result of applying the function to i. This is possible since elements of the input A are only

16-bits in size: there are only 2
16 = 65536 16-bit entries in the table so although this consumes some memory, it

is not a lot of memory. Then, when the function is called we simply look-up T[i] rather than doing any actual

computation:

uint16_t* T = NULL;

void precomp() {
T = (uint16_t*)(malloc(65536 * sizeof(uint16_t)));

for(int i = 0; i < 65536; i++) {
uint8_t l = (i) & 0xFF;
uint8_t h = (i >> 8) & 0xFF;

l = l / 2;
h = h / 2;

T[i] = ((uint16_t)(l)) |
((uint16_t)(h) << 8) ;

}
}

void packed_div2(uint16_t* A) {
for(int i = 0; i < 3; i++) {
A[i] = T[A[i]];

}
}

Note that rather than running the pre-computation function at run-time (i.e., when the program is loaded), we

could create the table at compile-time and simply load it as a constant array or even embed it in the program

source code.

Roughly speaking, specialisation is the act of replacing general-purpose operations with special-purpose

operations that are less expensive. In this function, one example that occurs is division by the constant two;

using a general-purpose division is expensive (division takes longer than most operations on a typical processor).

However, division by 2
𝑘

is equivalent to a right-shift by 𝑘 bits which is less expensive. We can therefore re-write

the function:

git # b282dbb9 @ 2025-09-03 133

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

void packed_div2(uint16_t* A) {
for(int i = 0; i < 3; i++) {
uint8_t l = (A[i]) & 0xFF;
uint8_t h = (A[i] >> 8) & 0xFF;

l = l >> 1;
h = h >> 1;

A[i] = ((uint16_t)(l)) |
((uint16_t)(h) << 8) ;

}
}

Note that in this case, we could also include the right-shift of h with the shift required to mask the value in the

first place; this saves another operation. Also, it is possible to avoid unpacking and repacking all together by

performing the shift in one go and using a mask to patch up the result:

void packed_div2(uint16_t* A) {
for(int i = 0; i < 3; i++) {
A[i] = (A[i] >> 1) & 0x7F7F;

}
}

Optimisation using parallelism is slightly tricky to write down in C, but roughly speaking you have to imagine

that the host processor is equipped with the facility for SIMD parallelism: it can execute the same instruction on

many data items at once (where the data items are packed into one blob). So if one can perform two divisions at

once for example, one can clearly perform the divisions of l and h at the same time and get a speed-up of roughly

two for this fragment of the function. This could be thought of as similar to this function:

void packed_div2(uint16_t* A) {
for(int i = 0; i < 3; i++) {
uint8_t l = (A[i]) & 0xFF;
uint8_t h = (A[i] >> 8) & 0xFF;

par {
l = l / 2;
h = h / 2;

}

A[i] = ((uint16_t)(l)) |
((uint16_t)(h) << 8) ;

}
}

where the par keyword is denoting parallelism. For more able processors (e.g., multi-core), one might actually be

able to run the (independent) iterations of the loop in parallel with each other.

Finally, program restructuring roughly means re-writing the program control-flow so that some advantage is

gained: optimisations of this type include loop unrolling, loop fusion, loop fission and so on. Loop unrolling is a

good candidate in this case since we are paying a high price for executing loop control (such as the test, the counter

increment and so on) even though we know there will only ever be three iterations. Therefore, we can eliminate

this overhead and re-write the function as:

void packed_div2(uint16_t* A) {
uint8_t l = (A[0]) & 0xFF;
uint8_t h = (A[0] >> 8) & 0xFF;

l = l / 2;
h = h / 2;

A[0] = ((uint16_t)(l)) |
((uint16_t)(h) << 8) ;

l = (A[1]) & 0xFF;
h = (A[1] >> 8) & 0xFF;

l = l / 2;
h = h / 2;

A[1] = ((uint16_t)(l)) |
((uint16_t)(h) << 8) ;

l = (A[2]) & 0xFF;
h = (A[2] >> 8) & 0xFF;

l = l / 2;
h = h / 2;

git # b282dbb9 @ 2025-09-03 134

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

A[2] = ((uint16_t)(l)) |
((uint16_t)(h) << 8) ;

}

which looks longer but potentially executes faster.

