
COMS10015 lecture: week #1

▶ Agenda: a non-technical introduction to

1. unit objectives,

2. unit organisation, and

3. some motivation (i.e., why the unit exists).
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Part 1: unit objectives, i.e., the “what” (1)

▶ The term computer architecture can be explained via analogy, e.g., if

building a house = architect + civil engineer

then

building a computer = computer architect + electrical engineer.

Objectives

Pp

Put simply, after completing this unit you should be able to understand and apply concepts relating to

1. how computers are designed and manufactured, e.g., how logic gates are organised to perform computation

2. how computers work, e.g., how instructions and so programs are executed

3. how computers can be used more effectively, e.g., behaviour of high-level programs wrt. low-level resources

reading

computer = computer processor + supporting infrastructure (i.e., the wider computer system).

https://www.bris.ac.uk/unit-programme-catalogue/UnitDetails.jsa?unitCode=COMS10015
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Part 1: unit objectives, i.e., the “what” (3)

Theory
(data structures and algorithms)

Application

Compiler

Operating System

Instruction Set Architecture (ISA)

Micro-architecture

Digital (micro-)electronics

Theory
(Mathematics and Physics)

hardware

software

interface

https://xkcd.com/676
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Part 2: unit organisation, i.e., the “how” (1)

▶ Important:

1. The unit is delivered by the following members of (academic) staff

Tom Deakin ⇒ Lecturer and Unit Director

Daniel Page ⇒ Lecturer

supplemented by, e.g., a wider team who act in/as Teaching Support Roles (TSRs).
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Part 2: unit organisation, i.e., the “how” (1)

▶ Important:

2. At a high(er) level, the unit is delivered as a set of themes:

Theme #1 ⇒ “from Mathematics and Physics to digital logic”

Theme #2 ⇒ “from digital logic to computer processors”

Theme #3 ⇒ “from computer processors to software applications”

3. At a low(er) level, the unit involves the following activities:

lecture slot ⇒ synchronous, i.e., timetabled

⇒ in-person

lab. slot ⇒ synchronous, i.e., timetabled

⇒ in-person

drop-in slot ⇒ synchronous, i.e., timetabled

⇒ in-person and online, i.e., hybrid

https://www.bristol.ac.uk/timetables/TimetablePDF.pdf?unit=COMS10015
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Part 2: unit organisation, i.e., the “how” (1)

▶ Important:

3. The summative assessment for this unit includes

summative coursework assignment ; TB1, week 10

↦→ 30% weight = 6CP

summative exam ; TB2, assessment period

↦→ 70% weight = 14CP

4. The formative assessment for this unit includes

formative exam #1 ; TB1, week 6

formative exam #2 ; TB1, week 12

formative exam #3 ; TB2, week 18

formative exam #4 ; TB2, week 24

none of which is credit bearing, i.e., it has 0% weight = 0CP.
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Part 2: unit organisation, i.e., the “how” (1)

▶ Important:

5. Everything related to the unit is accessible via either
▶ the internal-facing Blackboard-based unit web-site

https://www.ole.bris.ac.uk

or
▶ the external-facing GitHub-based unit web-site

https://cs-uob.github.io/COMS10015

or, more specifically,

unit-wide communication, e.g., announcements ⇒ Blackboard

}
internal-facingassessment submission, marks, and feedback ⇒ Blackboard

discussion forum ⇒ Teams

teaching material ⇒ GitHub

}
external-facing
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Part 2: unit organisation, i.e., the “how” (2)
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Part 2: unit organisation, i.e., the “how” (2)
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Part 2: unit organisation, i.e., the “how” (2)
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Part 2: unit organisation, i.e., the “how” (2)
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Part 3: unit motivation, i.e., the “why” (1)

Computer architecture as hardware design

▶ Question: which processor designs have a larger deployment (i.e., sell more units)?

