Computer Architecture

Daniel Page

Department of Computer Science,
University Of Bristol,
Merchant Venturers Building,
Woodland Road,

Bristol, BS8 1UB. UK.
({csdsp@bristol.ac.uk)

September 5, 2025

Keep in mind there are fwo PDFs available (of which this is the latter):
1. a PDF of examinable material used as lecture slides, and
2. a PDF of non-examinable, extra material:

> the associated notes page may be pre-populated with extra, written explaination of
material covered in lecture(s), plus

> anything with a “grey’ed out” header/footer represents extra material which is
useful and/or interesting but out of scope (and hence not covered).

Notes:

Notes:

COMS10015 lecture: week #1
Notes:

FIELDS arrAncED By PURITY
MORE PURE ~
SOCIOLOGY 15 PSYCHOLOGY IS BIOLOGY 15 WHICH 1§ JUST OH, HEY, T DION'T
JUST APRUED JUST APPLIED JUST APPLED APPUED PHYSCS, SEE YOU GUYS ALL
PSYCHOLOGY BIOLOGY: CHEMISTRY IT's NICE TO THE \JAY OVER THERE.
\ \ ,f BE ON TOR L
J
%@ - ‘\f 37
\] %
—_— + n - 4 ——
SOCIOLOGISTS PSYCHOLOGISTS BIOLOGISTS CHEMISTS PHYSICISTS MATHEMATICIANS

https://xkcd.com/435

© Daniel
Computer Architecture git # b282dbb9 @ 2025-09-03

COMS10015 lecture: week #1
Notes:

> Agenda: an introduction to
1. propositional logic,
2. Boolean algebra, and
3. application of, i.e., use-cases and rationale for the above within the context of COMS10015.

Part 1: propositional logic (1)
> A proposition is basically a statement
the temperature is 20°C

this statement is false
the temperature is too hot

© Daniel P

mputer Architecture N git #b282dbb9 @ 2025-09-03

Part 1: propositional logic (1)
> A proposition is basically a statement
the temperature is 20°C

. is fal

the temperature is too hot

whose meaning
1. can be evaluated to yield a truth value, i.e., false or true.

Notes:

Notes:

Part 1: propositional logic (1)

> A proposition is basically a statement

the temperature is 20°C

hi is £al
the-temperature-istoo-hot

1. can be evaluated to yield a truth value, i.e,, false or true,
2. must be unambiguous.

© Daniel P
git #b282dbb9 @ 2025-09-03

Computer Architecture

Part 1: propositional logic (1)

> A proposition is basically a statement

the temperature is 20°C
the temperature is x°C

thisstatementisfalse
the-temperature-istoo-het

1. can be evaluated to yield a truth value, i.e., false or true,
2. must be unambiguous,
3. can include free variables.

Notes:

Notes:

Part 1: propositional logic (1)

> A proposition is basically a statement

f
g(x)

the temperature is 20°C
the temperature is x°C

thisstatementisfalse
the-temperature-istoo-hot

. can be evaluated to yield a truth value, i.e., false or true,

. must be unambiguous,

. can include free variables, and

. can be represented using a short-hand variable or function, whereby free variables must be
bound to concrete arguments before evaluation.

= W N =

or Architecture S git #b282dbb9 @ 2025-09-03

Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,

the temperature is not 20°C

adding parentheses where needed to add clarity, so that
1. “not x” is denoted —x,

Notes:

Notes:

Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,
—(the temperature is 20°C)

adding parentheses where needed to add clarity, so that
1. “not x” is denoted —x,

© Daniel P

Computer Architecture S git # b282dbb9 @ 2025-09-03

Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,

the temperature is 20°C and it is sunny

adding parentheses where needed to add clarity, so that

1. “not x” is denoted —x,
2. “xand y” is denoted x A y,

Notes:

Notes:

Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,
(the temperature is 20°C) A (it is sunny)
adding parentheses where needed to add clarity, so that

1. “not x” is denoted —x,
2. “xand y” is denoted x A y,

© Daniel P

Computer Architecture S git # b282dbb9 @ 2025-09-03

Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,

the temperature is 20°C or it is sunny

adding parentheses where needed to add clarity, so that
1. “not x” is denoted —x,

2. “xand y” is denoted x A y,

3. “xory” is denoted x V y, and usually called inclusive-or,

Notes:

Notes:

Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,
(the temperature is 20°C) V (it is sunny)

adding parentheses where needed to add clarity, so that

1. “not x” is denoted —x,
2. “xand y” is denoted x A y,
3. “xory” is denoted x V y, and usually called inclusive-or,