� S246. a In the fragment, i is the induction variable (i.e., the loop counter) and n is the loop bound (i.e., the

number of times the loop body is executed). If we can determine n statically, we can replace the loop with n
copies of the loop body where in the 𝑗-th copy we replace the induction variable n with the constant 𝑗. This is

termed full loop unrolling; for example with n = 4 we would unroll the loop to get

A[0] = B[0] + C[0];
A[1] = B[1] + C[1];
A[2] = B[2] + C[2];
A[3] = B[3] + C[3];

The unrolled alternative might increase performance because:

i The overhead of operating the loop (i.e., initialisation, test and update of the induction variable) is eliminated;

essentially the unrolled loop requires less instructions to be executed.

ii At least one branch per-iteration is required to direct control-flow from the bottom of the loop body back to

the top again. This is overhead as above, but potentially also causes a problem in pipelined processors if we

cannot accurately predict the branch direction and successfully use speculative execution. By eliminating the

branch, this problem is also eliminated and the straight-line unrolled loop might execute faster as a result.

However, it might decrease performance because:

i Depending on n, the number of instructions required to implement the loop will typically be smaller than

the number required to implement the unrolled alternative (although the loop might still execute more

instructions at run-time). As a result instructions in the unrolled loop are not as spatially local as in the loop: a

significant distance might exist between the first and last instructions for example. This means an instruction

cache might be less effective. Furthermore, it might be hard to keep the unrolled loop in the cache since there

is more chance of interference. Both features mean there is a chance that performance could be decreased.

b Continuing from the solution above, if we do not know n or it is too large to permit full unrolling we might

partially unroll the loop; this means that we reduce the number of iterations but do not totally eliminate the

loop. For example, imagine n = 400: we probably would not want to fully unroll the loop in this case but could

instead partly unroll by a factor of say four to get:

for(int i = 0; i < 400; i += 4) {
A[i+0] = B[i+0] + C[i+0];
A[i+1] = B[i+1] + C[i+1];
A[i+2] = B[i+2] + C[i+2];
A[i+3] = B[i+3] + C[i+3];

}

Now consider the case of n = 402. If we use the same method as above, we end up with two extra iterations that

we cannot accommodate in the main loop since the unrolling factor (of four) does not exactly divide n. We need

to add a loop epilogue after the main loop to cope with the cases of i = 400 and i = 401:

for(int i = 0; i < 400; i += 4) {
A[i+0] = B[i+0] + C[i+0];
A[i+1] = B[i+1] + C[i+1];
A[i+2] = B[i+2] + C[i+2];
A[i+3] = B[i+3] + C[i+3];

}

A[400] = B[400] + C[400];
A[401] = B[401] + C[401];

or alternatively we could add a loop prologue before the main loop:

git # b282dbb9 @ 2025-09-03 135

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

A[0] = B[0] + C[0];
A[1] = B[1] + C[1];

for(int i = 2; i < 402; i += 4) {
A[i+0] = B[i+0] + C[i+0];
A[i+1] = B[i+1] + C[i+1];
A[i+2] = B[i+2] + C[i+2];
A[i+3] = B[i+3] + C[i+3];

}

git # b282dbb9 @ 2025-09-03 136

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk

	I Mathematical preliminaries
	II Basics of digital logic: general
	III Basics of digital logic: minimisation via Karnaugh maps
	IV Basics of computer arithmetic
	V Basics of memory technology
	VI Digital logic design using Verilog
	VII Computational machines: Finite State Machines (FSMs)
	VIII Computational machines: Register Machines (RMs)
	IX Hardware test and debug
	X Processor design: general
	XI Processor design: Instruction Set Architecture (ISA)
	XII Processor design: basic micro-architecture
	XIII Processor design: advanced micro-architecture
	XIV The memory hierarchy
	XV Performance measurement
	XVI Techniques for efficient implementation

