
Computer Architecture

Daniel Page

Department of Computer Science,
University Of Bristol,

Merchant Venturers Building,
Woodland Road,

Bristol, BS8 1UB. UK.
⟨csdsp@bristol.ac.uk⟩

September 5, 2025

Keep in mind there are two PDFs available (of which this is the latter):
1. a PDF of examinable material used as lecture slides, and
2. a PDF of non-examinable, extra material:
▶ the associated notes page may be pre-populated with extra, written explaination of

material covered in lecture(s), plus
▶ anything with a “grey’ed out” header/footer represents extra material which is

useful and/or interesting but out of scope (and hence not covered).

Notes:

Notes:

COMS10015 lecture: week #2

https://xkcd.com/571

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

COMS10015 lecture: week #2

▶ Claim: at least conceptually we could say that

123 ≡ ⟨3, 2, 1⟩,
i.e., the decimal literal 123 is basically just a sequence of digits.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

COMS10015 lecture: week #2

▶ Question: given
▶ a bit is a single binary digit, i.e., 0 or 1,
▶ a byte is an 8-element sequence of bits, and
▶ a word is a w-element sequence of bits
and so, e.g.,

01111011 ≡ ⟨1, 1, 0, 1, 1, 1, 1, 0⟩,
what do these things mean ... what do they represent?

▶ Answer: anything we decide they do!

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

COMS10015 lecture: week #2

▶ Concept:

X̂ 7→ X

th
e

re
pr

es
en

ta
ti

on
of

X

m
ap

s
to

th
e

va
lu

e
of

X

i.e., we need
1. a concrete representation that we can write down, plus
2. a mapping that yields the correct value and is consistent (in both directions).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

COMS10015 lecture: week #2

▶ Agenda:
1. useful properties of bit-sequences,
2. positional number systems ❀ standard integer representations.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: useful properties of bit-sequences

Definition

A given literal, say
X = 1111011,

can be interpreted in two ways:
1. A little-endian ordering is where we read bits in a literal from right-to-left, i.e.,

XLE = ⟨X0 ,X1 ,X2 ,X3 ,X4 ,X5 ,X6⟩ = ⟨1, 1, 0, 1, 1, 1, 1⟩,
where
▶ the Least-Significant Bit (LSB) is the right-most in the literal (i.e., X0), and
▶ the Most-Significant Bit (MSB) is the left-most in the literal (i.e., Xn−1 = X6).

2. A big-endian ordering is where we read bits in a literal from left-to-right, i.e.,

XBE = ⟨X6 ,X5 ,X4 ,X3 ,X2 ,X1 ,X0⟩ = ⟨1, 1, 1, 1, 0, 1, 1⟩,
where
▶ the Least-Significant Bit (LSB) is the left-most in the literal (i.e., Xn−1 = X6), and
▶ the Most-Significant Bit (MSB) is the right-most in the literal (i.e., X0).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: useful properties of bit-sequences

Definition

Following the idea of vectorial Boolean function, given an n-element bit-sequence X, and an m-element bit-sequence Y
we can clearly
1. overload ⊘ ∈ {¬}, i.e., write

R = ⊘X,

to mean
Ri = ⊘Xi

for 0 ≤ i < n,

2. overload ⊖ ∈ {∧,∨, ⊕}, i.e., write
R = X ⊖ Y,

to mean
Ri = Xi ⊖ Yi

for 0 ≤ i < n = m, where if n ≠ m, we pad either X or Y with 0 until the n = m.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• Although they look similar, take care not to confuse the bit-wise operators with the Boolean operators !, && and ||. It’s reasonable to
think of the former as being used for computation and the latter for conditions (i.e., when a decision is needed).

Part 1: useful properties of bit-sequences

Definition

Following the idea of vectorial Boolean function, given an n-element bit-sequence X, and an m-element bit-sequence Y
we can clearly
1. overload ⊘ ∈ {¬}, i.e., write

R = ⊘X,

to mean
Ri = ⊘Xi

for 0 ≤ i < n,

2. overload ⊖ ∈ {∧,∨, ⊕}, i.e., write
R = X ⊖ Y,

to mean
Ri = Xi ⊖ Yi

for 0 ≤ i < n = m, where if n ≠ m, we pad either X or Y with 0 until the n = m.