© Daniel P

git #b282dbb9 @ 2025-09-03

er Architecture

Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,

either the temperature is 20°C or it is sunny, but not both

adding parentheses where needed to add clarity, so that

1. “not x” is denoted —x,

2. “xand y” is denoted x A y,

3. “xory” is denoted x V y, and usually called inclusive-or,

4. “x or y but not x and y” is denoted x ® y, and usually called exclusive-or,

Notes:

Notes:

Part 1: propositional logic (2)

Notes:

> Single statements can be combined using various connectives, e.g.,

(the temperature is 20°C) @ (it is sunny)

adding parentheses where needed to add clarity, so that

1. “not x” is denoted —x,

2. “xand y” is denoted x A y,

3. “xory”is denoted x V y, and usually called inclusive-or,

4. “x or y but not x and y” is denoted x @ y, and usually called exclusive-or,

git #b282dbb9 @ 2025-09-03

Part 1: propositional logic (2)

Notes:

> Single statements can be combined using various connectives, e.g.,
the temperature being 20°C implies that it is sunny

adding parentheses where needed to add clarity, so that

1. “not x” is denoted —x,

2. “xand y” is denoted x A y,

3. “xory” is denoted x V y, and usually called inclusive-or,

4. “x or y but not x and y” is denoted x ® y, and usually called exclusive-or,
5. “x implies y” is denoted x = y, and sometimes written “if x then y”, and

Part 1: propositional logic (2)

Notes:
> Single statements can be combined using various connectives, e.g.,

(the temperature is 20°C) = (it is sunny)

adding parentheses where needed to add clarity, so that

1. “not x” is denoted —x,

2. “xand y” is denoted x A y,

3. “xory”is denoted x V y, and usually called inclusive-or,

4. “x or y but not x and y” is denoted x @ y, and usually called exclusive-or,
5. “x implies y” is denoted x = y, and sometimes written “if x then y”, and

git #b282dbb9 @ 2025-09-03

Part 1: propositional logic (2)

Notes:
> Single statements can be combined using various connectives, e.g.,

the temperature is 20°C is equivalent to it being sunny

adding parentheses where needed to add clarity, so that

1. “not x” is denoted —x,

2. “xand y” is denoted x A y,

3. “xory” is denoted x V y, and usually called inclusive-or,

4. “x or y but not x and y” is denoted x ® y, and usually called exclusive-or,

5. “x implies y” is denoted x = y, and sometimes written “if x then y”, and

6. “xis equivalent to y” is denoted x = y, and sometimes written “x if and only if y” or “x iff. y”.

Part 1: propositional logic (2)

> Single statements can be combined using various connectives, e.g.,
(the temperature is 20°C) = (it is sunny)

adding parentheses where needed to add clarity, so that

“not x” is denoted —x,

“x and y” is denoted x A y,

“x or y” is denoted x V y, and usually called inclusive-or,

“x or y but not x and y” is denoted x ® y, and usually called exclusive-or,

“x implies y” is denoted x = y, and sometimes written “if x then y”, and

“x is equivalent to y” is denoted x = y, and sometimes written “x if and only if y” or “x iff. y”.

U W=

© Daniel P

git #b282dbb9 @ 2025-09-03

er Architecture

Part 1: propositional logic (2)

> You might see more formal terms or different notation for the same connectives:

- is often termed logical compliment (or negation),
A is often termed logical conjunction,

V is often termed logical (inclusive) disjunction,

& is often termed logical (exclusive) disjunction,

= is often termed logical implication, and

= is often termed logical equivalence.

v

vVvVvyyYyYvVYyYy

Notes:

Notes:

Part 1: propositional logic (3)

> You can think of the same thing diagrammatically, i.e.,

r = (the temperature is 20°C) A (it is sunny)

the temperature is 20°C A .
it is sunny

but either way, the question is how do we evaluate the (compound) proposition (or
expression) to produce a truth value?

© Daniel Page (University of

k¢
Computer Architecture ME] BRISTOL git #b282dbb9 @ 2025-09-03

Part 1: propositional logic (4)

> Since each statement can only evaluate to true or false, we can enumerate all possible
outcomes in a truth table, e.g., if

x = the temperature is 20°C

y = itissunny

r = (the temperature is 20°C) A (it is sunny)

then
inputs output
x Yy r
false false false
false true false
true false false
true true true
> Note that

1. each row details the output(s) associated with a given assignment to the inputs,
2. if there are n inputs, the truth table will have 2" rows.

