Computer Architecture

Daniel Page

Department of Computer Science, University Of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB. UK. ⟨csdsp@bristol.ac.uk⟩

September 5, 2025

Keep in mind there are *two* PDFs available (of which this is the latter):

- 1. a PDF of examinable material used as lecture slides, and
- 2. a PDF of non-examinable, extra material:
 - the associated notes page may be pre-populated with extra, written explaination of material covered in lecture(s), plus

 anything with a "grey'ed out" header/footer represents extra material which is
 - useful and/or interesting but out of scope (and hence not covered).

Notes.		
1		
1		
1		
Notes:		

COMS10015 lecture: week #1

https://xkcd.com/435

University of BRISTOL

COMS10015 lecture: week #1

- ► Agenda: an introduction to

 - propositional logic,
 Boolean algebra, and
 - 3. application of, i.e., use-cases and rationale for the above within the context of COMS10015.

Notes	s:			
Notes	::			
Notes	v:			
Notes	::			
Notes	×			
Notes	:			
Notes	s:			
Notes	×			
Notes	::			
Notes	×			
Notes	s:			
Notes				

► A **proposition** is basically a statement

the temperature is $20^{\circ}C$

this statement is false the temperature is too hot

© Daniel Page (csdsp@bristol.ac.uk) Computer Architecture	University of BRISTOL	git # b282db

Part 1: propositional logic (1)

► A **proposition** is basically a statement

the temperature is $20^{\circ}C$

this statement is false the temperature is too hot

whose meaning

1. can be **evaluated** to yield a **truth value**, i.e., **false** or **true**.

Notes.		
1		
		_
Notes:		

► A **proposition** is basically a statement

the temperature is $20^{\circ}C$

this statement is false the temperature is too hot

- 1. can be evaluated to yield a truth value, i.e., false or true,
- 2. must be unambiguous.

© Daniel Page (csdsp@bristol.ac.uk)	University of BRISTOL	
Computer Architecture	S BRISTOL	git # b282dbb9 @ 2025-09-03

Part 1: propositional logic (1)

► A **proposition** is basically a statement

the temperature is $20^{\circ}C$ the temperature is $x^{\circ}C$ this statement is false the temperature is too hot

- can be evaluated to yield a truth value, i.e., false or true,
 must be unambiguous,
- 3. can include free variables.

Notes:	
Notes:	

▶ A **proposition** is basically a statement

f = the temperature is $20^{\circ}C$ g(x) = the temperature is $x^{\circ}C$ this statement is false the temperature is too hot

- 1. can be evaluated to yield a truth value, i.e., false or true,
- 2. must be unambiguous,
- 3. can include free variables, and
- 4. can be represented using a short-hand variable or function, whereby free variables must be bound to concrete arguments before evaluation.

Computer Architecture SIS BRISTOL git # b282dbb9 @ 2025-09-00	© Daniel Page (csdsp3br1sto1.ac.uk) Computer Architecture	University of BRISTOL	git # b282dbb9 @ 2025-09-03
---	---	-----------------------	-----------------------------

Part 1: propositional logic (2)

▶ Single statements can be combined using various **connectives**, e.g.,

the temperature is not $20^{\circ}C$

University of BRISTOL

adding parentheses where needed to add clarity, so that

1. "not x" is denoted $\neg x$,

Notes:	
Notes:	

Notes:			

▶ Single statements can be combined using various **connectives**, e.g.,

 \neg (the temperature is 20°*C*)

adding parentheses where needed to add clarity, so that

1. "not x" is denoted $\neg x$,

git # b282dbb9 @ 2025-09-0

Part 1: propositional logic (2)

▶ Single statements can be combined using various **connectives**, e.g.,

the temperature is $20^{\circ}C$ and it is sunny

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,

Notes:			

▶ Single statements can be combined using various **connectives**, e.g.,

(the temperature is $20^{\circ}C$) \land (it is sunny)

adding parentheses where needed to add clarity, so that

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,

git # b282dbb9 @ 2025-09-0

Part 1: propositional logic (2)

