
COMS10015 lecture: week #1

https://xkcd.com/435

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

https://xkcd.com/435
mailto:csdsp@bristol.ac.uk

COMS10015 lecture: week #1

▶ Agenda: an introduction to

1. propositional logic,

2. Boolean algebra, and

3. application of, i.e., use-cases and rationale for the above within the context of COMS10015.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (1)

▶ A proposition is basically a statement

the temperature is 20
◦C

this statement is false

the temperature is too hot

whose meaning

1. can be evaluated to yield a truth value, i.e., false or true,

2. must be unambiguous,

3. can include free variables, and

4. can be represented using a short-hand variable or function, whereby free variables must be

bound to concrete arguments before evaluation.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (1)

▶ A proposition is basically a statement

the temperature is 20
◦C

this statement is false

the temperature is too hot

whose meaning

1. can be evaluated to yield a truth value, i.e., false or true.

2. must be unambiguous,

3. can include free variables, and

4. can be represented using a short-hand variable or function, whereby free variables must be

bound to concrete arguments before evaluation.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (1)

▶ A proposition is basically a statement

the temperature is 20
◦C

this statement is false

the temperature is too hot

whose meaning

1. can be evaluated to yield a truth value, i.e., false or true,

2. must be unambiguous.

3. can include free variables, and

4. can be represented using a short-hand variable or function, whereby free variables must be

bound to concrete arguments before evaluation.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (1)

▶ A proposition is basically a statement

the temperature is 20
◦C

the temperature is x◦C
this statement is false

the temperature is too hot

whose meaning

1. can be evaluated to yield a truth value, i.e., false or true,

2. must be unambiguous,

3. can include free variables.

4. can be represented using a short-hand variable or function, whereby free variables must be

bound to concrete arguments before evaluation.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (1)

▶ A proposition is basically a statement

f = the temperature is 20
◦C

g(x) = the temperature is x◦C
this statement is false

the temperature is too hot

whose meaning

1. can be evaluated to yield a truth value, i.e., false or true,

2. must be unambiguous,

3. can include free variables, and

4. can be represented using a short-hand variable or function, whereby free variables must be

bound to concrete arguments before evaluation.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

the temperature is not 20
◦C

adding parentheses where needed to add clarity, so that

1. “not x” is denoted ¬x,

2. “x and y” is denoted x ∧ y,

3. “x or y” is denoted x ∨ y, and usually called inclusive-or,

4. “x or y but not x and y” is denoted x ⊕ y, and usually called exclusive-or,

5. “x implies y” is denoted x ⇒ y, and sometimes written “if x then y”, and

6. “x is equivalent to y” is denoted x ≡ y, and sometimes written “x if and only if y” or “x iff. y”.

▶ You might see more formal terms or different notation for the same connectives:

▶ ¬ is often termed logical compliment (or negation),

▶ ∧ is often termed logical conjunction,

▶ ∨ is often termed logical (inclusive) disjunction,

▶ ⊕ is often termed logical (exclusive) disjunction,

▶ ⇒ is often termed logical implication, and

▶ ≡ is often termed logical equivalence.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

¬(the temperature is 20
◦C)

adding parentheses where needed to add clarity, so that

1. “not x” is denoted ¬x,

2. “x and y” is denoted x ∧ y,

3. “x or y” is denoted x ∨ y, and usually called inclusive-or,

4. “x or y but not x and y” is denoted x ⊕ y, and usually called exclusive-or,

5. “x implies y” is denoted x ⇒ y, and sometimes written “if x then y”, and

6. “x is equivalent to y” is denoted x ≡ y, and sometimes written “x if and only if y” or “x iff. y”.

▶ You might see more formal terms or different notation for the same connectives:

▶ ¬ is often termed logical compliment (or negation),

▶ ∧ is often termed logical conjunction,

▶ ∨ is often termed logical (inclusive) disjunction,

▶ ⊕ is often termed logical (exclusive) disjunction,

▶ ⇒ is often termed logical implication, and

▶ ≡ is often termed logical equivalence.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

the temperature is 20
◦C and it is sunny

adding parentheses where needed to add clarity, so that

1. “not x” is denoted ¬x,

2. “x and y” is denoted x ∧ y,

3. “x or y” is denoted x ∨ y, and usually called inclusive-or,

4. “x or y but not x and y” is denoted x ⊕ y, and usually called exclusive-or,

5. “x implies y” is denoted x ⇒ y, and sometimes written “if x then y”, and

6. “x is equivalent to y” is denoted x ≡ y, and sometimes written “x if and only if y” or “x iff. y”.

