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COMS10015 lecture: week #1

> Agenda: an introduction to
1. propositional logic,
2. Boolean algebra, and
3. application of, i.e., use-cases and rationale for the above within the context of COMS10015.
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Part 1: propositional logic (1)

> A proposition is basically a statement

the temperature is 20°C

this statement is false
the temperature is too hot
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Part 1: propositional logic (1)
> A proposition is basically a statement
the temperature is 20°C

hi is fal

the temperature is too hot

whose meaning
1. can be evaluated to yield a truth value, i.e., false or true.
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Part 1: propositional logic (1)
> A proposition is basically a statement
the temperature is 20°C

hi is £al
the-temperature-istoe-hot

1. can be evaluated to yield a truth value, i.e., false or true,
2. must be unambiguous.
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Part 1: propositional logic (1)

> A proposition is basically a statement

the temperature is 20°C
the temperature is x°C

this-statementisfalse
the-temperature-istoe-hot

1. can be evaluated to yield a truth value, i.e., false or true,

2. must be unambiguous,
3. can include free variables.
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Part 1: propositional logic (1)

> A proposition is basically a statement

N =

the temperature is 20°C
the temperature is x°C

this-statementisfalse
the-temperature-istoe-hot

g(x)

. can be evaluated to yield a truth value, i.e, false or true,

. must be unambiguous,

. can include free variables, and

. can be represented using a short-hand variable or function, whereby free variables must be
bound to concrete arguments before evaluation.
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Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,

the temperature is not 20°C

adding parentheses where needed to add clarity, so that
1. “not x” is denoted —x,
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Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,

—(the temperature is 20°C)

adding parentheses where needed to add clarity, so that
1. “not x” is denoted —x,
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Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,

the temperature is 20°C and it is sunny

adding parentheses where needed to add clarity, so that

1. “not x” is denoted —x,
2. “xand y” is denoted x A y,
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Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,

(the temperature is 20°C) A (it is sunny)

adding parentheses where needed to add clarity, so that

1. “not x” is denoted —x,
2. “xand y” is denoted x A y,
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Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,

the temperature is 20°C or it is sunny

adding parentheses where needed to add clarity, so that
1. “not x” is denoted —x,

2. “xand y” is denoted x A y,

3. “xory” is denoted x V y, and usually called inclusive-or,
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Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,

(the temperature is 20°C) V (it is sunny)

adding parentheses where needed to add clarity, so that
1. “not x” is denoted —x,

2. “xand y” is denoted x A y,

3. “xory” is denoted x V y, and usually called inclusive-or,
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Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,

either the temperature is 20°C or it is sunny, but not both

adding parentheses where needed to add clarity, so that

1. “not x” is denoted —x,

“x and y” is denoted x A y,

“x ory” is denoted x V y, and usually called inclusive-or,

“x or y but not x and y” is denoted x @ y, and usually called exclusive-or,

2.
3.
4
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Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,

(the temperature is 20°C) @ (it is sunny)

adding parentheses where needed to add clarity, so that

1. “not x” is denoted —x,

“x and y” is denoted x A y,

“x ory” is denoted x V y, and usually called inclusive-or,

“x or y but not x and y” is denoted x @ y, and usually called exclusive-or,

2.
3.
4
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Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,

the temperature being 20°C implies that it is sunny

adding parentheses where needed to add clarity, so that

. “not x” is denoted —x,

. “xand y” is denoted x A y,

. “x ory” is denoted x V y, and usually called inclusive-or,

“x or y but not x and y” is denoted x @ y, and usually called exclusive-or,
. “x implies y” is denoted x = y, and sometimes written “if x then y”, and

O W N
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Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,

(the temperature is 20°C) = (it is sunny)

adding parentheses where needed to add clarity, so that

. “not x” is denoted —x,

. “xand y” is denoted x A y,

. “x ory” is denoted x V y, and usually called inclusive-or,

“x or y but not x and y” is denoted x @ y, and usually called exclusive-or,
. “x implies y” is denoted x = y, and sometimes written “if x then y”, and

O W N
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Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,

the temperature is 20°C is equivalent to it being sunny

adding parentheses where needed to add clarity, so that

. “not x” is denoted —x,

. “xand y” is denoted x A y,

“x ory” is denoted x V y, and usually called inclusive-or,

“x or y but not x and y” is denoted x @ y, and usually called exclusive-or,

. “x implies y” is denoted x = y, and sometimes written “if x then y”, and

“x is equivalent to y” is denoted x = y, and sometimes written “x if and only if y” or “x iff. y”.

o O
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Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,

