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Keep in mind there are fwo PDFs available (of which this is the latter):
1. a PDF of examinable material used as lecture slides, and
2. a PDF of non-examinable, extra material:

> the associated notes page may be pre-populated with extra, written explaination of
material covered in lecture(s), plus

> anything with a “grey’ed out” header/footer represents extra material which is
useful and/or interesting but out of scope (and hence not covered).
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COMS10015 lecture: week #2
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COMS10015 lecture: week #2

Notes:

> Claim: at least conceptually we could say that

123 = (3,2,1),

i.e., the decimal literal 123 is basically just a sequence of digits.




COMS10015 lecture: week #2

> Question: given
> a bit is a single binary digit, i.e., 0 or 1,
> a byte is an 8-element sequence of bits, and
> aword is a w-element sequence of bits

and so, e.g.,
01111011 = (1,1,0,1,1,1,1,0),
what do these things mean ... what do they represent?

> Answer: anything we decide they do!
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COMS10015 lecture: week #2
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i.e., we need

1. a concrete representation that we can write down, plus
2. a mapping that yields the correct value and is consistent (in both directions).
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Notes:




COMS10015 lecture: week #2

Notes:
> Agenda:
1. useful properties of bit-sequences,
2. positional number systems ~+ standard integer representations.
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Part 1: useful properties of bit-sequences
Notes:

Definition

A given literal, say
X = 1111011,

can be interpreted in two ways:
1. Alittle-endian ordering is where we read bits in a literal from right-to-left, i.e.,
Xie = (Xo, X1, X2, X3, X4, X5, X) = (1,1,0,1,1,1,1),
where

> the Least-Significant Bit (LSB) is the right-most in the literal (i.e., Xp), and
> the Most-Significant Bit (MSB) is the left-most in the literal (i.e., X;,—1 = X¢).

2. A big-endian ordering is where we read bits in a literal from left-to-right, i.e.,
Xpe = (X6, X5, X4, X3, X2, X1, X0) =(1,1,1,1,0,1,1),
where

> the Least-Significant Bit (LSB) is the left-most in the literal (i.e., X;,_1 = X4), and
> the Most-Significant Bit (MSB) is the right-most in the literal (i.e., Xp).




Part 1: useful properties of bit-sequences

Definition

Following the idea of vectorial Boolean function, given an n-element bit-sequence X, and an m-element bit-sequence Y
we can clearly

1. overload @ € {-}, i.e., write

R =0X,
to mean
R; = @X;
forO0<i<n,
2. overload © € {A,V, &}, i.e., write
R=XeoY,
to mean
Ri=X;eY;

for 0 <i < n=m,whereif n # m, we pad either X or Y with 0 until the n = m
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Part 1: useful properties of bit-sequences

Notes:

¢ Although they look similar, take care not to confuse the bit-wise operators with the Boolean operators !, &&and | |. It's reasonable to
think of the former as being used for computation and the latter for conditions (i.e., when a decision is needed).

Definition

Following the idea of vectorial Boolean function, given an n-element bit-sequence X, and an m-element bit-sequence Y
we can clearly

1. overload @ € {-}, i.e., write

R =0X,
to mean
R; = @X;
forO0<i<n,
2. overload © € {A, V, &}, i.e., write
R=XeY,
to mean
Ri=X;ieY;

for 0 <i < n =m, where if n # m, we pad either X or Y with 0 until the n = m.

> Example: in C, we use the computational (or bit-wise) operators ~, & |, and * this
way: they apply NOT, AND, OR, and XOR to corresponding bits in the operands.
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¢ Although they look similar, take care not to confuse the bit-wise operators with the Boolean operators !, & and | |. It's reasonable to
think of the former as being used for computation and the latter for conditions (i.e., when a decision is needed).




Part 1: useful properties of bit-sequences

Definition

Given two n-bit sequences X and Y, we can define some important properties named after Richard Hamming, a researcher
at Bell Labs:

> The Hamming weight of X is the number of bits in X that are equal to 1, i.e., the number of times X; = 1. This can be
expressed as
n-1
HW(X) = Z X;.
i=0

> The Hamming distance between X and Y is the number of bits in X that differ from the corresponding bitin Y, i.e.,
the number of times X; # Y;. This can be expressed as

n-1
HD(X,Y) = Z X @Y.
i=0

Note that both quantities naturally generalise to non-binary sequences.