Notes:

Notes:

Part 1: propositional logic (5)

Definition
X y —X XAY | XVYy | x®Yy | x=Y | X=Y
false false | true | false | false | false true true
false true true | false | true true true false
true false | false | false | true true false false
true true | false | true true | false true true

© Daniel Page (

Computer Architecture git # b282dbb9 @ 2

Part 1: propositional logic (6)

Imagine that now

x = the temperature is 20°C

y = itissunny

8(z) = the temperature is z°C

r —(((the temperature is 20°C) A (it is sunny)) V (the temperature is z°C))

which we translate into the diagrammatic form

the temperature is 20°C
it is sunny

20

An example evaluation might be as follows:

inputs intermediates output
———
x Y to ty tr r
false false false false false true
false true false false false true
true false false true true false
true true true true true false

Notes:

Notes:

Part 2: Boolean algebra (1)

> Notice that
1. in elementary algebra, for some number x we have that

x+0=x
and
x-1=x,
2. in set theory, for some set x we have that
xUD=x
and
xNU =x,

plus we’ve now demonstrated that
3. in propositional logic, for some truth value x we have that

x V false = x

and
x A true = x.

© Daniel P

er Architecture

Part 2: Boolean algebra (2)

Thou must

1. work with the set B = {0, 1} of binary
digits, using 0 and 1 instead of false and
true,

2. shorten every statement into either a
variable or function,

3. use unary operators, e.g., - (or NOT),
and binary operators, e.g., A and V (or
AND and OR), to form expressions,

4. manipulate said expressions according
to some axioms (or rules),

then call the result Boolean algebra.

https://en.wikipedia.org/wiki/File:George_Boole. jpg
© ()

git #b282dbb9 @ 2025-09-03

Notes:

Notes:

Part 2: Boolean algebra (3)

> Put more concretely, we now have
1. a set of operators specified by

Definition
X Yy | x| XAy | xV X0y | x>y =Y
0 0 1 0 0 0 1 1
0 1 1 0 1 1 1 0
1 0 0 0 1 1 0 0
1 1 0 1 1 0 1 1

© Daniel Page

Computer A

Part 2: Boolean algebra (3)

> Put more concretely, we now have

git # b282dbb9 @ 2

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Notes:

* The precedence levels for our suite of Boolean operators is
1. -
2. A
3. v

meaning, for example, that we resolve an A before and V (and sometimes say A “binds more tightly” to operands than V).

Notes:

¢ The precedence levels for our suite of Boolean operators is
1 -

2.
3.

Y
\

Definition
Name Axiom(s) Name Axiom(s)
commutativity XAy = YyAx commutativity xVy = yVx
association xAYAz = xA([yAz) association (xvy)vz = xV(yVvz)
distribution xA(yVz) = (xAy)V(xAz) distribution xV(yAz) = (xVyAxvz)

plus other rules such as precedence (to deal with ambiguity in the absence of parentheses).

© Daniel Page (

mputer

meaning, for example, that we resolve an A before and V (and sometimes say A “binds more tightly” to operands than V).

Part 2: Boolean algebra (3)

> Put more concretely, we now have

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition
Name Axiom(s) Name Axiom(s)
identity xAl = «x identity xv0o = «x
null xXA0 = 0 null xvl = 1
idempotency XAXx = x idempotency xVx = x
inverse xA—x = 0 inverse xv-x = 1

plus other rules such as precedence (to deal with ambiguity in the absence of parentheses).

Part 2: Boolean algebra (3)

» Put more concretely, we now have

git # b282dbb

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition
Name Axiom(s) Name Axiom(s)
absorption XA@xVy = x absorption xV(xAy) = x
de Morgan —xAy) = —xVAy de Morgan -(xVy) = —xA-y

plus other rules such as precedence (to deal with ambiguity in the absence of parentheses).

Notes:

* The precedence levels for our suite of Boolean operators is

3. v

meaning, for example, that we resolve an A before and V (and sometimes say A “binds more tightly” to operands than V).

Notes:

¢ The precedence levels for our suite of Boolean operators is

3.V

meaning, for example, that we resolve an A before and V (and sometimes say A “binds more tightly” to operands than V).

Part 2: Boolean algebra (3)

Notes:
> Put more concretely, we now have

* The precedence levels for our suite of Boolean operators is
1. -
2. A
3. v

meaning, for example, that we resolve an A before and V (and sometimes say A “binds more tightly” to operands than V).

