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COMS10015 lecture: week #1

https://xkcd.com/435
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Notes:

COMS10015 lecture: week #1

▶ Agenda: an introduction to
1. propositional logic,
2. Boolean algebra, and
3. application of, i.e., use-cases and rationale for the above within the context of COMS10015.
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Part 1: propositional logic (1)

▶ A proposition is basically a statement

the temperature is 20◦C

this statement is false
the temperature is too hot
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Notes:

Part 1: propositional logic (1)

▶ A proposition is basically a statement

the temperature is 20◦C

this statement is false
the temperature is too hot

whose meaning
1. can be evaluated to yield a truth value, i.e., false or true.
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Part 1: propositional logic (1)

▶ A proposition is basically a statement

the temperature is 20◦C

this statement is false
the temperature is too hot

1. can be evaluated to yield a truth value, i.e., false or true,
2. must be unambiguous.
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Part 1: propositional logic (1)

▶ A proposition is basically a statement

the temperature is 20◦C
the temperature is x◦C
this statement is false
the temperature is too hot

1. can be evaluated to yield a truth value, i.e., false or true,
2. must be unambiguous,
3. can include free variables.
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Part 1: propositional logic (1)

▶ A proposition is basically a statement

f = the temperature is 20◦C
g(x) = the temperature is x◦C

this statement is false
the temperature is too hot

1. can be evaluated to yield a truth value, i.e., false or true,
2. must be unambiguous,
3. can include free variables, and
4. can be represented using a short-hand variable or function, whereby free variables must be

bound to concrete arguments before evaluation.
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Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

the temperature is not 20◦C

adding parentheses where needed to add clarity, so that
1. “not x” is denoted ¬x,
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Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

¬(the temperature is 20◦C)
adding parentheses where needed to add clarity, so that
1. “not x” is denoted ¬x,
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Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

the temperature is 20◦C and it is sunny

adding parentheses where needed to add clarity, so that
1. “not x” is denoted ¬x,
2. “x and y” is denoted x ∧ y,
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Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

(the temperature is 20◦C) ∧ (it is sunny)
adding parentheses where needed to add clarity, so that
1. “not x” is denoted ¬x,
2. “x and y” is denoted x ∧ y,
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Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

the temperature is 20◦C or it is sunny

adding parentheses where needed to add clarity, so that
1. “not x” is denoted ¬x,
2. “x and y” is denoted x ∧ y,
3. “x or y” is denoted x ∨ y, and usually called inclusive-or,
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Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

(the temperature is 20◦C) ∨ (it is sunny)
adding parentheses where needed to add clarity, so that
1. “not x” is denoted ¬x,
2. “x and y” is denoted x ∧ y,
3. “x or y” is denoted x ∨ y, and usually called inclusive-or,
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Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

either the temperature is 20◦C or it is sunny, but not both

adding parentheses where needed to add clarity, so that
1. “not x” is denoted ¬x,
2. “x and y” is denoted x ∧ y,
3. “x or y” is denoted x ∨ y, and usually called inclusive-or,
4. “x or y but not x and y” is denoted x ⊕ y, and usually called exclusive-or,
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Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

(the temperature is 20◦C) ⊕ (it is sunny)
adding parentheses where needed to add clarity, so that
1. “not x” is denoted ¬x,
2. “x and y” is denoted x ∧ y,
3. “x or y” is denoted x ∨ y, and usually called inclusive-or,
4. “x or y but not x and y” is denoted x ⊕ y, and usually called exclusive-or,
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Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

the temperature being 20◦C implies that it is sunny

adding parentheses where needed to add clarity, so that
1. “not x” is denoted ¬x,
2. “x and y” is denoted x ∧ y,
3. “x or y” is denoted x ∨ y, and usually called inclusive-or,
4. “x or y but not x and y” is denoted x ⊕ y, and usually called exclusive-or,
5. “x implies y” is denoted x ⇒ y, and sometimes written “if x then y”, and
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Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