▶ Single statements can be combined using various **connectives**, e.g.,

the temperature is $20^{\circ}C$ or it is sunny

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or,

Notes:	

Notes:			

▶ Single statements can be combined using various **connectives**, e.g.,

(the temperature is $20^{\circ}C$) \vee (it is sunny)

adding parentheses where needed to add clarity, so that

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or,

git # b282dbb9 @ 2025

Part 1: propositional logic (2)

▶ Single statements can be combined using various **connectives**, e.g.,

either the temperature is 20°C or it is sunny, but not both

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or,
- 4. "x or y but not x and y" is denoted $x \oplus y$, and usually called exclusive-or,

Notes:		
Makes		
Notes:		

▶ Single statements can be combined using various **connectives**, e.g.,

(the temperature is $20^{\circ}C$) \oplus (it is sunny)

adding parentheses where needed to add clarity, so that

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or,
- 4. "x or y but not x and y" is denoted $x \oplus y$, and usually called exclusive-or,

Part 1: propositional logic (2)

▶ Single statements can be combined using various **connectives**, e.g.,

the temperature being 20°C implies that it is sunny

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \vee y$, and usually called inclusive-or,
- 4. "x or y but not x and y" is denoted $x \oplus y$, and usually called exclusive-or,
- 5. "x implies y" is denoted $x \Rightarrow y$, and sometimes written "if x then y", and

Notes:	

Notes:			

▶ Single statements can be combined using various **connectives**, e.g.,

(the temperature is $20^{\circ}C$) \Rightarrow (it is sunny)

adding parentheses where needed to add clarity, so that

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or,
- 4. "x or y but not x and y" is denoted $x \oplus y$, and usually called exclusive-or,
- 5. "x implies y" is denoted $x \Rightarrow y$, and sometimes written "if x then y", and

Part 1: propositional logic (2)

▶ Single statements can be combined using various **connectives**, e.g.,

the temperature is $20^{\circ}C$ is equivalent to it being sunny

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \vee y$, and usually called inclusive-or,
- 4. "x or y but not x and y" is denoted $x \oplus y$, and usually called exclusive-or,
- 5. "x implies y" is denoted $x \Rightarrow y$, and sometimes written "if x then y", and
- 6. "x is equivalent to y" is denoted $x \equiv y$, and sometimes written "x if and only if y" or "x iff. y".

Notes:
N.
Notes:

▶ Single statements can be combined using various **connectives**, e.g.,

(the temperature is $20^{\circ}C$) \equiv (it is sunny)

adding parentheses where needed to add clarity, so that

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or, 4. "x or y but not x and y" is denoted $x \oplus y$, and usually called exclusive-or,
- 5. "x implies y" is denoted $x \Rightarrow y$, and sometimes written "if x then y", and
- 6. "x is equivalent to y" is denoted $x \equiv y$, and sometimes written "x if and only if y" or "x iff. y".

Daniel Page (csdsp@bristol.ac.uk)	University of BRISTOL
Computer Architecture	₩ BRISTOL

Part 1: propositional logic (2)

- ▶ You *might* see more formal terms or different notation for the *same* connectives:
 - ¬ is often termed logical compliment (or negation),
 ↑ is often termed logical conjunction,
 ∨ is often termed logical (inclusive) disjunction,
 ⊕ is often termed logical (exclusive) disjunction,

 - \Rightarrow is often termed logical **implication**, and
 - ightharpoonup \equiv is often termed logical equivalence.

Notes:	
Notes:	

▶ You can think of the same thing diagrammatically, i.e.,

$$r = \text{(the temperature is } 20^{\circ}\text{C}) \land \text{(it is sunny)}$$

 \equiv

but either way, the question is how do we **evaluate** the (compound) proposition (or **expression**) to produce a truth value?

