Computer Architecture

Daniel Page

Department of Computer Science,
University Of Bristol,
Merchant Venturers Building,
Woodland Road,

Bristol, BS8 1UB. UK.
({csdsp@bristol.ac.uk)

September 5, 2025

Keep in mind there are fwo PDFs available (of which this is the latter):
1. a PDF of examinable material used as lecture slides, and
2. a PDF of non-examinable, extra material:

> the associated notes page may be pre-populated with extra, written explaination of
material covered in lecture(s), plus

> anything with a “grey’ed out” header/footer represents extra material which is
useful and/or interesting but out of scope (and hence not covered).

Notes:

Notes:

COMS10015 lecture: week #2

. Notes:
> Concept: consider
X - x
y =y
© Daniel Page (BIKE University of
Computer Architecture ME] BRISTOL git # b282dbb9 @ 2025-09-03
COMS10015 lecture: week #2
Notes:

> Concept: consider

= =

= x+y

Computer Ary

COMS10015 lecture: week #2

Notes:
> Concept: consider
¥ - x
y o=y
f&y) =7 > r = x+y
where f

1. has an action on % and {) compatible with that of + on x and y:
> accepts n-bit
e addend %, and
e addend j/

as input, and
> produces an (1 + 1)-bit sum 7 as output,
2. is a Boolean function:

f:{0, 1}'x{0,1}" —» {0/1}n+1

© Daniel P:

Computer Architecture

COMS10015 lecture: week #2

git #b282dbb9 @ 2025-09-03

Notes:

> Agenda: produce a design(s) for f, which

1. functions correctly, and
2. satisfies pertinent quality metrics (e.g., is efficient in time and/or space).

COMS10015 lecture: week #2

-

© Daniel Page (

Computer Architecture git # b282dbb9 @ 2025-09-03

Part 1: addition in theory (1)

> Concept:

= 107

S~ ow R
|
117

[
[=]
N

10710)
14(10)

U
o o
—_ =
[l =]
—_ =
o =
+

S aw R
|

1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

Compu

Notes:

Notes:

Part 1: addition in theory (1)

> Concept:

x = 10749 = 107

y = 14400 01 4+
c = 0

r =

107(10)
1410

11
o o
==
==
(<
+

=]

S o R
Il

1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

mputer Architecture git # b282dbb9

Part 1: addition in theory (1)

> Concept:

= 1070
14(10)

S o R
|
117
o
- o

= Ok N
+

10710)
14(10)

U
o o
—_ =
[l =]
—_ =
o =
+

S aw R

1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

Notes:

Notes:

Part 1: addition in theory (1)

> Concept:

x = 10749 = 107
y = 14400 01 4+
c = 010
ro = 21

107(10)
1410

==

11
f»—n

S o R
Il

1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

mputer Architecture git # b282dbb9

Part 1: addition in theory (1)

> Concept:

X = 107(10) [and 107
v = 14(10) g 01 4+
c = 0010
ro= 120y 121

10710)
14(10)

U
o o
—_ =
[l =]
—_ =
o =
+

S aw R

1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

Notes:

Notes:

Part 1: addition in theory (1)

> Concept:

x = 10749 = 107
y = 14400 01 4+
c = 0010
ro= 12149 = 1 21

107(10)
14(10)

117
o o
==
=]
==
oo =
+

S o oR

1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel P: (

mputer Architecture

Part 1: addition in theory (1)

> Concept:

X = 107(10) [and 107
y = 14(10) (=4 01 4+
c = 0010
ro= 120y 121

10710)
14(10)

o o
=
= o

117

S s R
o mn
O = =

al=] =N

1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

Notes:

Notes:

Part 1: addition in theory (1)

> Concept:

x = 10749 = 107
y = 14400 01 4+
c = 0010
ro= 12149 = 1 21

107(10)
14(10)

117

== o

S o oR

(=R

_ oo =
+

1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel P: (

mputer Architecture

Part 1: addition in theory (1)