(the temperature is 20◦C) ⇒ (it is sunny)
adding parentheses where needed to add clarity, so that
1. “not x” is denoted ¬x,
2. “x and y” is denoted x ∧ y,
3. “x or y” is denoted x ∨ y, and usually called inclusive-or,
4. “x or y but not x and y” is denoted x ⊕ y, and usually called exclusive-or,
5. “x implies y” is denoted x ⇒ y, and sometimes written “if x then y”, and
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Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

the temperature is 20◦C is equivalent to it being sunny

adding parentheses where needed to add clarity, so that
1. “not x” is denoted ¬x,
2. “x and y” is denoted x ∧ y,
3. “x or y” is denoted x ∨ y, and usually called inclusive-or,
4. “x or y but not x and y” is denoted x ⊕ y, and usually called exclusive-or,
5. “x implies y” is denoted x ⇒ y, and sometimes written “if x then y”, and
6. “x is equivalent to y” is denoted x ≡ y, and sometimes written “x if and only if y” or “x iff. y”.
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Part 1: propositional logic (2)

▶ Single statements can be combined using various connectives, e.g.,

(the temperature is 20◦C) ≡ (it is sunny)
adding parentheses where needed to add clarity, so that
1. “not x” is denoted ¬x,
2. “x and y” is denoted x ∧ y,
3. “x or y” is denoted x ∨ y, and usually called inclusive-or,
4. “x or y but not x and y” is denoted x ⊕ y, and usually called exclusive-or,
5. “x implies y” is denoted x ⇒ y, and sometimes written “if x then y”, and
6. “x is equivalent to y” is denoted x ≡ y, and sometimes written “x if and only if y” or “x iff. y”.
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Part 1: propositional logic (2)

▶ You might see more formal terms or different notation for the same connectives:
▶ ¬ is often termed logical compliment (or negation),
▶ ∧ is often termed logical conjunction,
▶ ∨ is often termed logical (inclusive) disjunction,
▶ ⊕ is often termed logical (exclusive) disjunction,
▶ ⇒ is often termed logical implication, and
▶ ≡ is often termed logical equivalence.
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Part 1: propositional logic (3)

▶ You can think of the same thing diagrammatically, i.e.,

r = (the temperature is 20◦C) ∧ (it is sunny)

≡

∧the temperature is 20◦C
it is sunny r

but either way, the question is how do we evaluate the (compound) proposition (or
expression) to produce a truth value?
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Part 1: propositional logic (4)

▶ Since each statement can only evaluate to true or false, we can enumerate all possible
outcomes in a truth table, e.g., if

x = the temperature is 20◦C
y = it is sunny
r = (the temperature is 20◦C) ∧ (it is sunny)

then
inputs︷       ︸︸       ︷ output︷       ︸︸       ︷

x y r
false false false
false true false
true false false
true true true

▶ Note that
1. each row details the output(s) associated with a given assignment to the inputs,
2. if there are n inputs, the truth table will have 2n rows.
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Part 1: propositional logic (5)

Definition

x y ¬x x ∧ y x ∨ y x ⊕ y x ⇒ y x ≡ y
false false true false false false true true
false true true false true true true false
true false false false true true false false
true true false true true false true true
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Part 1: propositional logic (6)

Example

Imagine that now

x = the temperature is 20◦C
y = it is sunny
g(z) = the temperature is z◦C
r = ¬(((the temperature is 20◦C) ∧ (it is sunny)) ∨ (the temperature is z◦C))

which we translate into the diagrammatic form

∧

g(z)
∨ ¬

the temperature is 20◦C
it is sunny

20

t0

t1

t2 r

An example evaluation might be as follows:

inputs︷             ︸︸             ︷ intermediates︷             ︸︸             ︷ output︷      ︸︸      ︷
x y t0 t1 t2 r

false false false false false true
false true false false false true
true false false true true false
true true true true true false
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Part 2: Boolean algebra (1)

▶ Notice that
1. in elementary algebra, for some number x we have that

x + 0 = x

and
x · 1 = x,

2. in set theory, for some set x we have that

x ∪ ∅ = x

and
x ∩U = x,

plus we’ve now demonstrated that
3. in propositional logic, for some truth value x we have that

x ∨ false = x

and
x ∧ true = x.
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Part 2: Boolean algebra (2)