Part 1: propositional logic (4)

▶ Since each statement can only evaluate to **true** or **false**, we can enumerate all possible outcomes in a **truth table**, e.g., if

x =the temperature is $20^{\circ}C$

y = it is sunny

 $r = \text{(the temperature is } 20^{\circ}C) \land \text{(it is sunny)}$

then

inp	outs	output		
x	у	r		
false	false	false		
false	true	false		
true	false	false		
true	true	true		

- ► Note that
 - 1. each row details the output(s) associated with a given assignment to the inputs,
 - 2. if there are n inputs, the truth table will have 2^n rows.

Notes:	
Notes:	

Definition								
	x false false true	y false true false	¬x true true false	x ∧ y false false false	x ∨ y false true true	x ⊕ y false true true	$x \Rightarrow y$ true true false	x ≡ y true false false
	true	true	false	true	true	false	true	true

© Daniel Page (csdsp@bristol.ac.ub) Computer Architecture	University of BRISTOL	git # b282dbb9 @ 2025-09-03

Part 1: propositional logic (6)

Notes:	
	-

Notes:			

Part 2: Boolean algebra (1)

Notice that

1. in **elementary algebra**, for some number x we have that

$$x + 0 = x$$

and

$$x \cdot 1 = x$$

2. in **set theory**, for some set *x* we have that

$$x \cup \emptyset = x$$

and

$$x \cap \mathcal{U} = x$$
,

plus we've now demonstrated that

3. \hat{i} n **propositional logic**, for some truth value x we have that

$$x \vee \mathbf{false} = x$$

and

$$x \wedge \mathbf{true} = x$$
.

Notes:

Part 2: Boolean algebra (2)

Thou must

- 1. work with the set $\mathbb{B} = \{0, 1\}$ of **binary** digits, using 0 and 1 instead of false and true,
- 2. shorten every statement into either a variable or function,
- 3. use unary operators, e.g., \neg (or NOT), and **binary operators**, e.g., ∧ and ∨ (or AND and OR), to form expressions,
- 4. manipulate said expressions according to some axioms (or rules),

then call the result Boolean algebra.

L	
	Notes:

Part 2: Boolean algebra (3)

- ▶ Put more concretely, we now have
 - 1. a set of operators specified by

Definition										
	х	у	$\neg x$	$x \wedge y$	$x \vee y$	$x \oplus y$	$x \Rightarrow y$	$x \equiv y$		
	0	0	1	0	0	0	1	1		
	0	1	1	0	1	1	1	0		
	1	0	0	0	1	1	0	0		
	1	1	0	1	1	0	1	1		

© Daniel Page (csdsp@bristol.ac.uk)	
Computer Architecture	

git # b282dbb9 @ 2025-09-03

Part 2: Boolean algebra (3)

▶ Put more concretely, we now have

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition			
Name	Axiom(s)	Name	Axiom(s)
commutativity association distribution	$\begin{array}{ccc} x \wedge y & \equiv & y \wedge x \\ (x \wedge y) \wedge z & \equiv & x \wedge (y \wedge z) \\ x \wedge (y \vee z) & \equiv & (x \wedge y) \vee (x \wedge z) \end{array}$	commutativity association distribution	$\begin{array}{ccc} x \vee y & \equiv & y \vee x \\ (x \vee y) \vee z & \equiv & x \vee (y \vee z) \\ x \vee (y \wedge z) & \equiv & (x \vee y) \wedge (x \vee z) \end{array}$

plus other rules such as **precedence** (to deal with ambiguity in the absence of parentheses).

Notes

The presentance i	larrala for	ann anita	of Rooloon	amanakana is

1. ¬, 2. ∧, 3. ∨

meaning, for example, that we resolve an \land before and \lor (and sometimes say \land "binds more tightly" to operands than \lor).

Notes:

· The precedence levels for our suite of Boolean operators is

1. ¬

meaning, for example, that we resolve an \land before and \lor (and sometimes say \land "binds more tightly" to operands than \lor).