▶ Example: in C, we use the computational (or bit-wise) operators ~, &, |, and ^ this
way: they apply NOT, AND, OR, and XOR to corresponding bits in the operands.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• Although they look similar, take care not to confuse the bit-wise operators with the Boolean operators !, && and ||. It’s reasonable to
think of the former as being used for computation and the latter for conditions (i.e., when a decision is needed).

Part 1: useful properties of bit-sequences

Definition

Given two n-bit sequences X and Y, we can define some important properties named after Richard Hamming, a researcher
at Bell Labs:
▶ The Hamming weight of X is the number of bits in X that are equal to 1, i.e., the number of times Xi = 1. This can be

expressed as

HW(X) =
n−1∑
i=0

Xi .

▶ The Hamming distance between X and Y is the number of bits in X that differ from the corresponding bit in Y, i.e.,
the number of times Xi ≠ Yi . This can be expressed as

HD(X,Y) =
n−1∑
i=0

Xi ⊕ Yi .

Note that both quantities naturally generalise to non-binary sequences.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: useful properties of bit-sequences

Definition

Given two n-bit sequences X and Y, we can define some important properties named after Richard Hamming, a researcher
at Bell Labs:
▶ The Hamming weight of X is the number of bits in X that are equal to 1, i.e., the number of times Xi = 1. This can be

expressed as

HW(X) =
n−1∑
i=0

Xi .

▶ The Hamming distance between X and Y is the number of bits in X that differ from the corresponding bit in Y, i.e.,
the number of times Xi ≠ Yi . This can be expressed as

HD(X,Y) =
n−1∑
i=0

Xi ⊕ Yi .

Note that both quantities naturally generalise to non-binary sequences.

▶ Example: given X = ⟨1, 0, 0, 1⟩ and Y = ⟨0, 1, 1, 1⟩ we find that

HW(X) =
∑n−1

i=0 Xi = 1 + 0 + 0 + 1 = 2

HD(X,Y) = ∑n−1
i=0 Xi ⊕ Yi = (1 ⊕ 0) + (0 ⊕ 1) + (0 ⊕ 1) + (1 ⊕ 1) = 1 + 1 + 1 + 0 = 3

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (1)

▶ Concept: a positional number system expresses the value of a number x using a
base-b (or radix-b) expansion, i.e.,

x̂ = ⟨x̂0 , x̂1 , . . . , x̂n−1⟩

↦→ x

= ±
n−1∑
i=0

x̂i · bi

where each x̂i
▶ is one of n digits taken from the digit set X = {0, 1, . . . , b − 1},
▶ is “weighted” by some power of of the base b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (1)

▶ Beware!
▶ for b > 10 we can’t express x̂i using a single Arabic numeral,
▶ for b = 16, for example, we use letters instead:

A ↦→ 10
B ↦→ 11
C ↦→ 12
D ↦→ 13
E ↦→ 14
F ↦→ 15

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (2)

Example

Consider an example where we
1. set b = 10, i.e., deal with decimal numbers, and

2. have x̂i ∈ X = {0, 1, . . . , 10 − 1 = 9}.
This means we can write

x̂ = 123 = ⟨3, 2, 1⟩(10)

↦→ x

=
n−1∑
i=0

x̂i · 10i

= 3 · 100 + 2 · 101 + 1 · 102

= 3 · 1 + 2 · 10 + 1 · 100

= 123(10)

i.e., represent the value “one hundred and twenty three” in a variety of ways using different bases.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (2)