© Daniel Page (
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Part 1: useful properties of bit-sequences

Definition

Given two n-bit sequences X and Y, we can define some important properties named after Richard Hamming, a researcher
at Bell Labs:

> The Hamming weight of X is the number of bits in X that are equal to 1, i.e., the number of times X; = 1. This can be
expressed as

HW(X) = i X;.
i=0

> The Hamming distance between X and Y is the number of bits in X that differ from the corresponding bitin Y, i.e.,
the number of times X; # Y;. This can be expressed as

n-1
HD(X,Y) = Z X Y.
i=0

Note that both quantities naturally generalise to non-binary sequences.

> Example: given X =(1,0,0,1) and Y = (0,1, 1, 1) we find that

HW(X) =31 X —14040+1=2

HD(X,Y) =Y/ X;@Yi=(1e0)+(0el)+(0el)+(1el)=1+1+1+0=3

Notes:

Notes:




Part 2: positional number systems ~» standard integer representations (1)

> Concept: a positional number system expresses the value of a number x using a
base-b (or radix-b) expansion, i.e.,

X = (Xo,%x1,...,%-1)

where each X;
> is one of n digits taken from the digitset X = {0,1,...,b -1},
> is “weighted” by some power of of the base b.

© Daniel P
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Part 2: positional number systems ~» standard integer representations (1)

> Beware!
> for b > 10 we can't express ; using a single Arabic numeral,
> for b = 16, for example, we use letters instead:

A
B
C
D
E
F

111111

Notes:

Notes:




Part 2: positional number systems ~» standard integer representations (2)

_ -

Consider an example where we
1. setb =10, i.e., deal with decimal numbers, and
2. have% € X={0,1,...,10-1=9}.
This means we can write
£=123 = (3,2,
- X
n-1 )
= > %10
i=0
= 3.100 +2-10' +1-10?
= 3-1 +2-10 +1-100

= 123(19)

i.e., represent the value “one hundred and twenty three” in a variety of ways using different bases.
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Part 2: positional number systems ~» standard integer representations (2)

_ -

Consider an example where we
1. setb =2, i.e., deal with binary numbers, and
2. have € X={0,2-1=1}.

This means we can write

X =1111011

(1,1,0,1,1,1, 1)

[ad X

n-1 .
= N2

i=0
= 1-2041.2"40-224+1-2%+1-2% +1-25+1-20
= 11 +1-2 +0-4 +1-8 +1:-16+1:32+1-64

= 1231

i.e., represent the value “one hundred and twenty three” in a variety of ways using different bases.

[



Part 2: positional number systems ~» standard integer representations (2)

Consider an example where we

1. setb =8, i.e., deal with octal numbers, and
2. have € X={0,1,...,8-1=7}.

This means we can write

£=173 = (3,71

L d X

n-1 .
= Y-8

i=0
= 3.84+7.8+1-8
= 3.1 +7-8 +1-64

= 123(19)

i.e., represent the value “one hundred and twenty three” in a variety of ways using different bases.

nputer Architecture N git # b282dbb9 @

Part 2: positional number systems ~» standard integer representations (2)

Consider an example where we

1. setb =16, i.e., deal with hexadecimal numbers, and
2. have% € X={0,1,...,16 -1 =15}.

This means we can write

¥=7B = (B,7)qe

[ad X

n-1 )
= Y16
i=0

= 11-16°+7-16'
= 111 +7-16

= 1231

i.e., represent the value “one hundred and twenty three” in a variety of ways using different bases.

Notes:

[

Notes:




Part 2: positional number systems ~» standard integer representations (3)

> Problem: we want to represent and perform various operations on elements of Z, but

1. it’s an an infinite set, and

2. so far we’ve ignored the issue of sign.
> Solution: in C, for example, we get
,+28 -1}
,+27 -1}

R

unsigned char uint8_t +— { 0,...
char =~ int8_t {—27,...,0,...

but why these, and how do they work?

git #b282dbb9 @ 2025-09-03
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Part 2: positional number systems ~» standard integer representations (4)

Notes:

Unsigned
Definition
An unsigned integer can be represented in 1 bits by using the natural binary expansion. That is, we have
¥ o= (R, R, n)
- X
n-1
= > -2

for %; € {0,1}, which yields
0<x<2"-1

Notes:




Part 2: positional number systems ~» standard integer representations (5)