Part 2: Boolean algebra (3)

▶ Put more concretely, we now have

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition						
Name	Axio	n(s)	Name	A	xiom(s)	
identity null idempotency inverse	$ \begin{array}{ccc} x \wedge 1 & \equiv \\ x \wedge 0 & \equiv \\ x \wedge x & \equiv \\ x \wedge \neg x & \equiv \end{array} $	0 x	identity null idempotency inverse	$x \lor 0$ $x \lor 1$ $x \lor x$ $x \lor \neg x$	$\equiv x$	

plus other rules such as **precedence** (to deal with ambiguity in the absence of parentheses).

Part 2: Boolean algebra (3)

▶ Put more concretely, we now have

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition			
Name	Axiom(s)	Name	Axiom(s)
absorption de Morgan	$ \begin{array}{ccc} x \wedge (x \vee y) & \equiv & x \\ \neg (x \wedge y) & \equiv & \neg x \vee \neg y \end{array} $	absorption de Morgan	$ \begin{array}{rcl} x \lor (x \land y) & \equiv & x \\ \neg (x \lor y) & \equiv & \neg x \land \neg y \end{array} $

plus other rules such as **precedence** (to deal with ambiguity in the absence of parentheses).

University of BRISTOL

Notes:

he	precedence levels for our suite of Boolean operators	is
	3	

meaning, for example, that we resolve an \land before and \lor (and sometimes say \land "binds more tightly" to operands than \lor).

· The precedence levels for our suite of Boolean operators is

meaning, for example, that we resolve an \land before and \lor (and sometimes say \land "binds more tightly" to operands than \lor).

Part 2: Boolean algebra (3)

▶ Put more concretely, we now have

2. a set of axioms that allow manipulation of expressions comprised of said operators, i.e.,

Definition			
	Name	Axiom(s)	
	equivalence implication involution	$\begin{array}{cccc} x \equiv y & \equiv & (x \Rightarrow y) \land (y \Rightarrow x) \\ x \Rightarrow y & \equiv & \neg x \lor y \\ \neg \neg x & \equiv & x \end{array}$	
	I		

plus other rules such as **precedence** (to deal with ambiguity in the absence of parentheses).

Part 2: Boolean algebra (4) Standard forms

Definition

The fact there are AND and OR forms of most axioms hints at a more general underlying principle. Consider a Boolean expression e: the **principle of duality** states that the **dual expression** e^D is formed by

- 1. leaving each variable as is,
- 2. swapping each ∧ with ∨ and vice versa, and
- 3. swapping each 0 with 1 and vice versa.

Of course e and e^D are different expressions, and clearly not equivalent; if we start with some $e \equiv f$ however, then we do still get $e^D \equiv f^D$.

Example

As an example, consider axioms for

1. distribution, e.g., if

$$e = x \land (y \lor z) \equiv (x \land y) \lor (x \land z)$$

then

$$e^D = x \vee (y \wedge z) \equiv (x \vee y) \wedge (x \vee z)$$

and

2. identity, e.g., if

$$e=x\wedge 1\equiv x$$

then

$$e^D = x \vee 0 \equiv x$$
.

Notes:
 The precedence levels for our suite of Boolean operators is 1. ¬, 2. ∧, 3. ∨
meaning, for example, that we resolve an \land before and \lor (and sometimes say \land "binds more tightly" to operands than \lor).
Notes:

Notes:				

Part 2: Boolean algebra (5) Standard forms

Definition

The de Morgan axiom can be turned into a more general principle. Consider a Boolean expression e: the **principle of complements** states that the **complement expression** $\neg e$ is formed by

- 1. swapping each variable x with the complement $\neg x$,
- 2. swapping each ∧ with ∨ and vice versa, and
- 3. swapping each 0 with 1 and vice versa.