(the temperature is 20°C) = (it is sunny)

adding parentheses where needed to add clarity, so that

. “not x” is denoted —x,

. “xand y” is denoted x A y,

“x ory” is denoted x V y, and usually called inclusive-or,

“x or y but not x and y” is denoted x @ y, and usually called exclusive-or,

. “x implies y” is denoted x = y, and sometimes written “if x then y”, and

“x is equivalent to y” is denoted x = y, and sometimes written “x if and only if y” or “x iff. y”.

o O
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Part 1: propositional logic (2)

> You might see more formal terms or different notation for the same connectives:

> —is often termed logical compliment (or negation),
A is often termed logical conjunction,

V is often termed logical (inclusive) disjunction,

@ is often termed logical (exclusive) disjunction,

= is often termed logical implication, and

= is often termed logical equivalence.

YyYyVYY
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Part 1: propositional logic (3)

> You can think of the same thing diagrammatically, i.e.,

r = (the temperature is 20°C) A (it is sunny)

the temperature is 20°C A .
it is sunny

but either way, the question is how do we evaluate the (compound) proposition (or
expression) to produce a truth value?

© Daniel Pag
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Part 1: propositional logic (4)

> Since each statement can only evaluate to true or false, we can enumerate all possible
outcomes in a truth table, e.g., if

x the temperature is 20°C
y = itissunny
r (the temperature is 20°C) A (it is sunny)

then
inputs output
—_—— —_—~
X y r
false false false
false true false
true false false
true true true
> Note that

1. each row details the output(s) associated with a given assignment to the inputs,
2. if there are n inputs, the truth table will have 2" rows.

© Daniel Page

Computer Architecture
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Part 1: propositional logic (5)

Definition

X y -X XAy | xVy | x®y | x=y | x=y
false false | true false | false | false true true
false true true false true true true false
true  false | false | false | true true false false
true true | false | true true | false true true
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Part 1: propositional logic (6)

Imagine that now

X = the temperature is 20°C

y = itissunny

g(z) = the temperature is z°C

r = =(((the temperature is 20°C) A (it is sunny)) V (the temperature is z°C))

which we translate into the diagrammatic form

the temperature is 20°C fo
it is sunny A t
\ - - )—) r
. —
f

An example evaluation might be as follows:

inputs intermediates output
e e
X y to 51 23 r
false false false  false false true
false true false false false true
true false false  true true false
true true true true true false
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Part 2: Boolean algebra (1)

> Notice that
1. in elementary algebra, for some number x we have that

x+0=x
and
x-1=x,
2. in set theory, for some set x we have that
XU =x
and
xNU =x,

plus we’ve now demonstrated that
3. in propositional logic, for some truth value x we have that

xV false = x

and

X A true = x.
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Part 2: Boolean algebra (2)

Thou must

1. work with the set B = {0, 1} of binary
digits, using 0 and 1 instead of false and
true,

2. shorten every statement into either a
variable or function,

3. use unary operators, e.g., - (or NOT),
and binary operators, e.g., A and V (or
AND and OR), to form expressions,

4. manipulate said expressions according
to some axioms (or rules),

then call the result Boolean algebra.

https://en.wikipedia.org/wiki/File:George_Boole. jpg
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Part 2: Boolean algebra (3)

> Put more concretely, we now have
1. aset of operators specified by

Definition
X Yy | x| XAy | xVy | xQy | x>y | xX=Yy
0 0 1 0 0 0 1 1
0 1 1 0 1 1 1 0
1 0 0 0 1 1 0 0
1 1 0 1 1 0 1 1
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Part 2: Boolean algebra (3)

> Put more concretely, we now have

2. aset of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition
Name Axiom(s) Name Axiom(s)
commutativity XAy = YAx commutativity xVy = yVx
association xAyYAz = xAyAz) association xvy)vz = xV(yVvz)
distribution xAyVvz) = (xAy)V(xAz) distribution xV(yAz) = (xVy)A(xVz)

plus other rules such as precedence (to deal with ambiguity in the absence of parentheses).
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Part 2: Boolean algebra (3)

> Put more concretely, we now have

2. aset of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition
Name Axiom(s) Name Axiom(s)
identity xAl = x identity xv0 = «x
null xA0 = 0 null xvl = 1
idempotency XAX = x idempotency xVx = «x
inverse xA-x = 0 inverse xV-x = 1

plus other rules such as precedence (to deal with ambiguity in the absence of parentheses).
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Part 2: Boolean algebra (3)

> Put more concretely, we now have

2. aset of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition
Name Axiom(s) Name Axiom(s)
absorption xAXVy) = «x absorption xV(xAy) = x
de Morgan S(xAy) = -xV-y de Morgan S(xvy) = —xA-y

plus other rules such as precedence (to deal with ambiguity in the absence of parentheses).
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Part 2: Boolean algebra (3)