2. aset of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition
Name Axiom(s)
equivalence x=y = @=2y9Aly=rx)
implication x=>y = -aVy
involution X =X

plus other rules such as precedence (to deal with ambiguity in the absence of parentheses).

© Daniel Page (

Computer Architecture git #b282dbb9 @ 2

Part 2: Boolean algebra (4)

Standard forms

Notes:

Definition

The fact there are AND and OR forms of most axioms hints at a more general underlying principle. Consider a Boolean
expression e: the principle of duality states that the dual expression ¢” is formed by

1. leaving each variable as is,
2. swapping each A with V and vice versa, and
3. swapping each 0 with 1 and vice versa.

Of course ¢ and eP are different expressions, and clearly not equivalent; if we start with some e = f however, then we do
still get e? = fP.

As an example, consider axioms for

1. distribution, e.g., if
e=xA(yVz)=(xAy)V(xAz)
then
P =xVvyArz)=(xVy A(xVz)
and

2. identity, e.g., if

then

© Daniel Page (

Part 2: Boolean algebra (5)

Standard forms

Definition

The de Morgan axiom can be turned into a more general principle. Consider a Boolean expression e: the principle of
complements states that the complement expression —e is formed by

1. swapping each variable x with the complement —x,
2. swapping each A with V and vice versa, and

3. swapping each 0 with 1 and vice versa.

As an example, consider that if

e=xAYyAz
then by the above we should find
f=ne=(=0) V(=) V(-2).

Proof:
x y z|-x -y -z |[e f
0 0 0] 1 1 1 (0 1
0 0 1 1 1 00 1
01 0] 1 0 1 (0 1
0 1 1] 1 0 0|0 1
1 0 0] 0 1 1 (0 1
1 0 1 0 1 0 0 1
1 1 0] 0 0 1 (0 1
1 1 1] 0 0 0|1 o0

© Daniel Page (

Computer Architecture 2 git # b282dbb9 @ 2025-09-03

Part 2: Boolean algebra (6)

Standard forms

Definition

Consider a Boolean expression:

1. When the expression is written as a sum (i.e., OR) of terms which each comprise the product (i.e., AND) of variables,
eg.,
(@aAbACc)V(dAeNSf),
—_——
minterm
it is said to be in disjunctive normal form or Sum of Products (SoP) form; the terms are called the minterms. Note
that each variable can exist as-is or complemented using NOT, meaning

(maAbAc)V(dA—eAf),
—_

minterm
is also a valid SoP expression.

2. When the expression is written as a product (i.e., AND) of terms which each comprise the sum (i.e., OR) of variables,
eg.,
(@avbve)AdveVf),
N
maxterm
it is said to be in conjunctive normal form or Product of Sums (PoS) form; the terms are called the maxterms. As
above each variable can exist as-is or complemented using NOT.

Notes:

Notes:

Part 2: Boolean algebra (7)

Derived operators
> Concept: we can define various derived operators in terms of NOT, AND, and OR.

> Example:
> “exclusive-OR” or XOR, such that

x®y = ((xAYy)V(xA-y)

SO
X Yy |x8y
0 0 0
0 1 1
1 0 1
1 1 0

© Daniel Page BIKE University o

P
Computer Architecture ME] BRISTOL git #b282dbb9 @ 2025-09-03

Part 2: Boolean algebra (7)

Derived operators

> Concept: we can define various derived operators in terms of NOT, AND, and OR.

> Example:
> “NOT-AND” or NAND, such that

0
x y|xAy
0 0 1
0 1 1
1 0 1
1 1 0
> “NOT-OR” or NOR, such that
xTy = ~xvy)
so
x y|lxVy
0 0 1
0 1 0
1 0 0
1 1 0

Notes:

Notes:

Part 3: application (1)

THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TiME p(n), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT w OF LENGTH n AND
PRODUCES Ep.. THE RUNNING TIME IS O(pn)
ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND ...

WTF, MAN. I JUsST
WANTED TO LEARN
How TO PROGRAM

VIDEO GAMES,

https://abstrusegoose.com/206

git #b282dbb9 @ 2

Part 3: application (2)

> (Fairly) reasonable question(s):

1. “I thought this was CS, not Maths!”, and
2. “why does this unit duplicate material in other units?”.