Example

As an example, consider that if

$$e = x \wedge y \wedge z$$
,

then by the above we should find

$$f = \neg e = (\neg x) \lor (\neg y) \lor (\neg z).$$

Proof:

x	у	z	$\neg x$	$\neg y$	$\neg z$	е	f
0	0	0	1	1	1	0	1
0	0	1	1	1	0	0	1
0	1	0	1	0	1	0	1
0	1	1	1	0	0	0	1
1	0	0	0	1	1	0	1
1	0	1	0	1	0	0	1
1	1	0	0	0	1	0	1
1	1	1	0	0	0	1	0

Part 2: Boolean algebra (6) Standard forms

Definition

Consider a Boolean expression:

1. When the expression is written as a sum (i.e., OR) of terms which each comprise the product (i.e., AND) of variables, e.g.,

$$(a \wedge b \wedge c) \vee (d \wedge e \wedge f),$$

minterm

it is said to be in disjunctive normal form or Sum of Products (SoP) form; the terms are called the minterms. Note that each variable can exist as-is or complemented using NOT, meaning

$$(\neg a \wedge b \wedge c) \vee (d \wedge \neg e \wedge f),$$

minterm

is also a valid SoP expression.

2. When the expression is written as a product (i.e., AND) of terms which each comprise the sum (i.e., OR) of variables, e.g.,

$$(a \vee b \vee c) \wedge (d \vee e \vee f),$$

maxterm

it is said to be in conjunctive normal form or Product of Sums (PoS) form; the terms are called the maxterms. As above each variable can exist as-is or complemented using NOT.

282dbb9	@ 2025-	09-03

Notes:	
1000	
Notes:	

Part 2: Boolean algebra (7) Derived operators

- ▶ Concept: we can define various **derived operators** in terms of NOT, AND, and OR.
- Example:
 - "exclusive-OR" or **XOR**, such that

$$x \oplus y \equiv (\neg x \land y) \lor (x \land \neg y)$$

so

\boldsymbol{x}	у	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

© Daniel Page (csdsp@bristol.ac.uk)

Computer Architecture

University of BRISTOL

git # b282dbb9 @ 2025-09-0

Part 2: Boolean algebra (7) Derived operators

▶ Concept: we can define various **derived operators** in terms of NOT, AND, and OR.

- **Example:**
 - ► "NOT-AND" or **NAND**, such that

$$x \overline{\wedge} y \equiv \neg (x \wedge y)$$

so

x	y	$x \overline{\wedge} y$
0	0	1
0	1	1
1	0	1
1	1	0

► "NOT-OR" or **NOR**, such that

$$x \overline{\vee} y \equiv \neg(x \vee y)$$

so

Notes:		
Notes:		

Part 3: application (1)

https://abstrusegoose.com/206

University of BRISTOL

Part 3: application (2)

- ► (Fairly) reasonable question(s):

 - "I thought this was CS, not Maths!", and
 "why does *this* unit duplicate material in *other* units?".

Notes:	
Notes:	

Part 3: application (2)

- ► (Fairly) reasonable question(s):

 - "I thought this was CS, not Maths!", and
 "why does *this* unit duplicate material in *other* units?".
- ▶ Answer: it isn't, and it doesn't (well, not *too* much) ... note that
 - theoretical concepts, e.g., often have significant practical motivations or implications, and it's perfectly reasonable to utilise **Electronic Design Automation (EDA)** [3] tools.

University of BRISTOL

Part 3: application (3)
Axiomatic manipulation → optimisation

▶ Question: simplify the Boolean expression

$$(\neg(a \lor b) \land \neg(c \lor d \lor e)) \lor \neg(a \lor b)$$

into a form that contains the fewest operators possible.

Part 3: application (3) Axiomatic manipulation → optimisation

▶ Question: simplify the Boolean expression

$$(\neg(a \lor b) \land \neg(c \lor d \lor e)) \lor \neg(a \lor b)$$

into a form that contains the fewest operators possible.

► Solution #1: less steps.