> Put more concretely, we now have

2. aset of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition
Name Axiom(s)
equivalence x=y = (@=2nAly=>w
implication x=>y = -xVy
involution -—x = X

plus other rules such as precedence (to deal with ambiguity in the absence of parentheses).
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Part 2: Boolean algebra (6)

Standard forms

Definition

Consider a Boolean expression:

1. When the expression is written as a sum (i.e., OR) of terms which each comprise the product (i.e., AND) of variables,
eg.,
@aAbAc)V(dAeAf),
[E——
minterm
it is said to be in disjunctive normal form or Sum of Products (SoP) form; the terms are called the minterms. Note
that each variable can exist as-is or complemented using NOT, meaning

(maAbAC)V(dA—eAf),
—_—

minterm
is also a valid SoP expression.

2. When the expression is written as a product (i.e., AND) of terms which each comprise the sum (i.e., OR) of variables,
eg.,
(@avbve)AdVveVf),
NE—
maxterm
it is said to be in conjunctive normal form or Product of Sums (PoS) form; the terms are called the maxterms. As
above each variable can exist as-is or complemented using NOT.
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Part 2: Boolean algebra (7)

Derived operators
> Concept: we can define various derived operators in terms of NOT, AND, and OR.

> Example:
> “exclusive-OR” or XOR, such that

x®y = ((xAy)V(xA-y)

SO
X yl|x®y
0 0 0
0 1 1
1 0 1
1 1 0
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Part 2: Boolean algebra (7)

Derived operators

> Concept: we can define various derived operators in terms of NOT, AND, and OR.

> Example:
> “NOT-AND” or NAND, such that

S0

x y|xAy

0 0 1

0 1 1

1 0 1

1 1 0

> “NOT-OR” or NOR, such that
xVy = =(xVy)
)
xXVy

—= =0 OfR
—_ o R ol
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Part 3: application (1)

THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TIME p(n), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT w OF LENGTH n AND
PRODUCES Ep,.u. THE RUNNING TIME 1S O(P*nY)
ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND ..,

WTF, MAN. I JUST
WANTED To LEARN
HOW TO PROGRAM
VIDEO GAMES.

https://abstrusegoose.com/206

Daniel Page

Computer Architecture
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Part 3: application (2)

> (Fairly) reasonable question(s):

1. “I thought this was CS, not Maths!”, and
2. “why does this unit duplicate material in other units?”.
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Part 3: application (2)

> (Fairly) reasonable question(s):

1. “I thought this was CS, not Maths!”, and
2. “why does this unit duplicate material in other units?”.

> Answer: itisn’t, and it doesn’t (well, not too much) ... note that

> theoretical concepts, e.g., often have significant practical motivations or implications, and
> it’s perfectly reasonable to utilise Electronic Design Automation (EDA) [3] tools.
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Part 3: application (3)

Axiomatic manipulation ~» optimisation

> Question: simplify the Boolean expression

(m(avb)yA=(cvdVve)V-(aVD)

into a form that contains the fewest operators possible.
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Part 3: application (3)

Axiomatic manipulation ~» optimisation

> Question: simplify the Boolean expression
(=(@avb)A=(cvdVve)V=(aVvb)

into a form that contains the fewest operators possible.
> Solution #1: less steps.

(=(avb) A =(cvdve) VvV =(aVvb)
= =(avb) VvV (=(@vb) A ~(cvdvVe) (commutativity)
= =(aVvb) (absorption)
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Part 3: application (3)

Axiomatic manipulation ~» optimisation

> Question: simplify the Boolean expression
(=(@avb)A=(cvdVve)V=(aVvb)

into a form that contains the fewest operators possible.
> Solution #2: more steps.

(=(avb)y A =(cvdVe)) V. =(aVvb)
= ((man=b) A =(cVdVe)) vV =(aVvb) (de Morgan)
= ((man=b) A (mcA-dA=e) V =(aVDb) (de Morgan)
= ((man=b) A (-cA-dA=e) V (-aA-b) (de Morgan)
= (-aAn=b) V ((—manA=b) A (¢ A—dA=e)) (commutativity)
= (-a A -b) (absorption)

= =(aVvb) (de Morgan)
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Part 3: application (4)

Axiomatic manipulation ~» optimisation

> Question: simplify the Boolean expression

@nbAc)V(-maADb)V(aAbA—c)

into a form that contains the fewest operators possible.



mailto:csdsp@bristol.ac.uk

Part 3: application (4)

Axiomatic manipulation ~» optimisation

> Question: simplify the Boolean expression
@AbAc)V(manb)V(@aAbA-=c)

into a form that contains the fewest operators possible.