Thou must
1. work with the set B = {0, 1} of binary

digits, using 0 and 1 instead of false and
true,

2. shorten every statement into either a
variable or function,

3. use unary operators, e.g., ¬ (or NOT),
and binary operators, e.g., ∧ and ∨ (or
AND and OR), to form expressions,

4. manipulate said expressions according
to some axioms (or rules),

then call the result Boolean algebra.

https://en.wikipedia.org/wiki/File:George_Boole.jpg
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Part 2: Boolean algebra (3)

▶ Put more concretely, we now have
1. a set of operators specified by

Definition

x y ¬x x ∧ y x ∨ y x ⊕ y x ⇒ y x ≡ y
0 0 1 0 0 0 1 1
0 1 1 0 1 1 1 0
1 0 0 0 1 1 0 0
1 1 0 1 1 0 1 1
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• The precedence levels for our suite of Boolean operators is
1. ¬,
2. ∧,
3. ∨
meaning, for example, that we resolve an ∧ before and ∨ (and sometimes say ∧ “binds more tightly” to operands than ∨).

Part 2: Boolean algebra (3)

▶ Put more concretely, we now have

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition

Name Axiom(s)

commutativity x ∧ y ≡ y ∧ x
association (x ∧ y) ∧ z ≡ x ∧ (y ∧ z)
distribution x ∧ (y ∨ z) ≡ (x∧y)∨(x∧z)

Name Axiom(s)

commutativity x ∨ y ≡ y ∨ x
association (x ∨ y) ∨ z ≡ x ∨ (y ∨ z)
distribution x ∨ (y ∧ z) ≡ (x∨y)∧(x∨z)

plus other rules such as precedence (to deal with ambiguity in the absence of parentheses).
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• The precedence levels for our suite of Boolean operators is
1. ¬,
2. ∧,
3. ∨
meaning, for example, that we resolve an ∧ before and ∨ (and sometimes say ∧ “binds more tightly” to operands than ∨).



Part 2: Boolean algebra (3)

▶ Put more concretely, we now have

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition

Name Axiom(s)

identity x ∧ 1 ≡ x
null x ∧ 0 ≡ 0

idempotency x ∧ x ≡ x
inverse x ∧ ¬x ≡ 0

Name Axiom(s)

identity x ∨ 0 ≡ x
null x ∨ 1 ≡ 1

idempotency x ∨ x ≡ x
inverse x ∨ ¬x ≡ 1

plus other rules such as precedence (to deal with ambiguity in the absence of parentheses).
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• The precedence levels for our suite of Boolean operators is
1. ¬,
2. ∧,
3. ∨
meaning, for example, that we resolve an ∧ before and ∨ (and sometimes say ∧ “binds more tightly” to operands than ∨).

Part 2: Boolean algebra (3)

▶ Put more concretely, we now have

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition

Name Axiom(s)

absorption x ∧ (x ∨ y) ≡ x
de Morgan ¬(x ∧ y) ≡ ¬x ∨ ¬y

Name Axiom(s)

absorption x ∨ (x ∧ y) ≡ x
de Morgan ¬(x ∨ y) ≡ ¬x ∧ ¬y

plus other rules such as precedence (to deal with ambiguity in the absence of parentheses).
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• The precedence levels for our suite of Boolean operators is
1. ¬,
2. ∧,
3. ∨
meaning, for example, that we resolve an ∧ before and ∨ (and sometimes say ∧ “binds more tightly” to operands than ∨).



Part 2: Boolean algebra (3)

▶ Put more concretely, we now have

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition

Name Axiom(s)

equivalence x ≡ y ≡ (x ⇒ y) ∧ (y ⇒ x)
implication x ⇒ y ≡ ¬x ∨ y
involution ¬¬x ≡ x

plus other rules such as precedence (to deal with ambiguity in the absence of parentheses).
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• The precedence levels for our suite of Boolean operators is
1. ¬,
2. ∧,
3. ∨
meaning, for example, that we resolve an ∧ before and ∨ (and sometimes say ∧ “binds more tightly” to operands than ∨).