▶ Answer: probably ARM, because the embedded processor market is so large;

1. keep in mind that

computer = {desktop computer, laptop computer, embedded computer, . . .},
i.e., there’s a lot more to the topic than traditional models of computing, and

2. knowledge driven industries demand you “understand” not just “do”.
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Part 3: unit motivation, i.e., the “why” (2)

Computer architecture as hardware design

▶ Question:

1. what is this device, and

2. who is the designer and/or vendor?

▶ Answer: this is an open-hardware based laptop called Novena [7];

▶ designed by Andrew “bunnie” Huang and Sean “xobs” Cross,

▶ houses an ARM-based processor plus Xilinx-based FPGA,

▶ raised ∼ $780, 000 via CrowdSupply campaign: you can buy one,

▶ if equipped with the right set of skills, you can design and manufacture something similar.

https://spectrum.ieee.org/consumer-electronics/portable-devices/novena-a-laptop-with-no-secrets
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Part 3: unit motivation, i.e., the “why” (3)

High-level applications of computer architecture

Quote

Pp

People who are really serious about software should make their own hardware.

– Kay (https://en.m.wikiquote.org/wiki/Alan_Kay)
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Part 3: unit motivation, i.e., the “why” (4)

High-level applications of computer architecture

▶ Question: ranging from the late 1970s to the late 1990s, spot the difference(s).

▶ Answer: advances in at least two fields, namely

1. improved 2D and 3D computer graphics techniques, and

2. improved general-purpose processors and display technologies (including a lineage of

special-purpose GPUs)

suggesting computer architecture evolves symbiotically with other fields.
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Part 3: unit motivation, i.e., the “why” (5)

High-level applications of computer architecture

▶ Question: what do these logos relate to?

▶ Answer: the Meltdown [9] and Spectre [8] security vulnerabilities, which

1. can be broadly classified as micro-architectural side-channel attacks, and, as such,

2. demand deep understanding of processor (micro-)architecture to either

▶ mount (i.e., use), or
▶ prevent.

https://www.meltdownattack.com/meltdown.png

https://www.spectreattack.com/spectre.png
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Part 3: unit motivation, i.e., the “why” (6)

High-level applications of computer architecture

▶ Question: ranging from the late 1990s to the early 2000s, spot the difference(s).

▶ Answer:

▶ left-hand picture is the Google data center circa 1997,

▶ right-hand picture is a Google data center circa 2007

suggesting efficient software stacks demand care with respect to computer

architecture: a holistic approach to CS is unavoidable.

https://research.google.com/people/jeff/
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Part 3: unit motivation, i.e., the “why” (7)

Low-level applications of computer architecture

▶ Question: identify these objects, and spot the difference(s).

▶ Answer:

▶ the left-hand picture is a dual-core Haswell model Intel processor, whereas

▶ the right-hand picture is a quad-core Haswell model Intel processor,

which highlights a trend: parallelism and concurrency are inherent, suggesting that

understanding, coping with, and exploiting them are all vital.

https://download.intel.com/newsroom/kits/core/4thgen/gallery/images/
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▶ the right-hand picture is a quad-core Haswell model Intel processor,

which highlights a trend: parallelism and concurrency are inherent, suggesting that

understanding, coping with, and exploiting them are all vital.

https://download.intel.com/newsroom/kits/core/4thgen/gallery/images/
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Part 3: unit motivation, i.e., the “why” (8)

Low-level applications of computer architecture

▶ Question: given the list of operations (circa 2010)

L1 cache access

0.5 ns = 5.0 · 10
−10

s ≃ 1 seconds

Branch misprediction

5.0 ns = 5.0 · 10
−9

s ≃ 10 seconds

L2 cache access

7.0 ns = 7.0 · 10
−9

s ≃ 10 seconds

Memory access

100.0 ns = 1.0 · 10
−7

s ≃ 3 minutes

Read 1 MB sequentially from memory

250000.0 ns = 2.5 · 10
−4

s ≃ 5 days

IP packet round-trip (local area network)

500000.0 ns = 5.0 · 10
−4

s ≃ 11 days

Disk seek

10000000.0 ns = 1.0 · 10
−2

s ≃ 231 days

Read 1 MB sequentially from disk

20000000.0 ns = 2.0 · 10
−2

s ≃ 462 days

IP packet round-trip (internet)

150000000.0 ns = 1.5 · 10
−1

s ≃ 3472 days

estimate the associated latencies (i.e., how long they take)?