▶ You might see more formal terms or different notation for the same connectives:

▶ ¬ is often termed logical compliment (or negation),

▶ ∧ is often termed logical conjunction,

▶ ∨ is often termed logical (inclusive) disjunction,

▶ ⊕ is often termed logical (exclusive) disjunction,

▶ ⇒ is often termed logical implication, and

▶ ≡ is often termed logical equivalence.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

(the temperature is 20
◦C) ∧ (it is sunny)

adding parentheses where needed to add clarity, so that

1. “not x” is denoted ¬x,

2. “x and y” is denoted x ∧ y,

3. “x or y” is denoted x ∨ y, and usually called inclusive-or,

4. “x or y but not x and y” is denoted x ⊕ y, and usually called exclusive-or,

5. “x implies y” is denoted x ⇒ y, and sometimes written “if x then y”, and

6. “x is equivalent to y” is denoted x ≡ y, and sometimes written “x if and only if y” or “x iff. y”.

▶ You might see more formal terms or different notation for the same connectives:

▶ ¬ is often termed logical compliment (or negation),

▶ ∧ is often termed logical conjunction,

▶ ∨ is often termed logical (inclusive) disjunction,

▶ ⊕ is often termed logical (exclusive) disjunction,

▶ ⇒ is often termed logical implication, and

▶ ≡ is often termed logical equivalence.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

the temperature is 20
◦C or it is sunny

adding parentheses where needed to add clarity, so that

1. “not x” is denoted ¬x,

2. “x and y” is denoted x ∧ y,

3. “x or y” is denoted x ∨ y, and usually called inclusive-or,

4. “x or y but not x and y” is denoted x ⊕ y, and usually called exclusive-or,

5. “x implies y” is denoted x ⇒ y, and sometimes written “if x then y”, and

6. “x is equivalent to y” is denoted x ≡ y, and sometimes written “x if and only if y” or “x iff. y”.

▶ You might see more formal terms or different notation for the same connectives:

▶ ¬ is often termed logical compliment (or negation),

▶ ∧ is often termed logical conjunction,

▶ ∨ is often termed logical (inclusive) disjunction,

▶ ⊕ is often termed logical (exclusive) disjunction,

▶ ⇒ is often termed logical implication, and

▶ ≡ is often termed logical equivalence.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

(the temperature is 20
◦C) ∨ (it is sunny)

adding parentheses where needed to add clarity, so that

1. “not x” is denoted ¬x,

2. “x and y” is denoted x ∧ y,

3. “x or y” is denoted x ∨ y, and usually called inclusive-or,

4. “x or y but not x and y” is denoted x ⊕ y, and usually called exclusive-or,

5. “x implies y” is denoted x ⇒ y, and sometimes written “if x then y”, and

6. “x is equivalent to y” is denoted x ≡ y, and sometimes written “x if and only if y” or “x iff. y”.

▶ You might see more formal terms or different notation for the same connectives:

▶ ¬ is often termed logical compliment (or negation),

▶ ∧ is often termed logical conjunction,

▶ ∨ is often termed logical (inclusive) disjunction,

▶ ⊕ is often termed logical (exclusive) disjunction,

▶ ⇒ is often termed logical implication, and

▶ ≡ is often termed logical equivalence.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

either the temperature is 20
◦C or it is sunny, but not both

adding parentheses where needed to add clarity, so that

1. “not x” is denoted ¬x,

2. “x and y” is denoted x ∧ y,

3. “x or y” is denoted x ∨ y, and usually called inclusive-or,

4. “x or y but not x and y” is denoted x ⊕ y, and usually called exclusive-or,

5. “x implies y” is denoted x ⇒ y, and sometimes written “if x then y”, and

6. “x is equivalent to y” is denoted x ≡ y, and sometimes written “x if and only if y” or “x iff. y”.