Unsigned
11111111 > 127 +1-2041-2°41-28 4+1-25+1-22 4+ 1.2 +1-2° = 42554,
10000101  +—  1-274+0:2°+0:2°+0-2*+0-22+1-2240-2' +1-2° = 4133
10000000 >  1-274+0-2040-2°+0:2*+0-2°+0-22+0-2 +0-2° = +128)
01111111 >  0-27+1-2041-29 4128 +1-22+1-22+1-2 +1:20 = 41273
01111011 >  0:27+1:2041-259+1-2* +1-2°40-22+1-21 +1:2 = 4123
00000001 > 027 +0:2040-2°40-24+0-240-22+0-2 +1-20 = +10)
00000000 +—  0-2740-2040-2940-2*+0-2°4+0-2240-2' +0-20 = +0(10)

EIK University of
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Part 2: positional number systems ~+ standard integer representations (6)

Unsigned

Notes:
> Fact:

> each hexadecimal digit x; € {0,1,...,15},
> four bits gives 2 = 16 possible combinations, so
> each hexadecimal digit can be thought of as a short-hand for four binary digits.

> Example: we can perform the following translation steps

8AC = ( C, A, 8, )(16)
= < < 0,01, 1 >(2)/ < 0,1,0, 1 >(2)/ < 0,0,0,1 )(2) >(16)
= ( 001,1, 0,1,0,1, 0,0,0,1 )(16)

such that in C, for example,

0x8AC = 2220(10) .




Part 2: positional number systems ~» standard integer representations (7)

Unsigned
Notes:
> Fact: left-shift (resp. right-shift) of some x by y digits is equivalent to multiplication
(resp. division) by bY.
> Example: taking b = 2 we find that
xx2¥ = (zl " xj - 21) x 2V
= Z 0 Dyi-2ix 2y
= ZZ -0 xl 21+y
= ¥<y
and
x/2Y = {) Ly - 21y /2y
= - 0 21' /2Y
= X5y %2
= x>y
such that in C, for example,
OX8AC << 2 > 222010 X 2% = 8880p +~> 0x22BO
0x8AC >> 2 +— 22200) /2% = 55540 > O0x22B

© Daniel Page ( BIKE University
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Part 2: positional number systems ~+ standard integer representations (8)

Unsigned
Notes:

» Problem: set the i-th bit of some x, i.e., x;, to 1.

> Solution: compute
xV (1 «i).

If x = 0011(3) and i = 2 then we compute

X \ (1 < i )
0011 Vv (1 < 2 )
0011(2) \% 0100(2)

0111y

meaning initially x, = 0, then we changed it so x, = 1.

ter Architecture



Part 2: positional number systems ~» standard integer representations (9)

Unsigned
. . . Notes:
» Problem: set the i-th bit of some x, i.e., x;, to 0.
> Solution: compute
x A =(1 < i).
If x = 0111(3) and m = 2 then we compute
x A= (1 < i )
011l A - 1 < 2 )
0111(2) A l ( 0100(2) )
0111(2) A 1011(2)
0011(y)
meaning initially x, = 1, then we changed it so x, = 0.
© Daniel P
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Part 2: positional number systems ~+ standard integer representations (10)
Unsigned
Notes:

» Problem: extract the i-th bit of some x, i.e., x;.

> Solution: compute
(x>0l

If x = 0011(3), then
1. if i = 2 we compute
( x > i ) A 1
( 00llp > 2 ) A 1
( 0000(2) ) A 1
00002)
meaning xp = 0, or
2. if i = 0 we compute
( x > i ) A 1
( 0011(2) > 0 ) A 1
( 0011(2) ) A 1
00012
meaning xg = 1.




Part 2: positional number systems ~+ standard integer representations (11)
Unsigned

> Problem: extract an m-bit sub-word (i.e., m contiguous bits) starting at the i-th bit of
some Xx.

> Solution: compute
x>)A((1l<m)-1).

If x = 1011y, m = 2 and i = 1 then we want to extract the sub-word (x1, x2)

( x > i ) A ( (1 < m ) - 1)

(101 1) > 1 ) A ( (1 < 2 ) - 1 )

( 0101(2) ) A ( ( 0100(2) ) - 1 )

( 0101(2) ) A ( 0011(2) )
00013

meaning (x1,x2) = (1,0) as expected.

© Daniel Page (
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Part 2: positional number systems ~+ standard integer representations (12)
Signed, sign-magnitude

Definition

A signed integer can be represented in 1 bits by using the sign-magnitude approach; 1 bit is reserved for the sign (0
means positive, 1 means negative) and n — 1 for the magnitude. That is, we have

o= (R R, Bee1)
- X
. n-2 .
= Y g
=0
for %; € {0,1}, which yields

2Tl <x <42 -1

Note that there are two representations of zero (i.e., +0 and —0).