Part 2: Boolean algebra (4)
Standard forms

Definition

The fact there are AND and OR forms of most axioms hints at a more general underlying principle. Consider a Boolean
expression e: the principle of duality states that the dual expression eD is formed by
1. leaving each variable as is,

2. swapping each ∧ with ∨ and vice versa, and

3. swapping each 0 with 1 and vice versa.
Of course e and eD are different expressions, and clearly not equivalent; if we start with some e ≡ f however, then we do
still get eD ≡ f D .

Example

As an example, consider axioms for
1. distribution, e.g., if

e = x ∧ (y ∨ z) ≡ (x ∧ y) ∨ (x ∧ z)
then

eD = x ∨ (y ∧ z) ≡ (x ∨ y) ∧ (x ∨ z)
and

2. identity, e.g., if
e = x ∧ 1 ≡ x

then
eD = x ∨ 0 ≡ x.
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Part 2: Boolean algebra (5)
Standard forms

Definition

The de Morgan axiom can be turned into a more general principle. Consider a Boolean expression e: the principle of
complements states that the complement expression ¬e is formed by
1. swapping each variable x with the complement ¬x,

2. swapping each ∧ with ∨ and vice versa, and

3. swapping each 0 with 1 and vice versa.

Example

As an example, consider that if
e = x ∧ y ∧ z,

then by the above we should find
f = ¬e = (¬x) ∨ (¬y) ∨ (¬z).

Proof:
x y z ¬x ¬y ¬z e f
0 0 0 1 1 1 0 1
0 0 1 1 1 0 0 1
0 1 0 1 0 1 0 1
0 1 1 1 0 0 0 1
1 0 0 0 1 1 0 1
1 0 1 0 1 0 0 1
1 1 0 0 0 1 0 1
1 1 1 0 0 0 1 0
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Part 2: Boolean algebra (6)
Standard forms

Definition

Consider a Boolean expression:
1. When the expression is written as a sum (i.e., OR) of terms which each comprise the product (i.e., AND) of variables,

e.g.,
(a ∧ b ∧ c)︸      ︷︷      ︸
minterm

∨(d ∧ e ∧ f ),

it is said to be in disjunctive normal form or Sum of Products (SoP) form; the terms are called the minterms. Note
that each variable can exist as-is or complemented using NOT, meaning

(¬a ∧ b ∧ c)︸        ︷︷        ︸
minterm

∨(d ∧ ¬e ∧ f ),

is also a valid SoP expression.

2. When the expression is written as a product (i.e., AND) of terms which each comprise the sum (i.e., OR) of variables,
e.g.,

(a ∨ b ∨ c)︸      ︷︷      ︸
maxterm

∧(d ∨ e ∨ f ),

it is said to be in conjunctive normal form or Product of Sums (PoS) form; the terms are called the maxterms. As
above each variable can exist as-is or complemented using NOT.
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Part 2: Boolean algebra (7)
Derived operators

▶ Concept: we can define various derived operators in terms of NOT, AND, and OR.
▶ Example:
▶ “exclusive-OR” or XOR, such that

x ⊕ y ≡ (¬x ∧ y) ∨ (x ∧ ¬y)
so

x y x ⊕ y
0 0 0
0 1 1
1 0 1
1 1 0
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Part 2: Boolean algebra (7)
Derived operators

▶ Concept: we can define various derived operators in terms of NOT, AND, and OR.
▶ Example:
▶ “NOT-AND” or NAND, such that

x ∧ y ≡ ¬(x ∧ y)
so

x y x ∧ y
0 0 1
0 1 1
1 0 1
1 1 0

▶ “NOT-OR” or NOR, such that
x ∨ y ≡ ¬(x ∨ y)

so
x y x ∨ y
0 0 1
0 1 0
1 0 0
1 1 0
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Part 3: application (1)

https://abstrusegoose.com/206
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Part 3: application (2)

▶ (Fairly) reasonable question(s):
1. “I thought this was CS, not Maths!”, and
2. “why does this unit duplicate material in other units?”.
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Part 3: application (2)

▶ (Fairly) reasonable question(s):
1. “I thought this was CS, not Maths!”, and
2. “why does this unit duplicate material in other units?”.