▶ You might see more formal terms or different notation for the same connectives:

▶ ¬ is often termed logical compliment (or negation),

▶ ∧ is often termed logical conjunction,

▶ ∨ is often termed logical (inclusive) disjunction,

▶ ⊕ is often termed logical (exclusive) disjunction,

▶ ⇒ is often termed logical implication, and

▶ ≡ is often termed logical equivalence.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

(the temperature is 20
◦C) ⊕ (it is sunny)

adding parentheses where needed to add clarity, so that

1. “not x” is denoted ¬x,

2. “x and y” is denoted x ∧ y,

3. “x or y” is denoted x ∨ y, and usually called inclusive-or,

4. “x or y but not x and y” is denoted x ⊕ y, and usually called exclusive-or,

5. “x implies y” is denoted x ⇒ y, and sometimes written “if x then y”, and

6. “x is equivalent to y” is denoted x ≡ y, and sometimes written “x if and only if y” or “x iff. y”.

▶ You might see more formal terms or different notation for the same connectives:

▶ ¬ is often termed logical compliment (or negation),

▶ ∧ is often termed logical conjunction,

▶ ∨ is often termed logical (inclusive) disjunction,

▶ ⊕ is often termed logical (exclusive) disjunction,

▶ ⇒ is often termed logical implication, and

▶ ≡ is often termed logical equivalence.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

the temperature being 20
◦C implies that it is sunny

adding parentheses where needed to add clarity, so that

1. “not x” is denoted ¬x,

2. “x and y” is denoted x ∧ y,

3. “x or y” is denoted x ∨ y, and usually called inclusive-or,

4. “x or y but not x and y” is denoted x ⊕ y, and usually called exclusive-or,

5. “x implies y” is denoted x ⇒ y, and sometimes written “if x then y”, and

6. “x is equivalent to y” is denoted x ≡ y, and sometimes written “x if and only if y” or “x iff. y”.

▶ You might see more formal terms or different notation for the same connectives:

▶ ¬ is often termed logical compliment (or negation),

▶ ∧ is often termed logical conjunction,

▶ ∨ is often termed logical (inclusive) disjunction,

▶ ⊕ is often termed logical (exclusive) disjunction,

▶ ⇒ is often termed logical implication, and

▶ ≡ is often termed logical equivalence.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

(the temperature is 20
◦C) ⇒ (it is sunny)

adding parentheses where needed to add clarity, so that

1. “not x” is denoted ¬x,

2. “x and y” is denoted x ∧ y,

3. “x or y” is denoted x ∨ y, and usually called inclusive-or,

4. “x or y but not x and y” is denoted x ⊕ y, and usually called exclusive-or,

5. “x implies y” is denoted x ⇒ y, and sometimes written “if x then y”, and

6. “x is equivalent to y” is denoted x ≡ y, and sometimes written “x if and only if y” or “x iff. y”.

▶ You might see more formal terms or different notation for the same connectives:

▶ ¬ is often termed logical compliment (or negation),

▶ ∧ is often termed logical conjunction,

▶ ∨ is often termed logical (inclusive) disjunction,

▶ ⊕ is often termed logical (exclusive) disjunction,

▶ ⇒ is often termed logical implication, and

▶ ≡ is often termed logical equivalence.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

the temperature is 20
◦C is equivalent to it being sunny

adding parentheses where needed to add clarity, so that

1. “not x” is denoted ¬x,

2. “x and y” is denoted x ∧ y,

3. “x or y” is denoted x ∨ y, and usually called inclusive-or,

4. “x or y but not x and y” is denoted x ⊕ y, and usually called exclusive-or,

5. “x implies y” is denoted x ⇒ y, and sometimes written “if x then y”, and

6. “x is equivalent to y” is denoted x ≡ y, and sometimes written “x if and only if y” or “x iff. y”.

▶ You might see more formal terms or different notation for the same connectives:

▶ ¬ is often termed logical compliment (or negation),

▶ ∧ is often termed logical conjunction,

▶ ∨ is often termed logical (inclusive) disjunction,

▶ ⊕ is often termed logical (exclusive) disjunction,

▶ ⇒ is often termed logical implication, and

▶ ≡ is often termed logical equivalence.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

(the temperature is 20
◦C) ≡ (it is sunny)

adding parentheses where needed to add clarity, so that

1. “not x” is denoted ¬x,

2. “x and y” is denoted x ∧ y,

3. “x or y” is denoted x ∨ y, and usually called inclusive-or,

4. “x or y but not x and y” is denoted x ⊕ y, and usually called exclusive-or,

5. “x implies y” is denoted x ⇒ y, and sometimes written “if x then y”, and

6. “x is equivalent to y” is denoted x ≡ y, and sometimes written “x if and only if y” or “x iff. y”.