Notes:

Notes:




Part 2: positional number systems ~+ standard integer representations (13)
Signed, sign-magnitude

_ -

01111111+ (-1)° - ( 1-2° 41-2941-2841-22+1-22+1-2041-2° ) = +127q
01111011  +—  (=1)° (120 41224124 41-2240-22+1-20+1-2° ) = +123y
00000001 +—  (-1)° ( 0:2° +0:25+0-22+0-22+0-22+0-2'+1-20 ) = +140)
00000000 +  (=1)° ( 02 +0-2540-2*4+0-2°+4+0-22+0-2'+0-20 ) = +0(10)
10000000 > (=1)! (020 +0:2°40:2240-2°+0-22+0-2' 402" ) = -0y
10000001  +—  (=1)! ( 02 +0:-2540-2*+0-2°+0-22+0-2'+1-20 ) = —1ao)
11111011 -  (-1)! (120 +1:29+1-28+1-2540-2241-21+1:20 ) = —123
11111111 — (=)' - 1:20 41224128 +1-22+1-22+1-214+1:20 ) = —127q
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Part 2: positional number systems ~+ standard integer representations (14)
Signed, sign-magnitude

Notes:

10000010
10000001
10000000
00000000
00000001
00000010
01111111
10000000
10000001
11111110
11111111

%

—127(10) =+ 11111111
~2q0)
~Lao)
=0a0)
+0(10)
+1 (10)
+2(10)

+127(10)

+128(10)
+129(10)
+254(10)
+255(10)

reversed copy, non-contiguous number line

[




Part 2: positional number systems ~+ standard integer representations (15)
Signed, two’s—complement

Notes:

Definition

A signed integer can be represented in 1 bits by using the two’s-complement approach; the basic idea is to weight the
(n — 1)-th bit using —2"~! rather than +2"~1, and all other bits as normal. That is, we have

¥ o= (R, X, Xn1)
- X
n-2 .
= Xp-1 —2"71 + Z X2
i=0

for %; € {0,1}, which yields
-2l <x<on o1,

niversity of

( Bl u,
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Part 2: positional number systems ~+ standard integer representations (16)

Signed, two’s-complement

_ -

01111111 >  0--27+1-2041-29+1-24+1-23+1-22+1-21 4120 = +1274y)
01111011 >  0--27+1-2041-2°+ 124 +1-2°40-22+1-20+1-2° = +123)
00000001 +— 0--274+0-2°40-2°+0-2*+0-2°+0-22+0-2' +1-20 = +1(10)
00000000 + 0-—27+0-2°40-2°+0-2*+0-2240-224+0-2 +0-20 = +0(10)
11111111 = 1--274+1-2041-25 4124 +1-22+1.22 41.21 +1.20 = 1310
10000101 +—  1-=27+0:2040-29+0-2* +0-2°+1-22+0-2' +1-20 = —123
10000000 +—  1-=27+0-2040-27+0-2* +0-2°4+0-22+0-2' +0-2° = -128

Computer Ar



Part 2: positional number systems ~+ standard integer representations (17)
Signed, two’s—complement

_ -
o = == — O =
S SRS 55 = —
S i =l 53 ——
[ Ne) —— O OO - o O —
SIS iy t=i=] —S S ==
SIS gy I=ES) S S = —
ISis) gy SIS ppS RSt ——
= ——Oo OO O = = =
ss cssgse ssa 55
o = Soooo S o
OIS NS = NE F 1S
AN 'THRHTF + NSRS 0 16
- = ol o
[l + + + + +
direct copy, contiguous number line
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Conclusions
Notes:

> Take away points:

1. We control what bit-sequences mean: we can interpret an instance of the C char data-type as
> asigned 8-bit integer, or
> a generic object which can take one of 2% states,

and, as a result, can represent anything, e.g.,
> a pixel within an image,
» a character within a document,

> a number within a matrix,
>

Beyond this, knowing about various standard representations is important and useful in a
general sense.




Additional Reading

Notes:

v

Wikipedia: Numeral system. urL: https://en.wikipedia.org/wiki/Numeral_system.

v

D. Page. “Chapter 1: Mathematical preliminaries”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.

v

B. Parhami. “Part 1: Number representation”. In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford
University Press, 2000.

> W. Stallings. “Chapter 9: Number systems”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.

v

A.S. Tanenbaum and T. Austin. “Appendix A: Binary numbers”. In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012.
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