COMS10015 lecture: week #2

1.0 200

BAPA

e 1,306... 1,307...

BARA

/F’_—m

...32/767..,-32,78...

...=32,767...-32,766 ...

=i

https://xkcd.com/571

https://xkcd.com/571
mailto:csdsp@bristol.ac.uk

COMS10015 lecture: week #2

> Claim: at least conceptually we could say that

123 = (3,2,1),

i.e., the decimal literal 123 is basically just a sequence of digits.

mailto:csdsp@bristol.ac.uk

COMS10015 lecture: week #2

> Question: given
> abit is a single binary digit, i.e., 0 or 1,
> abyte is an 8-element sequence of bits, and
> aword is a w-element sequence of bits

and so, e.g.,
01111011 = (1,1,0,1,1,1,1,0),

what do these things mean ... what do they represent?

> Answer: anything we decide they do!

mailto:csdsp@bristol.ac.uk

COMS10015 lecture: week #2

> Concept:
X = X
—_— v
X2 g
175 —
<
& £
R

the representation

i.e., we need

1. a concrete representation that we can write down, plus
2. amapping that yields the correct value and is consistent (in both directions).

mailto:csdsp@bristol.ac.uk

COMS10015 lecture: week #2

> Agenda:
1. useful properties of bit-sequences,
2. positional number systems ~» standard integer representations.

mailto:csdsp@bristol.ac.uk

Part 1: useful properties of bit-sequences

Definition

A given literal, say
X = 1111011,

can be interpreted in fwo ways:
1. Alittle-endian ordering is where we read bits in a literal from right-to-left, i.e.,
Xie = (Xo, X1, X2, X3, X4, X5, X6) = (1,1,0,1,1,1,1),
where

> the Least-Significant Bit (LSB) is the right-most in the literal (i.e., Xp), and
> the Most-Significant Bit (MSB) is the left-most in the literal (i.e., X;,—1 = Xp).

2. A big-endian ordering is where we read bits in a literal from left-to-right, i.e.,
Xpe = (X6, X5, X4, X3, X2, X1, X0) =(1,1,1,1,0,1,1),
where

> the Least-Significant Bit (LSB) is the left-most in the literal (i.e., X;,_1 = Xp), and
> the Most-Significant Bit (MSB) is the right-most in the literal (i.e., Xp).

mailto:csdsp@bristol.ac.uk

Part 1: useful properties of bit-sequences

Definition

Following the idea of vectorial Boolean function, given an n-element bit-sequence X, and an m-element bit-sequence Y
we can clearly

1. overload @ € {-}, i.e., write

R =0X,
to mean
R; = @X;
for0<i<n,
2. overload © € {A, V, ®}, i.e., write
R=XeY,
to mean
Ri=X;0Y;

for 0 < i < n=m,whereif n # m, we pad either X or Y with 0 until the n = m.

mailto:csdsp@bristol.ac.uk

Part 1: useful properties of bit-sequences

Definition

Following the idea of vectorial Boolean function, given an n-element bit-sequence X, and an m-element bit-sequence Y
we can clearly

1. overload @ € {-}, i.e., write

R =0X,
to mean
R; = @X;
for0<i<n,
2. overload © € {A, V, ®}, i.e., write
R=XeY,
to mean
Ri=X;0Y;

for 0 <i < n =m, whereif n # m, we pad either X or Y with 0 until the n = m.

> Example: in C, we use the computational (or bit-wise) operators ~, &, |, and * this
way: they apply NOT, AND, OR, and XOR to corresponding bits in the operands.

mailto:csdsp@bristol.ac.uk

Part 1: useful properties of bit-sequences

Definition

Given two n-bit sequences X and Y, we can define some important properties named after Richard Hamming, a researcher
at Bell Labs:

> The Hamming weight of X is the number of bits in X that are equal to 1, i.e., the number of times X; = 1. This can be
expressed as
n—
HW(X) = Z X;.