▶ You might see more formal terms or different notation for the same connectives:

▶ ¬ is often termed logical compliment (or negation),

▶ ∧ is often termed logical conjunction,

▶ ∨ is often termed logical (inclusive) disjunction,

▶ ⊕ is often termed logical (exclusive) disjunction,

▶ ⇒ is often termed logical implication, and

▶ ≡ is often termed logical equivalence.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

adding parentheses where needed to add clarity, so that

1. “not x” is denoted ¬x,

2. “x and y” is denoted x ∧ y,

3. “x or y” is denoted x ∨ y, and usually called inclusive-or,

4. “x or y but not x and y” is denoted x ⊕ y, and usually called exclusive-or,

5. “x implies y” is denoted x ⇒ y, and sometimes written “if x then y”, and

6. “x is equivalent to y” is denoted x ≡ y, and sometimes written “x if and only if y” or “x iff. y”.

▶ You might see more formal terms or different notation for the same connectives:

▶ ¬ is often termed logical compliment (or negation),

▶ ∧ is often termed logical conjunction,

▶ ∨ is often termed logical (inclusive) disjunction,

▶ ⊕ is often termed logical (exclusive) disjunction,

▶ ⇒ is often termed logical implication, and

▶ ≡ is often termed logical equivalence.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (3)

▶ You can think of the same thing diagrammatically, i.e.,

r = (the temperature is 20
◦C) ∧ (it is sunny)

≡

∧the temperature is 20
◦C

it is sunny
r

but either way, the question is how do we evaluate the (compound) proposition (or

expression) to produce a truth value?

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (4)

▶ Since each statement can only evaluate to true or false, we can enumerate all possible

outcomes in a truth table, e.g., if

x = the temperature is 20
◦C

y = it is sunny

r = (the temperature is 20
◦C) ∧ (it is sunny)

then

inputs︷ ︸︸ ︷ output︷ ︸︸ ︷
x y r

false false false
false true false
true false false
true true true

▶ Note that

1. each row details the output(s) associated with a given assignment to the inputs,

2. if there are n inputs, the truth table will have 2
n

rows.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (5)

Definition

Pp

x y ¬x x ∧ y x ∨ y x ⊕ y x ⇒ y x ≡ y
false false true false false false true true
false true true false true true true false
true false false false true true false false
true true false true true false true true

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: propositional logic (6)

Example

Pp

Imagine that now

x = the temperature is 20
◦C

y = it is sunny

g(z) = the temperature is z◦C
r = ¬(((the temperature is 20

◦C) ∧ (it is sunny)) ∨ (the temperature is z◦C))

which we translate into the diagrammatic form

∧

g(z)
∨ ¬

the temperature is 20
◦C

it is sunny

20

t0

t1

t2 r

An example evaluation might be as follows:

inputs︷ ︸︸ ︷ intermediates︷ ︸︸ ︷ output︷ ︸︸ ︷
x y t0 t1 t2 r

false false false false false true
false true false false false true
true false false true true false
true true true true true false

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2: Boolean algebra (1)

▶ Notice that

1. in elementary algebra, for some number x we have that

x + 0 = x

and

x · 1 = x,
2. in set theory, for some set x we have that

x ∪ ∅ = x

and

x ∩𝒰 = x,
plus we’ve now demonstrated that

3. in propositional logic, for some truth value x we have that

x ∨ false = x

and

x ∧ true = x.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2: Boolean algebra (2)

Thou must

1. work with the set B = {0, 1} of binary
digits, using 0 and 1 instead of false and

true,

2. shorten every statement into either a

variable or function,

3. use unary operators, e.g., ¬ (or NOT),

and binary operators, e.g., ∧ and ∨ (or

AND and OR), to form expressions,

4. manipulate said expressions according

to some axioms (or rules),

then call the result Boolean algebra.

https://en.wikipedia.org/wiki/File:George_Boole.jpg

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

https://en.wikipedia.org/wiki/File:George_Boole.jpg
mailto:csdsp@bristol.ac.uk

Part 2: Boolean algebra (3)