▶ Answer: it isn’t, and it doesn’t (well, not too much) ... note that
▶ theoretical concepts, e.g., often have significant practical motivations or implications, and
▶ it’s perfectly reasonable to utilise Electronic Design Automation (EDA) [3] tools.
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Part 3: application (3)
Axiomatic manipulation ❀ optimisation

▶ Question: simplify the Boolean expression

(¬(a ∨ b) ∧ ¬(c ∨ d ∨ e)) ∨ ¬(a ∨ b)
into a form that contains the fewest operators possible.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:



Part 3: application (3)
Axiomatic manipulation ❀ optimisation

▶ Question: simplify the Boolean expression

(¬(a ∨ b) ∧ ¬(c ∨ d ∨ e)) ∨ ¬(a ∨ b)
into a form that contains the fewest operators possible.

▶ Solution #1: less steps.

(¬(a ∨ b) ∧ ¬(c ∨ d ∨ e)) ∨ ¬(a ∨ b)
= ¬(a ∨ b) ∨ (¬(a ∨ b) ∧ ¬(c ∨ d ∨ e)) (commutativity)
= ¬(a ∨ b) (absorption)
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Part 3: application (3)
Axiomatic manipulation ❀ optimisation

▶ Question: simplify the Boolean expression

(¬(a ∨ b) ∧ ¬(c ∨ d ∨ e)) ∨ ¬(a ∨ b)
into a form that contains the fewest operators possible.

▶ Solution #2: more steps.

(¬(a ∨ b) ∧ ¬(c ∨ d ∨ e)) ∨ ¬(a ∨ b)
= ((¬a ∧ ¬b) ∧ ¬(c ∨ d ∨ e)) ∨ ¬(a ∨ b) (de Morgan)
= ((¬a ∧ ¬b) ∧ (¬c ∧ ¬d ∧ ¬e)) ∨ ¬(a ∨ b) (de Morgan)
= ((¬a ∧ ¬b) ∧ (¬c ∧ ¬d ∧ ¬e)) ∨ (¬a ∧ ¬b) (de Morgan)
= (¬a ∧ ¬b) ∨ ((¬a ∧ ¬b) ∧ (¬c ∧ ¬d ∧ ¬e)) (commutativity)
= (¬a ∧ ¬b) (absorption)
= ¬(a ∨ b) (de Morgan)
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Part 3: application (4)
Axiomatic manipulation ❀ optimisation

▶ Question: simplify the Boolean expression

(a ∧ b ∧ c) ∨ (¬a ∧ b) ∨ (a ∧ b ∧ ¬c)
into a form that contains the fewest operators possible.
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Part 3: application (4)
Axiomatic manipulation ❀ optimisation

▶ Question: simplify the Boolean expression

(a ∧ b ∧ c) ∨ (¬a ∧ b) ∨ (a ∧ b ∧ ¬c)
into a form that contains the fewest operators possible.

▶ Solution:

(a ∧ b ∧ c) ∨ (¬a ∧ b) ∨ (a ∧ b ∧ ¬c)
= (a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (¬a ∧ b) (commutativity)
= (a ∧ b) ∧ (c ∨ ¬c) ∨ (¬a ∧ b) (distribution)
= (a ∧ b) ∧ 1 ∨ (¬a ∧ b) (inverse)
= (a ∧ b) ∨ (¬a ∧ b) (identity)
= b ∧ (a ∨ ¬a) (distribution)
= b ∧ 1 (inverse)
= b (identity)
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Part 3: application (5)
Axiomatic manipulation ❀ optimisation

Quote

If I designed a computer with 200 chips, I tried to design it with 150. And then I would try to design it with 100. I just tried
to find every trick I could in life to design things real tiny.

– Wozniak

Quote

So I took 20 chips off their board; I bypassed 20 of their chips.

– Wozniak
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• The quotes relate to design and implementation of a (floppy) disk controller for the Apple II computer (circa 1977); there is an obvious
focus on efficiency, which is credited as allowing the controller to be commercially viable. A detailed overview of the overarching
anecdote is available via

https://en.wikipedia.org/wiki/Disk_II

or
https://apple2history.org/history/ah05/

The moral is that, in reality, “it works”, while important, may not be good enough: meeting various other (market-driven) quality
metrics (e.g., efficiency, physical size, power consumption, etc.) is often vital rather than simply attractive.