Notes:

Notes:

Part 3: application (2)

Notes:
> (Fairly) reasonable question(s):
1. “Ithought this was CS, not Maths!”, and
2. “why does this unit duplicate material in other units?”.
> Answer: it isn’t, and it doesn’t (well, not too much) ... note that

> theoretical concepts, e.g., often have significant practical motivations or implications, and
> it’s perfectly reasonable to utilise Electronic Design Automation (EDA) [3] tools.

Computer Architecture

git #b282dbb9 @ 2025-09-03

Part 3: application (3)

Axiomatic manipulation ~» optimisation

Notes:
> Question: simplify the Boolean expression

(m(avb)A=(cvdVve)V-=(aVb)

into a form that contains the fewest operators possible.

Part 3: application (3)

Axiomatic manipulation ~» optimisation

> Question: simplify the Boolean expression
(m@@vb)A=(cvdve)V-(aVb)

into a form that contains the fewest operators possible.

> Solution #1: less steps.

(=(avb) A =(cvdVve) V =(aVvb)
= =(@vb) VvV (=(avb) A =(cvdve)) (commutativity)
= =(aVvb) (absorption)

© Daniel Page (

EA University of
ME] BRISTOL

Computer Architecture

Part 3: application (3)

Axiomatic manipulation ~» optimisation

> Question: simplify the Boolean expression
(m(avb)A=(cvdVve)V-=(aVb)

into a form that contains the fewest operators possible.

> Solution #2: more steps.

(m(avb) A =(cvdvVe)) VvV =(aVvb)
= ((man=b) A =(cVvdVe)) VvV =(aVvb)
= ((man=b) AN (=cA-dA=e) V =(aVDb)
= ((man=-b) A (=cA-dA=e) V (-aA-=b)
= (-aA=b) VvV ((maA=b) A (=c A =d A —e))
= (-a A-b)
= =(aVvb)

© Daniel Page (

git # b282dbb9 @ 2025-09-03

(de Morgan)
(de Morgan)
(de Morgan)
(commutativity)
(absorption)
(de Morgan)

r Architecture

Notes:

Notes:

Part 3: application (4)

Axiomatic manipulation ~» optimisation

> Question: simplify the Boolean expression
@AbAc)V(maAb)V(aAbA-=c)

into a form that contains the fewest operators possible.

© Daniel Page BIKE University o

;
Computer Architecture ME] BRISTOL git #b282dbb9 @ 2025-09-03

Part 3: application (4)

Axiomatic manipulation ~» optimisation

> Question: simplify the Boolean expression
@AbAc)V(-maAb)V(aAbA-c)

into a form that contains the fewest operators possible.

> Solution:
(@AbAac) VvV (-aAb) V. (@aAbA=c)
= (@AbAc) V (aAbA=c) V (-aAb) (commutativity)
= (aAb) A (cV=0) V. (-aAb) (distribution)
= (aAb) Al VvV (-aADb) (inverse)
= (anb) V. (-aAb) (identity)
= b A (aV -a) (distribution)
= b Al (inverse)

b (identity)

Notes:

Notes:

Part 3: application (5)

Axiomatic manipulation ~» optimisation

Quote

to find every trick I could in life to design things real tiny.

If I designed a computer with 200 chips, I tried to design it with 150. And then I would try to design it with 100.

I just tried

— Wozniak

Quote

So I took 20 chips off their board; I bypassed 20 of their chips.

— Wozniak

git #b282dbb9 @ 2

Part 3: application (6)

Axiomatic manipulation ~» optimisation

@® DISKIL INTERFACE CARD
650

Shugart SA400
minifloppy Disk Drive
e

SehiaL o, 007479

=

https://en.wikipedia.org/wiki/File:Shugart_SA400.jpg
https://en.wikipedia.org/wiki/File:Interface_Card_-_Disk_II_Interface_Apple2.jpg

Notes:

* The quotes relate to design and implementation of a (floppy) disk controller for the Apple I computer (circa 1977); there is an obvious
focus on efficiency, which is credited as allowing the controller to be commercially viable. A detailed overview of the overarching
anecdote is available via

https://en.wikipedia.org/wiki/Disk_IT

or
https://apple2history.org/history/ah05/

The moral is that, in reality, “it works”, while important, may not be good enough: meeting various other (market-driven) quality
metrics (e.g., efficiency, physical size, power consumption, etc.) is often vital rather than simply attractive.