© Daniel Page (csdsp@bristol.ac.uk)

Computer Architecture

University of BRISTOL

git # b282dbb9 @ 2025-09-0

Part 3: application (3)
Axiomatic manipulation → optimisation

▶ Question: simplify the Boolean expression

$$(\neg(a \lor b) \land \neg(c \lor d \lor e)) \lor \neg(a \lor b)$$

into a form that contains the fewest operators possible.

► Solution #2: more steps.

University of BRISTOL

Part 3: application (4) Axiomatic manipulation → optimisation

▶ Question: simplify the Boolean expression

$$(a \land b \land c) \lor (\neg a \land b) \lor (a \land b \land \neg c)$$

into a form that contains the fewest operators possible.

Part 3: application (4) Axiomatic manipulation → optimisation

▶ Question: simplify the Boolean expression

$$(a \land b \land c) \lor (\neg a \land b) \lor (a \land b \land \neg c)$$

into a form that contains the fewest operators possible.

► Solution:

Notes:	
Notes:	

Part 3: application (5) Axiomatic manipulation → optimisation

Quote

If I designed a computer with 200 chips, I tried to design it with 150. And then I would try to design it with 100. I just tried to find every trick I could in life to design things real tiny.

– Wozniak

Quote

So I took 20 chips off their board; I bypassed 20 of their chips.

- Wozniak

© Daniel Page (csdsp@bristol.ac.uk)

Computer Architecture

git # b282dbb9 @ 2025-09-03

Part 3: application (6)

Axiomatic manipulation \sim optimisation

https://en.wikipedia.org/wiki/File:Shugart_SA400.jpg

https://en.wikipedia.org/wiki/File:Interface_Card_-_Disk_II_Interface_Apple2.jpg

Daniel Page (csdsp@bristol.ac

Notes:

•	The quotes relate to design and implementation of a (floppy) disk controller for the Apple II computer (circa 1977); there is an obviou
	focus on efficiency, which is credited as allowing the controller to be commercially viable. A detailed overview of the overarching

https://en.wikipedia.org/wiki/Disk_II

or

https://apple2history.org/history/ah05/

The moral is that, in reality, "it works", while important, may not be good enough: meeting various other (market-driven) quality metrics (e.g., efficiency, physical size, power consumption, etc.) is often vital rather than simply attractive.

Notes:	

Part 3: application (7) Practical use-cases → richer specification

► Concept: truth tables can accommodate **don't care** entries, e.g.,

x	y	r
?	0	1
0	1	?
1	1	0

such that

- ▶ a ? (rather than 0 or 1) means we "don't care" (≠ "don't know"),
- on the LHS, for an *in*put,
 - ? is a wildcard (or short-hand),
 - it means 0 and 1,
 - we've compressed two truth table rows into one.
- on the RHS, for an *out*put,
 - is a choice,
 - it means 0 or 1,
 - we can select which one to, e.g., optimise the associated expression.

© Daniel Page (csdsp@bristol.ac.uk	
Computer Architecture	

git # b282dbb9 @ 2025-09-0

Part 3: application (8) Universality → manufacturability

► Fact: NAND and NOR are functionally complete (or universal), e.g.,

which we can prove via

x	у	$x \overline{\wedge} y$	$x \overline{\wedge} x$	y \ y	$(x \overline{\wedge} y) \overline{\wedge} (x \overline{\wedge} y)$	$(x \overline{\wedge} x) \overline{\wedge} (y \overline{\wedge} y)$
0	0	1	1	1	0	0
0	1	1	1	0	0	1
1	0	1	0	1	0	1
1	1	0	0	0	1	1

: any Boolean function can be expressed using a *single* operator.

Notes:
Notes:

Part 3: application (9) Universality → manufacturability

Question: translate

$$x \wedge (y \vee z)$$

into a version using NAND only.