1
=0

> The Hamming distance between X and Y is the number of bits in X that differ from the corresponding bitin Y, i.e.,
the number of times X; # Y;. This can be expressed as

n-1
HD(X,Y) = Z Xi®Yi.
i=0

Note that both quantities naturally generalise to non-binary sequences.

mailto:csdsp@bristol.ac.uk

Part 1: useful properties of bit-sequences

Definition

Given two n-bit sequences X and Y, we can define some important properties named after Richard Hamming, a researcher
at Bell Labs:

> The Hamming weight of X is the number of bits in X that are equal to 1, i.e., the number of times X; = 1. This can be
expressed as
n=1
HW(X) = Z X;.

=0

> The Hamming distance between X and Y is the number of bits in X that differ from the corresponding bitin Y, i.e.,
the number of times X; # Y;. This can be expressed as

n-1
HD(X,Y) = Z X @Y.
i=0

Note that both quantities naturally generalise to non-binary sequences.

> Example: given X = (1,0,0,1) and Y =(0,1,1, 1) we find that

HW(X) =310 X; =140+0+1=2

HD(X,Y):Z?z‘olXi@Yi:(1®O)+(0®1)+(O€B1)+(1$1):1+1+1+0:3

mailto:csdsp@bristol.ac.uk

Part 2: positional number systems ~» standard integer representations (1)

> Concept: a positional number system expresses the value of a number x using a
base-b (or radix-b) expansion, i.e.,

X = <5\CUI£1/---/£VL—1>

where each %;
> is one of n digits taken from the digitset X = {0,1,...,b -1},
> is “weighted” by some power of of the base b.

mailto:csdsp@bristol.ac.uk

Part 2: positional number systems ~» standard integer representations (1)

> Beware!
> for b > 10 we can’t express X; using a single Arabic numeral,
> for b = 16, for example, we use letters instead:

A
B
C
D
E
F

11117111

mailto:csdsp@bristol.ac.uk

Part 2: positional number systems ~» standard integer representations (2)

Consider an example where we
1. setb =10, i.e., deal with decimal numbers, and
2. haveX € X={0,1,...,10-1=9}.

This means we can write

=123 = (3,2,

[X
n-1)
= %10
i=0

= 3-10°+2-10' +1-10?
= 3-1 +2-10 +1-100

= 123

i.e., represent the value “one hundred and twenty three” in a variety of ways using different bases.

#1b282dbb9

mailto:csdsp@bristol.ac.uk

Part 2: positional number systems ~» standard integer representations (2)

Consider an example where we
1. setb =2,1i.e., deal with binary numbers, and
2. have? € X={0,2-1=1}.
This means we can write
X =1111011 = (1,1,0,1,1,1,1)y
- X
n-1 .
= Xx-2
i=0
= 1:2041-2'+0-22+1-25+1-2% +1-25+1-2°
= 1-1 +1-2 40-4 +1-8 +1-16+1-32+1-64

= 123

i.e., represent the value “one hundred and twenty three” in a variety of ways using different bases.

#1b282dbb9

mailto:csdsp@bristol.ac.uk

Part 2: positional number systems ~» standard integer representations (2)

Consider an example where we
1. setb =8, i.e., deal with octal numbers, and
2. havet €X=1{0,1,...,8-1=7}.
This means we can write
=173 = (371
- X
n-1 .
= X8
i=0
= 3-8+7.8+1-8
= 31 +7-8 +1-64

= 123

i.e., represent the value “one hundred and twenty three” in a variety of ways using different bases.

#1b282dbb9

mailto:csdsp@bristol.ac.uk

Part 2: positional number systems ~» standard integer representations (2)

Consider an example where we
1. setb =16, i.e., deal with hexadecimal numbers, and
2. have? € X={0,1,...,16 -1 =15}.

This means we can write
¥=7B = (B7ue
- X
n-1)
= > &i-16
i=0
= 11-16° + 7- 16!
= 11-1 +7-16

= 123

i.e., represent the value “one hundred and twenty three” in a variety of ways using different bases.

#1b282dbb9

mailto:csdsp@bristol.ac.uk

Part 2: positional number systems ~» standard integer representations (3)

> Problem: we want to represent and perform various operations on elements of Z, but

1. it’s an an infinite set, and
2. so far we’ve ignored the issue of sign.