Example

Consider an example where we
1. set b = 2, i.e., deal with binary numbers, and

2. have x̂i ∈ X = {0, 2 − 1 = 1}.
This means we can write

x̂ = 1111011 = ⟨1, 1, 0, 1, 1, 1, 1⟩(2)
↦→ x

=
n−1∑
i=0

x̂i · 2i

= 1 · 20 + 1 · 21 + 0 · 22 + 1 · 23 + 1 · 24 + 1 · 25 + 1 · 26

= 1 · 1 + 1 · 2 + 0 · 4 + 1 · 8 + 1 · 16 + 1 · 32 + 1 · 64

= 123(10)

i.e., represent the value “one hundred and twenty three” in a variety of ways using different bases.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (2)

Example

Consider an example where we
1. set b = 8, i.e., deal with octal numbers, and

2. have x̂i ∈ X = {0, 1, . . . , 8 − 1 = 7}.
This means we can write

x̂ = 173 = ⟨3, 7, 1⟩(8)
↦→ x

=
n−1∑
i=0

x̂i · 8i

= 3 · 80 + 7 · 81 + 1 · 82

= 3 · 1 + 7 · 8 + 1 · 64

= 123(10)

i.e., represent the value “one hundred and twenty three” in a variety of ways using different bases.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (2)

Example

Consider an example where we
1. set b = 16, i.e., deal with hexadecimal numbers, and

2. have x̂i ∈ X = {0, 1, . . . , 16 − 1 = 15}.
This means we can write

x̂ = 7B = ⟨B, 7⟩(16)

↦→ x

=
n−1∑
i=0

x̂i · 16i

= 11 · 160 + 7 · 161

= 11 · 1 + 7 · 16

= 123(10)

i.e., represent the value “one hundred and twenty three” in a variety of ways using different bases.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (3)

▶ Problem: we want to represent and perform various operations on elements of Z, but
1. it’s an an infinite set, and
2. so far we’ve ignored the issue of sign.

▶ Solution: in C, for example, we get

unsigned char ≃ uint8_t ↦→ { 0, . . . , +28 − 1 }
char ≃ int8_t ↦→ { −27 , . . . , 0, . . . , +27 − 1 }

but why these, and how do they work?

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (4)
Unsigned

Definition

An unsigned integer can be represented in n bits by using the natural binary expansion. That is, we have

x̂ = ⟨x̂0 , x̂1 , . . . , x̂n−1⟩

↦→ x

=
n−1∑
i=0

x̂i · 2i

for x̂i ∈ {0, 1}, which yields
0 ≤ x ≤ 2n − 1.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (5)
Unsigned

Example (n = 8)

11111111 ↦→ 1 · 27 + 1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20 = +255(10)
.
.
.

.

.

.
10000101 ↦→ 1 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = +133(10)

.

.

.
.
.
.

10000000 ↦→ 1 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 0 · 20 = +128(10)
01111111 ↦→ 0 · 27 + 1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20 = +127(10)

.

.

.
.
.
.

01111011 ↦→ 0 · 27 + 1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20 = +123(10)
.
.
.

.

.

.
00000001 ↦→ 0 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 1 · 20 = +1(10)
00000000 ↦→ 0 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 0 · 20 = +0(10)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (6)
Unsigned

▶ Fact:
▶ each hexadecimal digit xi ∈ {0, 1, . . . , 15},
▶ four bits gives 24 = 16 possible combinations, so
▶ each hexadecimal digit can be thought of as a short-hand for four binary digits.

▶ Example: we can perform the following translation steps

8AC = ⟨ C, A, 8, ⟩(16)
= ⟨ ⟨ 0, 0, 1, 1 ⟩(2) , ⟨ 0, 1, 0, 1 ⟩(2) , ⟨ 0, 0, 0, 1 ⟩(2) ⟩(16)
= ⟨ 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1 ⟩(16)
↦→ 2220(10)

such that in C, for example,
0x8AC = 2220(10).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (7)
Unsigned

▶ Fact: left-shift (resp. right-shift) of some x by y digits is equivalent to multiplication
(resp. division) by by.