▶ Put more concretely, we now have

1. a set of operators specified by

Definition

Pp

x y ¬x x ∧ y x ∨ y x ⊕ y x ⇒ y x ≡ y
0 0 1 0 0 0 1 1

0 1 1 0 1 1 1 0

1 0 0 0 1 1 0 0

1 1 0 1 1 0 1 1

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition

Pp

plus other rules such as precedence (to deal with ambiguity in the absence of parentheses).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2: Boolean algebra (3)

▶ Put more concretely, we now have

1. a set of operators specified by

Definition

Pp

x y ¬x x ∧ y x ∨ y x ⊕ y x ⇒ y x ≡ y
0 0 1 0 0 0 1 1

0 1 1 0 1 1 1 0

1 0 0 0 1 1 0 0

1 1 0 1 1 0 1 1

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition

Pp

Name Axiom(s)

commutativity x ∧ y ≡ y ∧ x
association (x ∧ y) ∧ z ≡ x ∧ (y ∧ z)
distribution x ∧ (y ∨ z) ≡ (x∧y)∨(x∧z)

Name Axiom(s)

commutativity x ∨ y ≡ y ∨ x
association (x ∨ y) ∨ z ≡ x ∨ (y ∨ z)
distribution x ∨ (y ∧ z) ≡ (x∨y)∧(x∨z)

plus other rules such as precedence (to deal with ambiguity in the absence of parentheses).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2: Boolean algebra (3)

▶ Put more concretely, we now have

1. a set of operators specified by

Definition

Pp

x y ¬x x ∧ y x ∨ y x ⊕ y x ⇒ y x ≡ y
0 0 1 0 0 0 1 1

0 1 1 0 1 1 1 0

1 0 0 0 1 1 0 0

1 1 0 1 1 0 1 1

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition

Pp

Name Axiom(s)

identity x ∧ 1 ≡ x
null x ∧ 0 ≡ 0

idempotency x ∧ x ≡ x
inverse x ∧ ¬x ≡ 0

Name Axiom(s)

identity x ∨ 0 ≡ x
null x ∨ 1 ≡ 1

idempotency x ∨ x ≡ x
inverse x ∨ ¬x ≡ 1

plus other rules such as precedence (to deal with ambiguity in the absence of parentheses).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2: Boolean algebra (3)

▶ Put more concretely, we now have

1. a set of operators specified by

Definition

Pp

x y ¬x x ∧ y x ∨ y x ⊕ y x ⇒ y x ≡ y
0 0 1 0 0 0 1 1

0 1 1 0 1 1 1 0

1 0 0 0 1 1 0 0

1 1 0 1 1 0 1 1

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition

Pp

Name Axiom(s)

absorption x ∧ (x ∨ y) ≡ x
de Morgan ¬(x ∧ y) ≡ ¬x ∨ ¬y

Name Axiom(s)

absorption x ∨ (x ∧ y) ≡ x
de Morgan ¬(x ∨ y) ≡ ¬x ∧ ¬y

plus other rules such as precedence (to deal with ambiguity in the absence of parentheses).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2: Boolean algebra (3)

▶ Put more concretely, we now have

1. a set of operators specified by

Definition

Pp

x y ¬x x ∧ y x ∨ y x ⊕ y x ⇒ y x ≡ y
0 0 1 0 0 0 1 1

0 1 1 0 1 1 1 0

1 0 0 0 1 1 0 0

1 1 0 1 1 0 1 1

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition

Pp

Name Axiom(s)

equivalence x ≡ y ≡ (x ⇒ y) ∧ (y ⇒ x)
implication x ⇒ y ≡ ¬x ∨ y
involution ¬¬x ≡ x

plus other rules such as precedence (to deal with ambiguity in the absence of parentheses).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2: Boolean algebra (6)

Standard forms

Definition

Pp

Consider a Boolean expression:

1. When the expression is written as a sum (i.e., OR) of terms which each comprise the product (i.e., AND) of variables,

e.g.,

(a ∧ b ∧ c)︸ ︷︷ ︸
minterm

∨(d ∧ e ∧ f),

it is said to be in disjunctive normal form or Sum of Products (SoP) form; the terms are called the minterms. Note

that each variable can exist as-is or complemented using NOT, meaning

(¬a ∧ b ∧ c)︸ ︷︷ ︸
minterm

∨(d ∧ ¬e ∧ f),

is also a valid SoP expression.