» Solution: in C, for example, we get

unsigned char =~ uint8_t — { 0,...,+28 -1}
char =~ int8_t {—27,...,0,...,+27—1}

but why these, and how do they work?

mailto:csdsp@bristol.ac.uk

Part 2: positional number systems ~» standard integer representations (4)
Unsigned

Definition

An unsigned integer can be represented in 1 bits by using the natural binary expansion. That is, we have

o= (b, B

for %; € {0,1}, which yields

mailto:csdsp@bristol.ac.uk

Part 2: positional number systems ~» standard integer representations (5)
Unsigned

I > 1274124 1.2+ 1-20 4123+ 1-22+1-20 + 1.2 = 42550,
10000101 +— 1:2740-2040-2240-240-2°+1-224+0-2' +1:20 = +133(y)
10000000 +— 1:2740:2040-2240-240-2°40-2240-2' +0-20 = +128y)
01111111 > 027 +1-204+1-22+ 128 +1-22+1-22+ 1214120 = +127
01111011 > 0-27+1-2°41-29+1-2 +1-240-22+1-2 +1-20 = +123
00000001 + 0-274+0-2040-254+0-2*+0-2°+0-2240-21 +1-20 = +1(10)
00000000 +— 0-27+0-2°40-2°+0-2*+0-2°+0-2240-2 +0-20 = +0(10)

#1b282dbb9

mailto:csdsp@bristol.ac.uk

Part 2: positional number systems ~» standard integer representations (6)
Unsigned

> Fact:
> each hexadecimal digit x; € {0,1,...,15},
> four bits gives 24 = 16 possible combinations, so
> each hexadecimal digit can be thought of as a short-hand for four binary digits.

> Example: we can perform the following translation steps

8AC = (C, A, 8,)(16)
= ((0,0,1,1), (0,1,0,1)2, (0,0,0,1)2)ae
= (0011, 0,1,0,1, 0,0,0,1 Jug
(g 2220(10)

such that in C, for example,
0x8AC = 2220(10)

© Daniel Page A University of
R

mailto:csdsp@bristol.ac.uk

Part 2: positional number systems ~» standard integer representations (7)
Unsigned

> Fact: left-shift (resp. right-shift) of some x by y digits is equivalent to multiplication
(resp. division) by bY.
> Example: taking b = 2 we find that

xx2Y (X x -2y x 2
Z:l:_O X 21‘ x 2
iy X2

= x<y

and
x/2Y

(z:?;{} x;-20)/2Y
= :Zb xj- 212
= Yy a2y

= x>y

such that in C, for example,

0X8AC << 2 — 222010 X 22 8880(19) +— 0x22BO
0x8AC >> 2 2220(10)/22 = 555(10) — 0x22B

© Daniel Page A University of
BRI

Co

mailto:csdsp@bristol.ac.uk

Part 2: positional number systems ~» standard integer representations (12)
Signed, sign-magnitude

Definition

A signed integer can be represented in 1 bits by using the sign-magnitude approach; 1 bit is reserved for the sign (0
means positive, 1 means negative) and n — 1 for the magnitude. That is, we have

o= (ko d, Re1)
(g X
N n-2
= (D)WY E-2
i=0

for &; € {0, 1}, which yields
2 l<x <42 -1

Note that there are two representations of zero (i.e., +0 and —0).

mailto:csdsp@bristol.ac.uk

Part 2: positional number systems ~» standard integer representations (13)

Signed, sign-magnitude

01111111 +— (-1)° - (1:20 4122412 41-22 41224120 +1:20) = 4127
01111011 +~— (-1)° (120 +1-2241-2241-2240-22+1-2'+1:20) = +123q
00000001 - (=1)° (0 0:20 40-2240-240-2240-2240-24+1-20) = 41
00000000 > (=1)° (0:20 40-2240-240-2°40-2240-240-2°) = +0q
10000000 +— (=1)! (0:2° +0:-2540-240-2240:2240-2'+0-2°) = —0(10)
10000001 +— (=1)! (0:2° +0:2540-240-2°40:22+0-2'+1-20) = —1(10)
11111011 - (=)' (120 +1-2241-241-2240-22+1-20+1:20) = -123y
11111111 - (=)' - (12 +1-29+1-28+1-22+1-224+1-21+1:2°) = —127qy

#1b282dbb9

mailto:csdsp@bristol.ac.uk

)

Part 2: positional number systems ~» standard integer representations (14

Signed, sign-magnitude

LILLIILL a_.mmm+
OLLLLILT - ODpcz+

00000001 -+~ ODgzT+

Soooooﬁ W A25«1
TTITITI0 =+ ODzz1+

01000000 -¢- ©Dz+
10000000 - O+
00000000 -4~ @D+
00000001 -4~ ©ODo—
1000000T -#- 00—
01000001 -+~ OVz—

reversed copy, non-contiguous number line

TITTTLLTL - 0Dz~

mailto:csdsp@bristol.ac.uk

Part 2: positional number systems ~» standard integer representations (15)
Signed, two’s-complement

Definition

A signed integer can be represented in n bits by using the two’s-complement approach; the basic idea is to weight the
(1 = 1)-th bit using —2"~! rather than +2"~!, and all other bits as normal. That is, we have

o= (b, Bee1)
- X

n-2 .
= Rge-2l4 0y &2
i=0

for &; € {0, 1}, which yields
-2l <x <42 -1

mailto:csdsp@bristol.ac.uk

Part 2: positional number systems ~» standard integer representations (16)
Signed, two’s-complement

01111111 > 0-=27+1-204+1-2°4 128 + 1.2 +1-22 4121+ 1.2 = +127
01111011 +— 0--27+1:2041:2°+1-2'+1:2240-22+1-21 +1-2° = 4123
00000001 + 0-=2740-2040-2°+0-2*+0-2°+0-2240-2" +1-20 = +1(10)
00000000 + 0--27+0:2°+0:2°+0-2*+0-2°+0-22+0-2' +0-2° = +0(10)
1111111 - 127+ 1204 1-29+ 1.2 +1-25 4 1.22 4 1-20 +1.20 = —1(10)
10000101 > 127 +0-2040-2°+0-2' +0-2°+1-22+0-2 +1:2° = —123(
10000000 +— 127 4+0-2°40-2°+0-2'+0-2°+0-22+0-2 +0-2° = —1284

mailto:csdsp@bristol.ac.uk

)

Part 2: positional number systems ~» standard integer representations (17

Signed, two’s-complement

LILLIILL a_.mmm+
OLLLLILT - ODpcz+

00000001 -+~ ODgzT+

Soooooﬁ W A25«1
TTITITI0 =+ ODzz1+

01000000 -¢- ©Dz+
10000000 - O+
00000000 -4~ Do
TITTTTLT ¢ 00—
OTTTTILT -~ Olz—

direct copy, contiguous number line

10000001 ~4- OV 77—
00000001 - ODgZ—

mailto:csdsp@bristol.ac.uk

Conclusions

> Take away points:
1. We control what bit-sequences mean: we can interpret an instance of the C char data-type as
> asigned 8-bit integer, or
> a generic object which can take one of 28 states,
and, as a result, can represent anything, e.g.,
> a pixel within an image,
» a character within a document,

»> a number within a matrix,
>

2. Beyond this, knowing about various standard representations is important and useful in a
general sense.

mailto:csdsp@bristol.ac.uk

Additional Reading

> Wikipedia: Numeral system. urL: https://en.wikipedia.org/wiki/Numeral_system.
> D. Page. “Chapter 1: Mathematical preliminaries”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.
> B.Parhami. “Part 1: Number representation”. In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford

University Press, 2000.
> W. Stallings. “Chapter 9: Number systems”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.

> AS. Tanenbaum and T. Austin. “Appendix A: Binary numbers”. In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012.

https://en.wikipedia.org/wiki/Numeral_system
mailto:csdsp@bristol.ac.uk

References

[1
[2]

[3]

[4]
[5]

Wikipedia: Numeral system. urL: https://en.wikipedia.org/wiki/Numeral_system (see p. 29).

D. Page. “Chapter 1: Mathematical preliminaries”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009
(see p. 29).

B. Parhami. “Part 1: Number representation”. In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford
University Press, 2000 (see p. 29).

W. Stallings. “Chapter 9: Number systems”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013 (see p. 29).

A.S. Tanenbaum and T. Austin. “Appendix A: Binary numbers”. In: Structured Computer Organisation. 6th ed. Prentice Hall,
2012 (see p. 29).

https://en.wikipedia.org/wiki/Numeral_system
mailto:csdsp@bristol.ac.uk