Notes:

Part 3: application (7)

Practical use-cases ~ richer specification

> Concept: truth tables can accommodate don’t care entries, e.g.,

X y|r
? 01
0 1|2
1 1|0

such that
> a? (rather than 0 or 1) means we “don’t care” (# “don’t know”),
> on the LHS, for an input,
> ?is a wildcard (or short-hand),
> it means O and 1,
> we’ve compressed two truth table rows into one.
> on the RHS, for an output,

> ?isa choice,
> itmeansOor1,
> we can select which one to, e.g., optimise the associated expression.

© Daniel Page (BIKE University of

Computer Architecture ME] BRISTOL git #b282dbb9 @ 2025-09-03

Part 3: application (8)

Universality ~» manufacturability

> Fact: NAND and NOR are functionally complete (or universal), e.g.,

X = xAx
XAY = (xAy) A(xAy)
xVy = —x Ay = (xAx) AYAY)

which we can prove via

x ylxAy xAx yAy | xAyYAEAy) @AX)AYAY)
0 0 1 1 1 0 0
0 1 1 1 0 0 1
1 0 1 0 1 0 1
1 1 0 0 0 1 1

any Boolean function can be expressed using a single operator.

Notes:

Notes:

Part 3: application (9)

Universality ~» manufacturability

»> Question: translate
XAV z)

into a version using NAND only.

Computer Architecture

Part 3: application (9)

Universality ~» manufacturability

> Question: translate
XAV z)

into a version using NAND only.

> Solution #1: apply the identities naively to get

XAV z)
x/_((yK_y)K_(zK_z)) o
EAYAYAEZAD)AEAYAY) A(zA2)

Notes:

Notes:

Part 3: application (9)

Universality ~ manufacturability

»> Question: translate
XAy Vz)
into a version using NAND only.
> Solution #2: apply the identities intelligently to get

XAV z)
XA A YA (ER2)
= tAt

where t = x A ((y A y) A (z A 2)) is a common sub-expression [2].

© Daniel P (0
Computer Architecture S git #b282dbb9 @ 2025-09-03

Conclusions

> Take away points:
1. The design of computational devices, e.g., micro-processors, isn't ad hoc: Boolean algebra
offers a theoretical basis for reasoning about computational devices (and computation) in

practice.

Notes:

Notes:

Conclusions

> Take away points:

2. Boolean algebra is a (somewhat) cosmetic extension of what you already know.
3. Keep in mind that
> any Boolean function f which can be expressed by a truth table can be computed using an associated
Boolean expression,
> aBoolean expression is composed of Boolean operators,
> if we (physically) implement the Boolean operators, we can implement the Boolean expression and hence
compute f.

© Daniel Page (

Computer Architecture git #b282dbb9 @ 2025-09-03

Conclusions

> Take away points:

4. We'll focus on application (i.e., use) vs. theory (e.g., study) of Boolean algebra from here on.
5. Keep in mind that

> “it works” # “it works well”,

using automation is fine iff. you know the underlying theory,

using brute-force is fine iff. you know the underlying theory,

Boolean algebra > Boolean axioms: concepts that seem of interest in theory alone, can be important
if/when applied in practice.

Yyvy

Notes:

Notes:

Additional Reading

Notes:

> Wikipedia: Boolean algebra. urL: https://en.wikipedia.org/wiki/Boolean_algebra.

> D. Page. “Chapter 1: Mathematical preliminaries”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.

> W. Stallings. “Chapter 11: Digital logic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.

> A.S. Tanenbaum and T. Austin. “Section 3.1: Gates and Boolean algebra”. In: Structured Computer Organisation. 6th ed. Prentice

Hall, 2012.
© Daniel Page (
Computer Architecture git # b282dbb9 @ 2

References

Notes:

[1] Wikipedia: Boolean algebra. urL: https://en.wikipedia.org/wiki/Boolean_algebra (see p. 113).

2] Wikipedia: Common sub-expression elimination. urL: https://en.wikipedia.org/wiki/Common_subexpression_elimination
(see pp. 103, 105).

[3] Wikipedia: Electronic Design Automation (EDA). urL: https://en.wikipedia.org/wiki/Electronic_design_automation (see
pp- 79, 81).

[4] D. Page. “Chapter 1: Mathematical preliminaries”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009
(see p. 113).

[5] W. Stallings. “Chapter 11: Digital logic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013 (see p. 113).

[6] A.S. Tanenbaum and T. Austin. “Section 3.1: Gates and Boolean algebra”. In: Structured Computer Organisation. 6th ed. Prentice
Hall, 2012 (see p. 113).