▶ Example: taking b = 2 we find that

x × 2y = (∑n−1
i=0 xi · 2i) × 2y

=
∑n−1

i=0 xi · 2i × 2y

=
∑n−1

i=0 xi · 2i+y

= x ≪ y

and
x/2y = (∑n−1

i=0 xi · 2i)/2y

=
∑n−1

i=0 xi · 2i/2y

=
∑n−1

i=0 xi · 2i−y

= x ≫ y

such that in C, for example,

0x8AC << 2 ↦→ 2220(10) × 22 = 8880(10) ↦→ 0x22B0

0x8AC >> 2 ↦→ 2220(10) / 22 = 555(10) ↦→ 0x22B

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (8)
Unsigned

▶ Problem: set the i-th bit of some x, i.e., xi, to 1.
▶ Solution: compute

x ∨ (1 ≪ i).

Example

If x = 0011(2) and i = 2 then we compute

x ∨ (1 ≪ i)
0011(2) ∨ (1 ≪ 2)
0011(2) ∨ 0100(2)
0111(2)

meaning initially x2 = 0, then we changed it so x2 = 1.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (9)
Unsigned

▶ Problem: set the i-th bit of some x, i.e., xi, to 0.
▶ Solution: compute

x ∧ ¬(1 ≪ i).

Example

If x = 0111(2) and m = 2 then we compute

x ∧ ¬ (1 ≪ i)
0111(2) ∧ ¬ (1 ≪ 2)
0111(2) ∧ ¬ (0100(2))
0111(2) ∧ 1011(2)
0011(2)

meaning initially x2 = 1, then we changed it so x2 = 0.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (10)
Unsigned

▶ Problem: extract the i-th bit of some x, i.e., xi.
▶ Solution: compute

(x ≫ i) ∧ 1.

Example

If x = 0011(2) , then
1. if i = 2 we compute

(x ≫ i) ∧ 1
(0011(2) ≫ 2) ∧ 1
(0000(2)) ∧ 1

0000(2)
meaning x2 = 0, or

2. if i = 0 we compute
(x ≫ i) ∧ 1
(0011(2) ≫ 0) ∧ 1
(0011(2)) ∧ 1

0001(2)
meaning x0 = 1.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (11)
Unsigned

▶ Problem: extract an m-bit sub-word (i.e., m contiguous bits) starting at the i-th bit of
some x.

▶ Solution: compute
(x ≫ i) ∧ ((1 ≪ m) − 1).

Example

If x = 1011(2) , m = 2 and i = 1 then we want to extract the sub-word ⟨x1 , x2⟩
(x ≫ i) ∧ ((1 ≪ m) − 1)
(1011(2) ≫ 1) ∧ ((1 ≪ 2) − 1)
(0101(2)) ∧ ((0100(2)) − 1)
(0101(2)) ∧ (0011(2))

0001(2)

meaning ⟨x1 , x2⟩ = ⟨1, 0⟩ as expected.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (12)
Signed, sign-magnitude

Definition

A signed integer can be represented in n bits by using the sign-magnitude approach; 1 bit is reserved for the sign (0
means positive, 1 means negative) and n − 1 for the magnitude. That is, we have

x̂ = ⟨x̂0 , x̂1 , . . . , x̂n−1⟩

↦→ x

= (−1)x̂n−1 ·
n−2∑
i=0

x̂i · 2i

for x̂i ∈ {0, 1}, which yields
−2n−1 + 1 ≤ x ≤ +2n−1 − 1.

Note that there are two representations of zero (i.e., +0 and −0).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (13)
Signed, sign-magnitude

Example (n = 8)

01111111 ↦→ (−1)0 · (1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20) = +127(10)
.
.
.

.

.

.
01111011 ↦→ (−1)0 · (1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20) = +123(10)

.

.

.
.
.
.

00000001 ↦→ (−1)0 · (0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 1 · 20) = +1(10)
00000000 ↦→ (−1)0 · (0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 0 · 20) = +0(10)
10000000 ↦→ (−1)1 · (0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 0 · 20) = −0(10)
10000001 ↦→ (−1)1 · (0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 1 · 20) = −1(10)

.

.

.
.
.
.

11111011 ↦→ (−1)1 · (1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20) = −123(10)
.
.
.

.

.