2. When the expression is written as a product (i.e., AND) of terms which each comprise the sum (i.e., OR) of variables,

e.g.,

(a ∨ b ∨ c)︸ ︷︷ ︸
maxterm

∧(d ∨ e ∨ f),

it is said to be in conjunctive normal form or Product of Sums (PoS) form; the terms are called the maxterms. As

above each variable can exist as-is or complemented using NOT.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2: Boolean algebra (7)

Derived operators

▶ Concept: we can define various derived operators in terms of NOT, AND, and OR.

▶ Example:

▶ “exclusive-OR” or XOR, such that

x ⊕ y ≡ (¬x ∧ y) ∨ (x ∧ ¬y)
so

x y x ⊕ y
0 0 0

0 1 1

1 0 1

1 1 0

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2: Boolean algebra (7)

Derived operators

▶ Concept: we can define various derived operators in terms of NOT, AND, and OR.

▶ Example:

▶ “NOT-AND” or NAND, such that

x ∧ y ≡ ¬(x ∧ y)
so

x y x ∧ y
0 0 1

0 1 1

1 0 1

1 1 0

▶ “NOT-OR” or NOR, such that

x ∨ y ≡ ¬(x ∨ y)
so

x y x ∨ y
0 0 1

0 1 0

1 0 0

1 1 0

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 3: application (1)

https://abstrusegoose.com/206

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

https://abstrusegoose.com/206
mailto:csdsp@bristol.ac.uk

Part 3: application (2)

▶ (Fairly) reasonable question(s):

1. “I thought this was CS, not Maths!”, and

2. “why does this unit duplicate material in other units?”.

▶ Answer: it isn’t, and it doesn’t (well, not too much) ... note that

▶ theoretical concepts, e.g., often have significant practical motivations or implications, and

▶ it’s perfectly reasonable to utilise Electronic Design Automation (EDA) [3] tools.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 3: application (2)

▶ (Fairly) reasonable question(s):

1. “I thought this was CS, not Maths!”, and

2. “why does this unit duplicate material in other units?”.

▶ Answer: it isn’t, and it doesn’t (well, not too much) ... note that

▶ theoretical concepts, e.g., often have significant practical motivations or implications, and

▶ it’s perfectly reasonable to utilise Electronic Design Automation (EDA) [3] tools.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 3: application (3)

Axiomatic manipulation ; optimisation

▶ Question: simplify the Boolean expression

(¬(a ∨ b) ∧ ¬(c ∨ d ∨ e)) ∨ ¬(a ∨ b)

into a form that contains the fewest operators possible.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 3: application (3)

Axiomatic manipulation ; optimisation

▶ Question: simplify the Boolean expression

(¬(a ∨ b) ∧ ¬(c ∨ d ∨ e)) ∨ ¬(a ∨ b)

into a form that contains the fewest operators possible.

▶ Solution #1: less steps.

(¬(a ∨ b) ∧ ¬(c ∨ d ∨ e)) ∨ ¬(a ∨ b)
= ¬(a ∨ b) ∨ (¬(a ∨ b) ∧ ¬(c ∨ d ∨ e)) (commutativity)

= ¬(a ∨ b) (absorption)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 3: application (3)

Axiomatic manipulation ; optimisation

▶ Question: simplify the Boolean expression

(¬(a ∨ b) ∧ ¬(c ∨ d ∨ e)) ∨ ¬(a ∨ b)

into a form that contains the fewest operators possible.

▶ Solution #2: more steps.

(¬(a ∨ b) ∧ ¬(c ∨ d ∨ e)) ∨ ¬(a ∨ b)
= ((¬a ∧ ¬b) ∧ ¬(c ∨ d ∨ e)) ∨ ¬(a ∨ b) (de Morgan)

= ((¬a ∧ ¬b) ∧ (¬c ∧ ¬d ∧ ¬e)) ∨ ¬(a ∨ b) (de Morgan)

= ((¬a ∧ ¬b) ∧ (¬c ∧ ¬d ∧ ¬e)) ∨ (¬a ∧ ¬b) (de Morgan)

= (¬a ∧ ¬b) ∨ ((¬a ∧ ¬b) ∧ (¬c ∧ ¬d ∧ ¬e)) (commutativity)

= (¬a ∧ ¬b) (absorption)

= ¬(a ∨ b) (de Morgan)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 3: application (4)

Axiomatic manipulation ; optimisation

▶ Question: simplify the Boolean expression

(a ∧ b ∧ c) ∨ (¬a ∧ b) ∨ (a ∧ b ∧ ¬c)

into a form that contains the fewest operators possible.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 3: application (4)

Axiomatic manipulation ; optimisation

▶ Question: simplify the Boolean expression

(a ∧ b ∧ c) ∨ (¬a ∧ b) ∨ (a ∧ b ∧ ¬c)

into a form that contains the fewest operators possible.