> Solution:
(@anbAc) VvV (-aAb) V. (aAbA=c)
= (@AbAc) V (@aAbA-c) V (-aAb) (commutativity)
= (anb) A (cV=0) VvV  (-aAb) (distribution)
(@anb) Al V. (-aAb) (inverse)
= (aAb) VvV  (-aAb) (identity)
= b A (aV -a) (distribution)
= b Al (inverse)

b (identity)

© Daniel Pag
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Part 3: application (5)

Axiomatic manipulation ~» optimisation

Quote

If I designed a computer with 200 chips, I tried to design it with 150. And then I would try to design it with 100. I just tried
to find every trick I could in life to design things real tiny.

— Wozniak

Quote

So I took 20 chips off their board; I bypassed 20 of their chips.

— Wozniak
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Part 3: application (6)

Axiomatic manipulation ~» optimisation

® DISK Il INTERFACE CARD
650~

Shugart SA400 L
minifloppy Disk Drive —
S

| weseT rssccaTES |
MODEL NO. 400
semiaLo. 007479

https://en.wikipedia.org/wiki/File:Shugart_SA400.jpg
https://en.wikipedia.org/wiki/File:Interface_Card_-_Disk_II_Interface_Apple2.jpg
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Part 3: application (7)

Practical use-cases ~ richer specification

> Concept: truth tables can accommodate don’t care entries, e.g.,

X y|r
?2 0|1
0 172
1 1|0

such that
> a? (rather than 0 or 1) means we “don’t care” (# “don’t know”),
> on the LHS, for an input,

> ?is awildcard (or short-hand),
> itmeans Oand 1,
> we’ve compressed two truth table rows into one.

> on the RHS, for an output,

> ?isa choice,
> itmeansQorl,
> we can select which one to, e.g., optimise the associated expression.
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Part 3: application (8)

Universality ~» manufacturability

> Fact: NAND and NOR are functionally complete (or universal), e.g.,

—x = xAx
XAy = (xAy) AxAy)
xVy = —x A-y = (xAx) AyAy)

which we can prove via

x y|xAy xAx yAy|@ANAEAY) @Ax)AYAY)
0 0 1 1 1 0 0
0 1 1 1 0 0 1
1 0 1 0 1 0 1
1 1 0 0 0 1 1

" any Boolean function can be expressed using a single operator.

© Daniel Pa

niversity of
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Part 3: application (9)

Universality ~» manufacturability

> Question: translate
XAV z)

into a version using NAND only.
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Part 3: application (9)

Universality ~» manufacturability

> Question: translate
XAV z)
into a version using NAND only.
> Solution #1: apply the identities naively to get
XAV z)

x/\_((yx_y)x_(zx_z)) S
A AY AEzA))AXAYAY) A(zAZ)

Vé Univer
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Part 3: application (9)

Universality ~» manufacturability

> Question: translate
XAV z)
into a version using NAND only.
> Solution #2: apply the identities intelligently to get
XAV z)

= xA (Y AY) A(zA2)
= tAt

where t =x A ((y A y) A (z A z)) is a common sub-expression [2].
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Conclusions

> Take away points:
1. The design of computational devices, e.g., micro-processors, isn’t ad hoc: Boolean algebra
offers a theoretical basis for reasoning about computational devices (and computation) in
practice.
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Conclusions

> Take away points:

2. Boolean algebra is a (somewhat) cosmetic extension of what you already know.

3. Keep in mind that

> any Boolean function f which can be expressed by a truth table can be computed using an associated
Boolean expression,

a Boolean expression is composed of Boolean operators,

if we (physically) implement the Boolean operators, we can implement the Boolean expression and hence
compute f.
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Conclusions

> Take away points:

4. We'll focus on application (i.e., use) vs. theory (e.g., study) of Boolean algebra from here on.
5. Keep in mind that

> “it works” # “it works well”,
using automation is fine iff. you know the underlying theory,
using brute-force is fine iff. you know the underlying theory,
Boolean algebra > Boolean axioms: concepts that seen of interest in theory alone, can be important
if/when applied in practice.

vvyy
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Additional Reading

Wikipedia: Boolean algebra. urL: https://en.wikipedia.org/wiki/Boolean_algebra.
D. Page. “Chapter 1: Mathematical preliminaries”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.
W. Stallings. “Chapter 11: Digital logic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.

A.S. Tanenbaum and T. Austin. “Section 3.1: Gates and Boolean algebra”. In: Structured Computer Organisation. 6th ed. Prentice
Hall, 2012.
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