.
11111111 ↦→ (−1)1 · (1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20) = −127(10)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (14)
Signed, sign-magnitude

Example (n = 8)

reversed copy, non-contiguous number line

11
11

11
11

10
00

00
10

10
00

00
01

10
00

00
00

00
00

00
00

00
00

00
01

00
00

00
10

01
11

11
11

10
00

00
00

10
00

00
01

11
11

11
10

11
11

11
11

−1
27

(1
0)

−2
(1

0)
−1

(1
0)

−0
(1

0)
+

0 (
10

)
+

1 (
10

)
+

2 (
10

)

+
12

7 (
10

)
+

12
8 (

10
)

+
12

9 (
10

)

+
25

4 (
10

)
+

25
5 (

10
)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (15)
Signed, two’s-complement

Definition

A signed integer can be represented in n bits by using the two’s-complement approach; the basic idea is to weight the
(n − 1)-th bit using −2n−1 rather than +2n−1 , and all other bits as normal. That is, we have

x̂ = ⟨x̂0 , x̂1 , . . . , x̂n−1⟩

↦→ x

= x̂n−1 · −2n−1 +
n−2∑
i=0

x̂i · 2i

for x̂i ∈ {0, 1}, which yields
−2n−1 ≤ x ≤ +2n−1 − 1.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (16)
Signed, two’s-complement

Example (n = 8)

01111111 ↦→ 0 · −27 + 1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20 = +127(10)
.
.
.

.

.

.
01111011 ↦→ 0 · −27 + 1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20 = +123(10)

.

.

.
.
.
.

00000001 ↦→ 0 · −27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 1 · 20 = +1(10)
00000000 ↦→ 0 · −27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 0 · 20 = +0(10)
11111111 ↦→ 1 · −27 + 1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20 = −1(10)

.

.

.
.
.
.

10000101 ↦→ 1 · −27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = −123(10)
.
.
.

.

.

.
10000000 ↦→ 1 · −27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 0 · 20 = −128(10)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: positional number systems ❀ standard integer representations (17)
Signed, two’s-complement

Example (n = 8)

direct copy, contiguous number line

10
00

00
00

10
00

00
01

11
11

11
10

11
11

11
11

00
00

00
00

00
00

00
01

00
00

00
10

01
11

11
11

10
00

00
00

10
00

00
01

11
11

11
10

11
11

11
11

−1
28

(1
0)

−1
27

(1
0)

−2
(1

0)
−1

(1
0)

±0
(1

0)
+

1 (
10

)
+

2 (
10

)

+
12

7 (
10

)
+

12
8 (

10
)

+
12

9 (
10

)

+
25

4 (
10

)
+

25
5 (

10
)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Conclusions

▶ Take away points:
1. We control what bit-sequences mean: we can interpret an instance of the C char data-type as
▶ a signed 8-bit integer, or
▶ a generic object which can take one of 28 states,
and, as a result, can represent anything, e.g.,
▶ a pixel within an image,
▶ a character within a document,
▶ a number within a matrix,
▶ ...

2. Beyond this, knowing about various standard representations is important and useful in a
general sense.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Additional Reading

▶ Wikipedia: Numeral system. url: https://en.wikipedia.org/wiki/Numeral_system.
▶ D. Page. “Chapter 1: Mathematical preliminaries”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.
▶ B. Parhami. “Part 1: Number representation”. In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford

University Press, 2000.
▶ W. Stallings. “Chapter 9: Number systems”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.
▶ A.S. Tanenbaum and T. Austin. “Appendix A: Binary numbers”. In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

References

[1] Wikipedia: Numeral system. url: https://en.wikipedia.org/wiki/Numeral_system (see p. 69).

[2] D. Page. “Chapter 1: Mathematical preliminaries”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009
(see p. 69).

[3] B. Parhami. “Part 1: Number representation”. In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford
University Press, 2000 (see p. 69).

[4] W. Stallings. “Chapter 9: Number systems”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013 (see p. 69).

[5] A.S. Tanenbaum and T. Austin. “Appendix A: Binary numbers”. In: Structured Computer Organisation. 6th ed. Prentice Hall,
2012 (see p. 69).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