▶ Solution:

(a ∧ b ∧ c) ∨ (¬a ∧ b) ∨ (a ∧ b ∧ ¬c)
= (a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (¬a ∧ b) (commutativity)

= (a ∧ b) ∧ (c ∨ ¬c) ∨ (¬a ∧ b) (distribution)

= (a ∧ b) ∧ 1 ∨ (¬a ∧ b) (inverse)

= (a ∧ b) ∨ (¬a ∧ b) (identity)

= b ∧ (a ∨ ¬a) (distribution)

= b ∧ 1 (inverse)

= b (identity)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 3: application (5)

Axiomatic manipulation ; optimisation

Quote

Pp

If I designed a computer with 200 chips, I tried to design it with 150. And then I would try to design it with 100. I just tried
to find every trick I could in life to design things real tiny.

– Wozniak

Quote

Pp

So I took 20 chips off their board; I bypassed 20 of their chips.

– Wozniak

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 3: application (6)

Axiomatic manipulation ; optimisation

https://en.wikipedia.org/wiki/File:Shugart_SA400.jpg

https://en.wikipedia.org/wiki/File:Interface_Card_-_Disk_II_Interface_Apple2.jpg

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

https://en.wikipedia.org/wiki/File:Shugart_SA400.jpg
https://en.wikipedia.org/wiki/File:Interface_Card_-_Disk_II_Interface_Apple2.jpg
mailto:csdsp@bristol.ac.uk

Part 3: application (7)

Practical use-cases ; richer specification

▶ Concept: truth tables can accommodate don’t care entries, e.g.,

x y r
? 0 1

0 1 ?
1 1 0

such that

▶ a ? (rather than 0 or 1) means we “don’t care” (≠ “don’t know”),

▶ on the LHS, for an input,

▶ ? is a wildcard (or short-hand),

▶ it means 0 and 1,

▶ we’ve compressed two truth table rows into one.

▶ on the RHS, for an output,

▶ ? is a choice,

▶ it means 0 or 1,

▶ we can select which one to, e.g., optimise the associated expression.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 3: application (8)

Universality ; manufacturability

▶ Fact: NAND and NOR are functionally complete (or universal), e.g.,

¬x ≡ x ∧ x
x ∧ y ≡ (x ∧ y) ∧ (x ∧ y)
x ∨ y ≡ ¬x ∧ ¬y ≡ (x ∧ x) ∧ (y ∧ y)

which we can prove via

x y x ∧ y x ∧ x y ∧ y (x ∧ y) ∧ (x ∧ y) (x ∧ x) ∧ (y ∧ y)
0 0 1 1 1 0 0

0 1 1 1 0 0 1

1 0 1 0 1 0 1

1 1 0 0 0 1 1

∴ any Boolean function can be expressed using a single operator.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 3: application (9)

Universality ; manufacturability

▶ Question: translate

x ∧ (y ∨ z)
into a version using NAND only.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 3: application (9)

Universality ; manufacturability

▶ Question: translate

x ∧ (y ∨ z)
into a version using NAND only.

▶ Solution #1: apply the identities naively to get

x ∧ (y ∨ z)
= x ∧ ((y ∧ y) ∧ (z ∧ z))
= (x ∧ ((y ∧ y) ∧ (z ∧ z))) ∧ (x ∧ ((y ∧ y) ∧ (z ∧ z)))

where t = x ∧ ((y ∧ y) ∧ (z ∧ z)) is a common sub-expression [2].

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 3: application (9)

Universality ; manufacturability

▶ Question: translate

x ∧ (y ∨ z)
into a version using NAND only.

▶ Solution #2: apply the identities intelligently to get

x ∧ (y ∨ z)
= x ∧ ((y ∧ y) ∧ (z ∧ z))
= t ∧ t

where t = x ∧ ((y ∧ y) ∧ (z ∧ z)) is a common sub-expression [2].

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Conclusions

▶ Take away points:

1. The design of computational devices, e.g., micro-processors, isn’t ad hoc: Boolean algebra

offers a theoretical basis for reasoning about computational devices (and computation) in

practice.