▶ Answer: these operations stem from standard components;

▶ knowing what they are, plus

▶ understanding how they work, i.e., why the absolute and relative latencies are as listed,

is an important step toward using them effectively, or improving their design or

implementation.

https://research.google.com/people/jeff/Stanford-DL-Nov-2010.pdf
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Part 3: unit motivation, i.e., the “why” (9)

Low-level applications of computer architecture

Quote

Pp

Where a calculator on the ENIAC is equipped with 18, 000 vacuum tubes and weighs 30 tons, computers in the future may
have only 1, 000 vacuum tubes and perhaps weigh 1.5 tons.

– Popular Mechanics

Component Then Now

Processor thousands of instructions/sec billions of instructions/sec

Memory hundreds of bits gigabytes

Storage thousands of bytes terabytes

Input/Output paper tape anything you can imagine

Software hand wired high-level languages
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Part 3: unit motivation, i.e., the “why” (10)

Low-level applications of computer architecture

▶ Question: these are valid C programs for x86-32 processors; what do they do, and

why write them like this?

Listing (C)

Pp

1 int weight( uint32_t x ) {
2 int t = 0;
3

4 for( int i = 0; i < 32; i++ ) {
5 if( ( x >> i ) & 1 ) {
6 t += 1;
7 }
8 }
9

10 return t;
11 }

Listing (C)

Pp

1 int weight( uint32_t x ) {
2 int t;
3

4 asm ( " movl $0, %0 ; movl $32, %%ecx ; "
5 "0: decl %%ecx ; bt %%ecx,%1 ; "
6 " adcl $0, %0 ; test %%ecx,%%ecx ; "
7 " jnz 0b ; "
8

9 : "=&r" (t) : "r" (x) : "%ecx", "cc" );
10

11 return t;
12 }

▶ Answer: both compute the Hamming weight of a 32-bit integer x;
▶ C doesn’t provide you with (direct) access to some things a processor can do,

▶ two examples here are adcl (or “add-with-carry”) and bt (or “bit test”) instructions

which means understanding

▶ what a processor can do irrespective of the language, and

▶ use of any non-standard language features

are important aspects of writing better programs.
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Part 3: unit motivation, i.e., the “why” (11)

Low-level applications of computer architecture

▶ Question: these programs sum the elements in an (n × m)-element matrix A; which

one is faster, and why?

Listing (C)

Pp

1 int sum( int n, int m, int A[ n ][ m ] ) {
2 int t = 0;
3

4 for( int i = 0; i < n; i++ ) {
5 for( int j = 0; j < m; j++ ) {
6 t += A[ i ][ j ];
7 }
8 }
9

10 return t;
11 }

Listing (C)

Pp

1 int sum( int n, int m, int A[ n ][ m ] ) {
2 int t = 0;
3

4 for( int j = 0; j < m; j++ ) {
5 for( int i = 0; i < n; i++ ) {
6 t += A[ i ][ j ];
7 }
8 }
9

10 return t;
11 }

▶ Answer: the left-hand one;

▶ C uses a row-major layout for 2-dimensional arrays,

▶ row-major access to x results in sequential access in memory, which is more efficient if a cache

memory is used

which means understanding

▶ how compilers work to produce low-level programs, and

▶ how the memory hierarchy works

are important aspects of writing better programs.
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Part 3: unit motivation, i.e., the “why” (12)

Low-level applications of computer architecture

▶ Question: you want to print n integers held in an array A to the terminal, tab or new

line delimitation is possible; which is better and why?