© Daniel Page (csdsp@bristol.ac.uk)
Computer Architecture

University of BRISTOL

git # b282dbb9 @ 2025-09-0

Part 3: application (9) Universality → manufacturability

► Question: translate

$$x \wedge (y \vee z)$$

into a version using NAND only.

► Solution #1: apply the identities *naively* to get

$$\begin{array}{ll} & x \wedge (y \vee z) \\ = & x \wedge ((y \overline{\wedge} y) \overline{\wedge} (z \overline{\wedge} z)) \\ = & (x \overline{\wedge} ((y \overline{\wedge} y) \overline{\wedge} (z \overline{\wedge} z))) \overline{\wedge} (x \overline{\wedge} ((y \overline{\wedge} y) \overline{\wedge} (z \overline{\wedge} z))) \end{array}$$

Notes:			

Part 3: application (9) Universality → manufacturability

Question: translate

$$x \wedge (y \vee z)$$

into a version using NAND only.

► Solution #2: apply the identities *intelligently* to get

$$\begin{array}{ll} & x \wedge (y \vee z) \\ = & x \wedge ((y \wedge y) \wedge (z \wedge z)) \\ = & t \wedge t \end{array}$$

where $t = x \overline{\wedge} ((y \overline{\wedge} y) \overline{\wedge} (z \overline{\wedge} z))$ is a common sub-expression [2].

© Daniel Page (csdsp@bristol.ac.uk)

Computer Architecture

git # b282dbb9 @ 2025-09-03

Conclusions

- ► Take away points:
 - 1. The design of computational devices, e.g., micro-processors, *isn't* ad hoc: Boolean algebra offers a theoretical basis for reasoning about computational devices (and computation) in practice.

Notes:	

Notes:	

Conclusions

- ► Take away points:
 - 2. Boolean algebra is a (somewhat) cosmetic extension of what you already know.
 - 3. Keep in mind that
 - any Boolean function f which can be expressed by a truth table can be computed using an associated Boolean expression,
 - a Boolean expression is composed of Boolean operators,
 - if we (physically) implement the Boolean operators, we can implement the Boolean expression and hence compute f.

© Daniel Page (csdsp@brist	
Computer Architectu	

Conclusions

► Take away points:

- 4. We'll focus on application (i.e., use) vs. theory (e.g., study) of Boolean algebra from here on.
- 5. Keep in mind that
 - "it works" ≠ "it works well",
 - using automation is fine iff. you know the underlying theory,using brute-force is fine iff. you know the underlying theory,

 - ▶ Boolean algebra > Boolean axioms: concepts that seem of interest in theory alone, can be important if/when applied in practice.

Notes:	
Notes:	

Additional Reading

- ▶ Wikipedia: Boolean algebra. url: https://en.wikipedia.org/wiki/Boolean_algebra.
- D. Page. "Chapter 1: Mathematical preliminaries". In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.
- ▶ W. Stallings. "Chapter 11: Digital logic". In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.
- A.S. Tanenbaum and T. Austin. "Section 3.1: Gates and Boolean algebra". In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012.

© Daniel Page (csdsp@bristol.ac.uk)

Computer Architecture

git # b282dbb9 @ 2025-09-03

References

- [1] Wikipedia: Boolean algebra. url: https://en.wikipedia.org/wiki/Boolean_algebra (see p. 113).
- [2] Wikipedia: Common sub-expression elimination. URL: https://en.wikipedia.org/wiki/Common_subexpression_elimination (see pp. 103, 105).
- [3] Wikipedia: Electronic Design Automation (EDA). URL: https://en.wikipedia.org/wiki/Electronic_design_automation (see pp. 79, 81).
- [4] D. Page. "Chapter 1: Mathematical preliminaries". In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009 (see p. 113).
- [5] W. Stallings. "Chapter 11: Digital logic". In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013 (see p. 113).
- [6] A.S. Tanenbaum and T. Austin. "Section 3.1: Gates and Boolean algebra". In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012 (see p. 113).

Notes:		
Notes:		