Part 3: application (6)
Axiomatic manipulation ❀ optimisation

https://en.wikipedia.org/wiki/File:Shugart_SA400.jpg

https://en.wikipedia.org/wiki/File:Interface_Card_-_Disk_II_Interface_Apple2.jpg
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Part 3: application (7)
Practical use-cases ❀ richer specification

▶ Concept: truth tables can accommodate don’t care entries, e.g.,

x y r
? 0 1
0 1 ?
1 1 0

such that
▶ a ? (rather than 0 or 1) means we “don’t care” (≠ “don’t know”),
▶ on the LHS, for an input,
▶ ? is a wildcard (or short-hand),
▶ it means 0 and 1,
▶ we’ve compressed two truth table rows into one.

▶ on the RHS, for an output,
▶ ? is a choice,
▶ it means 0 or 1,
▶ we can select which one to, e.g., optimise the associated expression.
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Part 3: application (8)
Universality ❀ manufacturability

▶ Fact: NAND and NOR are functionally complete (or universal), e.g.,
¬x ≡ x ∧ x
x ∧ y ≡ (x ∧ y) ∧ (x ∧ y)
x ∨ y ≡ ¬x ∧ ¬y ≡ (x ∧ x) ∧ (y ∧ y)

which we can prove via

x y x ∧ y x ∧ x y ∧ y (x ∧ y) ∧ (x ∧ y) (x ∧ x) ∧ (y ∧ y)
0 0 1 1 1 0 0
0 1 1 1 0 0 1
1 0 1 0 1 0 1
1 1 0 0 0 1 1

∴ any Boolean function can be expressed using a single operator.
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Part 3: application (9)
Universality ❀ manufacturability

▶ Question: translate
x ∧ (y ∨ z)

into a version using NAND only.
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Part 3: application (9)
Universality ❀ manufacturability

▶ Question: translate
x ∧ (y ∨ z)

into a version using NAND only.
▶ Solution #1: apply the identities naively to get

x ∧ (y ∨ z)
= x ∧ ((y ∧ y) ∧ (z ∧ z))
= (x ∧ ((y ∧ y) ∧ (z ∧ z))) ∧ (x ∧ ((y ∧ y) ∧ (z ∧ z)))
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Part 3: application (9)
Universality ❀ manufacturability

▶ Question: translate
x ∧ (y ∨ z)

into a version using NAND only.
▶ Solution #2: apply the identities intelligently to get

x ∧ (y ∨ z)
= x ∧ ((y ∧ y) ∧ (z ∧ z))
= t ∧ t

where t = x ∧ ((y ∧ y) ∧ (z ∧ z)) is a common sub-expression [2].
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Conclusions

▶ Take away points:
1. The design of computational devices, e.g., micro-processors, isn’t ad hoc: Boolean algebra

offers a theoretical basis for reasoning about computational devices (and computation) in
practice.
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Conclusions

▶ Take away points:

2. Boolean algebra is a (somewhat) cosmetic extension of what you already know.
3. Keep in mind that
▶ any Boolean function f which can be expressed by a truth table can be computed using an associated

Boolean expression,
▶ a Boolean expression is composed of Boolean operators,
▶ if we (physically) implement the Boolean operators, we can implement the Boolean expression and hence

compute f .
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Conclusions

▶ Take away points:

4. We’ll focus on application (i.e., use) vs. theory (e.g., study) of Boolean algebra from here on.
5. Keep in mind that
▶ “it works” ≠ “it works well”,
▶ using automation is fine iff. you know the underlying theory,
▶ using brute-force is fine iff. you know the underlying theory,
▶ Boolean algebra > Boolean axioms: concepts that seem of interest in theory alone, can be important

if/when applied in practice.
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Additional Reading

▶ Wikipedia: Boolean algebra. url: https://en.wikipedia.org/wiki/Boolean_algebra.
▶ D. Page. “Chapter 1: Mathematical preliminaries”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.
▶ W. Stallings. “Chapter 11: Digital logic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.
▶ A.S. Tanenbaum and T. Austin. “Section 3.1: Gates and Boolean algebra”. In: Structured Computer Organisation. 6th ed. Prentice

Hall, 2012.
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