2. Boolean algebra is a (somewhat) cosmetic extension of what you already know.

3. Keep in mind that

▶ any Boolean function f which can be expressed by a truth table can be computed using an associated

Boolean expression,

▶ a Boolean expression is composed of Boolean operators,

▶ if we (physically) implement the Boolean operators, we can implement the Boolean expression and hence

compute f .

4. We’ll focus on application (i.e., use) vs. theory (e.g., study) of Boolean algebra from here on.

5. Keep in mind that

▶ “it works” ≠ “it works well”,

▶ using automation is fine iff. you know the underlying theory,

▶ using brute-force is fine iff. you know the underlying theory,

▶ Boolean algebra > Boolean axioms: concepts that seem of interest in theory alone, can be important

if/when applied in practice.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Conclusions

▶ Take away points:

1. The design of computational devices, e.g., micro-processors, isn’t ad hoc: Boolean algebra

offers a theoretical basis for reasoning about computational devices (and computation) in

practice.

2. Boolean algebra is a (somewhat) cosmetic extension of what you already know.

3. Keep in mind that

▶ any Boolean function f which can be expressed by a truth table can be computed using an associated

Boolean expression,

▶ a Boolean expression is composed of Boolean operators,

▶ if we (physically) implement the Boolean operators, we can implement the Boolean expression and hence

compute f .

4. We’ll focus on application (i.e., use) vs. theory (e.g., study) of Boolean algebra from here on.

5. Keep in mind that

▶ “it works” ≠ “it works well”,

▶ using automation is fine iff. you know the underlying theory,

▶ using brute-force is fine iff. you know the underlying theory,

▶ Boolean algebra > Boolean axioms: concepts that seem of interest in theory alone, can be important

if/when applied in practice.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Conclusions

▶ Take away points:

1. The design of computational devices, e.g., micro-processors, isn’t ad hoc: Boolean algebra

offers a theoretical basis for reasoning about computational devices (and computation) in

practice.

2. Boolean algebra is a (somewhat) cosmetic extension of what you already know.

3. Keep in mind that

▶ any Boolean function f which can be expressed by a truth table can be computed using an associated

Boolean expression,

▶ a Boolean expression is composed of Boolean operators,

▶ if we (physically) implement the Boolean operators, we can implement the Boolean expression and hence

compute f .

4. We’ll focus on application (i.e., use) vs. theory (e.g., study) of Boolean algebra from here on.

5. Keep in mind that

▶ “it works” ≠ “it works well”,

▶ using automation is fine iff. you know the underlying theory,

▶ using brute-force is fine iff. you know the underlying theory,

▶ Boolean algebra > Boolean axioms: concepts that seem of interest in theory alone, can be important

if/when applied in practice.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Additional Reading

▶ Wikipedia: Boolean algebra. url: https://en.wikipedia.org/wiki/Boolean_algebra.

▶ D. Page. “Chapter 1: Mathematical preliminaries”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.

▶ W. Stallings. “Chapter 11: Digital logic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.

▶ A.S. Tanenbaum and T. Austin. “Section 3.1: Gates and Boolean algebra”. In: Structured Computer Organisation. 6th ed. Prentice

Hall, 2012.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

https://en.wikipedia.org/wiki/Boolean_algebra
mailto:csdsp@bristol.ac.uk

References

[1] Wikipedia: Boolean algebra. url: https://en.wikipedia.org/wiki/Boolean_algebra (see p. 53).

[2] Wikipedia: Common sub-expression elimination. url: https://en.wikipedia.org/wiki/Common_subexpression_elimination
(see pp. 48, 49).

[3] Wikipedia: Electronic Design Automation (EDA). url: https://en.wikipedia.org/wiki/Electronic_design_automation (see

pp. 36, 37).

[4] D. Page. “Chapter 1: Mathematical preliminaries”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009

(see p. 53).

[5] W. Stallings. “Chapter 11: Digital logic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013 (see p. 53).

[6] A.S. Tanenbaum and T. Austin. “Section 3.1: Gates and Boolean algebra”. In: Structured Computer Organisation. 6th ed. Prentice

Hall, 2012 (see p. 53).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/Common_subexpression_elimination
https://en.wikipedia.org/wiki/Electronic_design_automation
mailto:csdsp@bristol.ac.uk