> Concept:

X = 107(10) [and 107
y = 14(10) (=4 01 4+
c = 0010
ro= 120y 121

10710)
14(10)

o o

117

S aw R
o

B
O = O
O O =
al=] RN

1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

Notes:

Notes:

Part 1: addition in theory (1)

> Concept:

x = 10749 = 107
y = 14400 01 4+
c = 0010
ro= 12149 = 1 21

107(10)
14(10)

117

o o

S o oR

el I

o = o

(=N

—_ oo =
+

1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel P: (

mputer Architecture

Part 1: addition in theory (1)

> Concept:

X = 107(10) [and 107
y = 14(10) (=4 01 4+
c = 0010
ro= 120y 121

x = 1074 ~ 01101011
y = 1455 ~ 00001110+
c = 011100
roo= 11001

1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

Notes:

Notes:

Part 1: addition in theory (1)

> Concept:

x = 10749 = 107
y = 14400 01 4+
c = 0010
ro= 12149 = 1 21

x 10709 = 01101011
y 409 - 0000 1 110+
c = 0011100
ro= 111001

1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel P: (

mputer Architecture

Part 1: addition in theory (1)

> Concept:

X = 107(10) [and 107
y = 14(10) (=4 01 4+
c = 0010
ro= 120y 121

= 107 1
= 14(10) 0
= 00
= 1

117

S s R
oo m
oo
e
O = O
O O =
al=] RN

1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

Notes:

Notes:

Part 1: addition in theory (1)

> Concept:

x = 10749 = 107
y = 14400 01 4+
c = 0010
ro= 12149 = 121

x 10709 = 01101011
y 409 - 0000 1 110+
¢ = 000011100
ro= 120y = 01111001

1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel P (University of

Elkc
mputer Architecture B} BRISTOL git #b282dbb9 @

Part 2: addition in practice: an algorithm (1)

Algorithm

Input: Two unsigned, n-digit, base-b integers x and y, and a 1-digit carry-in ¢i € {0,1}
Output: An unsigned, n-digit, base-b integer r = x +y, and a 1-digit carry-out co € {0,1}
r«0,c0 < ci
fori =0 upton —1step +1 do
ri « (x; +y; +¢;) mod b
if (xj +yi+ci) <bthenciyg < Oelseciy 1
end
co < ¢y
return r, co

N oG s N

Notes:

Notes:

Part 3: addition in practice: a circuit (1)

> Idea:
1. for b =2, it’s clear from the algorithm that
() mod b Ci —ci €O —— Cit1
3 1 «— (X; +Yi +¢;) mo ‘ 4
4 if (x;+yi+c;) <bthenciy « Oelsecip < 1 AN] i —Hx fi
Yi —y S ——ti

2. the loop body is therefore analagous to a Boolean function

fi: {011 = {0,1)2
specified by the following truth table

ci X y|co|s
0 0 0[0]O
0 0 1|01
0 1 001
0 1 1{1]0
1 0 001
1 0 1110
1 1 0170
1 1 1]1]1

© Daniel Page (BIKE University of

Computer Architecture ME] BRISTOL git #b282dbb9 @ 2025-09-03

Part 3: addition in practice: a circuit (1)

> Idea:
3. the loop bound is fixed, i.e., # is some known constant, so we can unroll it to yield

Circuit

co ci co ci co:- >{ci cot—> CO
a| > X X

s—? Hy s >y s r—y s
Y

o
~

T
=
=

ci

<R Q.

W

o o
= S

-
o

X1
1

Tn-1 <—]

Yn-

which, now read left-to-right, mirrors the algorithm:

> the i-th instance f; implements the i-th loop iteration,

the connection, or carry chain between instances captures c,
those instances are termed full adder cells,

this combination of them is termed a ripple-carry adder.

vvyy

Notes:

Notes:

Part 3: addition in practice: a circuit (2)

Notes:
» Beware:

> the magnitude of r = x + y can exceed what we can represent via 7:

% and { are unsigned, and there is a carry-out = carry condition
% and fyare signed, and the sign of # is incorrect = overflow condition

> to cope, we typically
1. detect the condition,
2. potentially take some action (e.g., try to “fix” the result somehow),
3. potentially signal the condition somehow (e.g., via a status register or some form of exception).