Listing (C)

Pp

1 void write( FILE* F, int* A, int n ) {
2 for( int i = 0; i < n; i++ ) {
3 fprintf( F, "%d\t", A[ i ] );
4 }
5 }

Listing (C)

Pp

1 void write( FILE* F, int* A, int n ) {
2 for( int i = 0; i < n; i++ ) {
3 fprintf( F, "%d\n", A[ i ] );
4 }
5 }

▶ Answer: if better means faster the left-hand tab delimited one;

▶ the C standard library is more complex than the interface suggests,

▶ printf has a user-space buffer when stdout is connected to a terminal, which reduces the

number of system calls (i.e., interaction with the kernel)

which means understanding

▶ how your program interfaces with the the kernel, and

▶ how the kernel interfaces with physical hardware

are important aspects of writing better programs.
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Part 3: unit motivation, i.e., the “why” (13)

Linkage with historical lessons and effective communication

▶ Question: a string data structure is important; Pascal and C take different approaches,

i.e.,

i = . . . , 3, 4, 5, 6, 7, 8, . . .

MEM = ⟨ . . . , 5, 104, 101, 108, 108, 111, . . . ⟩
Chr(MEM[i]) = . . . , ENQ, ‘h’, ‘e’, ‘l’, ‘l’, ‘o’, . . .

and

i = . . . , 3, 4, 5, 6, 7, 8, . . .

MEM = ⟨ . . . , 104, 101, 108, 108, 111, 0, . . . ⟩
Chr(MEM[i]) = . . . , ‘h’, ‘e’, ‘l’, ‘l’, ‘o’, NUL, . . .

but how was the choice made during development of C?

▶ Answer: many reasons, e.g.,

1. memory footprint was a real issue, so allowing larger strings via a larger P-string length was

unattractive, and

2. the PDP-11 had native support for ASCIIZ strings, meaning the choice of C-string was partly

dictated by hardware,

suggesting that understanding historical design decisions can be relevant and useful in

modern contexts!
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Part 3: unit motivation, i.e., the “why” (14)

Linkage with historical lessons and effective communication

▶ Question: have a look at this 1956 advert for the UNIVAC computer

https://www.youtube.com/watch?v=Pd63MHGQygQ

and compare it with modern adverts of the same type.

▶ Observation: users and terminology have changed a lot

UNIVAC

Pp

... takes business statistics from magnetic tape ... process-

ing them at phenomenal speeds ... computes payrolls elec-

tronically and produce printed cheques, over 8000 cheques

an hour.

Intel Core2 Duo

Pp

... combines two independent processor cores in one phys-

ical package ... processors run at the same frequency and

share up to 6MB of L2 cache and up to 1333MHz Front

Side Bus for truly parallel computing.

suggesting that effective communication via correct notation and terminology is

important.
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Conclusions

▶ Take away points: this unit

1. is challenging and does demand hard work,

2. isn’t exclusively about hardware, and

3. will equip you with the knowledge and skills required to

▶ design better hardware,

▶ design better software,

▶ design better systems (e.g., combinations of hardware and software),

▶ make better trade-offs,

▶ understand complex behaviour,

▶ debug complex behaviour,

▶ think critically,

▶ think “in parallel”,

▶ ...

and, ultimately, solve important and interesting problems (in the short- and longer-term).
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Additional Reading

▶ Wikipedia: Computer architecture. url: https://en.wikipedia.org/wiki/Computer_architecture.

▶ A.S. Tanenbaum and T. Austin. “Section 1.1: Structured computer organisation”. In: Structured Computer Organisation. 6th ed.

Prentice Hall, 2012.

▶ A.S. Tanenbaum and T. Austin. “Section 1.2: Milestones in computer architecture”. In: Structured Computer Organisation. 6th ed.

Prentice Hall, 2012.

▶ A.S. Tanenbaum and T. Austin. “Section 1.3: The computer zoo”. In: Structured Computer Organisation. 6th ed. Prentice Hall,

2012.

▶ W. Stallings. “Chapter 2: Computer evolution and performance”. In: Computer Organisation and Architecture. 9th ed. Prentice

Hall, 2013.

▶ W. Stallings. “Chapter 3: A top-level view of computer function and interconnection”. In: Computer Organisation and Architecture.
9th ed. Prentice Hall, 2013.
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