© Daniel Page (BIKE University of

Computer Architecture B} BRISTOL git #b282dbb9 @ 2025-09-03

Part 3: addition in practice: a circuit (3)

Notes:

Consider use of an unsigned representation:

x = 154 11 1 1
y = lagy = o 0 0 1 +
c = 1 1 1 1 0
r = 0(10) [and 0 0 0 0

Here, the carry-out indicates an error: the correct result
r =16 is too large for n = 4 bits.

» Note that

1. detection:
cp=c0=0 = nocarry
cp,=c0=1 = carry

2. action, e.g., truncate the result to n bits.

Computer Ary

Part 3: addition in practice: a circuit (4)

Notes:
Consider use of a signed representation: Consider use of a signed representation:
X = —1(10) (g 1 1 1 1 X = 7(10) (g 0 1 1 1
y = lgg & 00 0 1 + y = lgg 00 0 1 =+
c = 1 1 1 1 0 c = o 1 1 1 0
roo= 0oy + 0 0 0 O r = 81y 1 0 0 0
Irrespective of the carry-out, the signs of inputs and output Irrespective of the carry-out, the signs of inputs and output
make sense: there is no overflow, so r = 0 is correct. make no sense: there is an overflow, so r = =8 is incorrect.
> Note that
1. detection:
x+ve y-ve = no overflow
x-ve y+ve = no overflow
X t+ve y +ve r +ve = no overflow
X +ve v +ve r-ve = overflow
X -ve y-ve r +ve = overflow
x-ve y-ve r-ve = nooverflow
2. action, e.g., clamp (or saturate) the result to the largest magnitude representable in 7 bits.
© Daniel Page (B¢ University of
Computer Architecture B} BRISTOL git #b282dbb9 @ 2025-09-03
Conclusions
Notes:

> Take away points:
1. Computer arithmetic is a broad, interesting (sub-)field:
> it’s a broad topic with a rich history,
> there’s usually a large design space of potential approaches,
> they're often easy to understand at an intuitive, high level,
> correctness and efficiency of resulting low-level solutions is vital and challenging.
2. The strategy we’ve employed is important and (fairly) general-purpose:
explore and understand an approach in theory,
translate, formalise, and generalise the approach into an algorithm,
translate the algorithm, e.g., into circuit,
refine (or select) the circuit to satisfy any design constraints.

vvyyvyy

Computer Ar

Additional Reading

Wikipedia: Computer Arithmetic. URL: https://en.wikipedia.org/wiki/Category:Computer_arithmetic.
D. Page. “Chapter 7: Arithmetic and logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.

B. Parhami. “Part 2: Addition/subtraction”. In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford University
Press, 2000.

> W. Stallings. “Chapter 10: Computer arithmetic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.

> AS. Tanenbaum and T. Austin. “Section 3.2.2: Arithmetic circuits”. In: Structured Computer Organisation. 6th ed. Prentice Hall,

2012.

© Daniel Page

Computer Architecture git # b282dbb9 @ 2

References

[1] Wikipedia: Computer Arithmetic. urL: https://en.wikipedia.org/wiki/Category:Computer_arithmetic (see p.57).

2] D. Page. “Chapter 7: Arithmetic and logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009 (see
p-57).

[3] B. Parhami. “Part 2: Addition/subtraction”. In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford
University Press, 2000 (see p. 57).

[4] W. Stallings. “Chapter 10: Computer arithmetic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013 (see
p.57).

[5] A.S. Tanenbaum and T. Austin. “Section 3.2.2: Arithmetic circuits”. In: Structured Computer Organisation. 6th ed. Prentice Hall,

2012 (see p. 57).

Notes:

Notes:

