
Computer Architecture

Daniel Page

Department of Computer Science,
University Of Bristol,

Merchant Venturers Building,
Woodland Road,

Bristol, BS8 1UB. UK.
⟨csdsp@bristol.ac.uk⟩

September 5, 2025

Keep in mind there are two PDFs available (of which this is the latter):
1. a PDF of examinable material used as lecture slides, and
2. a PDF of non-examinable, extra material:
▶ the associated notes page may be pre-populated with extra, written explaination of

material covered in lecture(s), plus
▶ anything with a “grey’ed out” header/footer represents extra material which is

useful and/or interesting but out of scope (and hence not covered).

Notes:

Notes:

COMS10015 lecture: week #2

▶ Concept: consider
x̂ ↦→ x
ŷ ↦→ y

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

COMS10015 lecture: week #2

▶ Concept: consider
x̂ ↦→ x
ŷ ↦→ y

r = x + y

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

COMS10015 lecture: week #2

▶ Concept: consider
x̂ ↦→ x
ŷ ↦→ y

f (x̂, ŷ) = r̂ ↦→ r = x + y

where f
1. has an action on x̂ and ŷ compatible with that of + on x and y:
▶ accepts n-bit

• addend x̂, and
• addend ŷ

as input, and
▶ produces an (n + 1)-bit sum r̂ as output,

2. is a Boolean function:
f : {0, 1}n × {0, 1}n → {0, 1}n+1

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

COMS10015 lecture: week #2

▶ Agenda: produce a design(s) for f , which
1. functions correctly, and
2. satisfies pertinent quality metrics (e.g., is efficient in time and/or space).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

COMS10015 lecture: week #2

Vol. 2A 3-27

INSTRUCTION SET REFERENCE, A-M

ADC—Add with Carry

ADC�Add with Carry
Opcode Instruction Op/

En
64-bit
Mode

Compat/
Leg Mode

Description

14 ib ADC AL, imm8 C Valid Valid Add with carry imm8 to AL.

15 iw ADC AX, imm16 C Valid Valid Add with carry imm16 to

AX.

15 id ADC EAX, imm32 C Valid Valid Add with carry imm32 to

EAX.

REX.W + 15 id ADC RAX, imm32 C Valid N.E. Add with carry imm32 sign

extended to 64-bits to RAX.

80 /2 ib ADC r/m8, imm8 B Valid Valid Add with carry imm8 to

r/m8.

REX + 80 /2 ib ADC r/m8*, imm8 B Valid N.E. Add with carry imm8 to

r/m8.

81 /2 iw ADC r/m16,

imm16

B Valid Valid Add with carry imm16 to

r/m16.

81 /2 id ADC r/m32,

imm32

B Valid Valid Add with CF imm32 to

r/m32.

REX.W + 81 /2

id

ADC r/m64,

imm32

B Valid N.E. Add with CF imm32 sign

extended to 64-bits to

r/m64.

83 /2 ib ADC r/m16, imm8 B Valid Valid Add with CF sign-extended

imm8 to r/m16.

83 /2 ib ADC r/m32, imm8 B Valid Valid Add with CF sign-extended

imm8 into r/m32.

REX.W + 83 /2

ib

ADC r/m64, imm8 B Valid N.E. Add with CF sign-extended

imm8 into r/m64.

10 /r ADC r/m8, r8 A Valid Valid Add with carry byte register

to r/m8.

REX + 10 /r ADC r/m8*, r8* A Valid N.E. Add with carry byte register

to r/m64.

11 /r ADC r/m16, r16 A Valid Valid Add with carry r16 to

r/m16.

11 /r ADC r/m32, r32 A Valid Valid Add with CF r32 to r/m32.

REX.W + 11 /r ADC r/m64, r64 A Valid N.E. Add with CF r64 to r/m64.

12 /r ADC r8, r/m8 A Valid Valid Add with carry r/m8 to byte

register.

REX + 12 /r ADC r8*, r/m8* A Valid N.E. Add with carry r/m64 to

byte register.

3-28 Vol. 2A ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-M

Instruction Operand Encoding

Description

Adds the dest inat ion operand (first operand) , the source operand (second operand) ,

and the carry (CF) flag and stores the result in the dest inat ion operand. The dest ina-

t ion operand can be a register or a m em ory locat ion; the source operand can be an

im m ediate, a register, or a m em ory locat ion. (However, two m em ory operands

cannot be used in one inst ruct ion.) The state of the CF flag represents a carry from a

previous addit ion. When an im m ediate value is used as an operand, it is sign-

extended to the length of the dest inat ion operand form at .

The ADC inst ruct ion does not dist inguish between signed or unsigned operands.

I nstead, the processor evaluates the result for both data types and sets the OF and

CF flags to indicate a carry in the signed or unsigned result , respect ively. The SF flag

indicates the sign of the signed result .

The ADC inst ruct ion is usually executed as part of a m ult ibyte or m ult iword addit ion

in which an ADD inst ruct ion is followed by an ADC inst ruct ion.

This inst ruct ion can be used with a LOCK prefix to allow the inst ruct ion to be

executed atom ically.

I n 64-bit mode, the inst ruct ion’s default operat ion size is 32 bits. Using a REX prefix

in the form of REX.R perm its access to addit ional registers (R8-R15) . Using a REX

prefix in the form of REX.W prom otes operat ion to 64 bits. See the sum m ary chart at

the beginning of this sect ion for encoding data and lim its.

Operation

DEST ← DEST + SRC + CF;

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

13 /r ADC r16, r/m16 A Valid Valid Add with carry r/m16 to

r16.

13 /r ADC r32, r/m32 A Valid Valid Add with CF r/m32 to r32.

REX.W + 13 /r ADC r64, r/m64 A Valid N.E. Add with CF r/m64 to r64.

NOTES:

*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:r/m (r, w) ModRM:reg (r) NA NA

B ModRM:r/m (r, w) imm8 NA NA

C AL/AX/EAX/RAX imm8 NA NA

Vol. 2A 3-29

INSTRUCTION SET REFERENCE, A-M

ADC—Add with Carry

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result .

Protected Mode Exceptions

GP(0) I f the dest inat ion is located in a non-writable segm ent .

I f a memory operand effect ive address is outside the CS, DS,

ES, FS, or GS segment lim it .

I f the DS, ES, FS, or GS register is used to access m em ory and it

contains a NULL segm ent selector.

SS(0) I f a memory operand effect ive address is outside the SS

segment lim it .

PF(fault-code) I f a page fault occurs.

AC(0) I f alignm ent checking is enabled and an unaligned m em ory

reference is made while the current pr ivilege level is 3.

UD I f the LOCK prefix is used but the dest inat ion is not a memory

operand.

Real-Address Mode Exceptions

GP I f a memory operand effect ive address is outside the CS, DS,

ES, FS, or GS segment lim it .

SS I f a memory operand effect ive address is outside the SS

segment lim it .

UD I f the LOCK prefix is used but the dest inat ion is not a memory

operand.

Virtual-8086 Mode Exceptions

GP(0) I f a memory operand effect ive address is outside the CS, DS,

ES, FS, or GS segment lim it .

SS(0) I f a memory operand effect ive address is outside the SS

segment lim it .

PF(fault-code) I f a page fault occurs.

AC(0) I f alignm ent checking is enabled and an unaligned m em ory

reference is m ade.

UD I f the LOCK prefix is used but the dest inat ion is not a memory

operand.

Compatibility Mode Exceptions

Same except ions as in protected mode.

3-30 Vol. 2A ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-M

64-Bit Mode Exceptions

SS(0) I f a m em ory address referencing the SS segm ent is in a non-

canonical form .

GP(0) I f the m em ory address is in a non-canonical form .

PF(fault-code) I f a page fault occurs.

AC(0) I f alignment checking is enabled and an unaligned memory

reference is made while the current pr ivilege level is 3.

UD I f the LOCK prefix is used but the dest inat ion is not a memory

operand.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

x = 107(10) ↦→ 1 0 7
y = 14(10) ↦→ 0 1 4 +
c =
r =

Example (b = 2)

x = 107(10) ↦→ 0 1 1 0 1 0 1 1
y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c =
r =

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

x = 107(10) ↦→ 1 0 7
y = 14(10) ↦→ 0 1 4 +
c = 0
r =

Example (b = 2)

x = 107(10) ↦→ 0 1 1 0 1 0 1 1
y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c =
r =

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

x = 107(10) ↦→ 1 0 7
y = 14(10) ↦→ 0 1 4 +
c = 1 0
r = 1

Example (b = 2)

x = 107(10) ↦→ 0 1 1 0 1 0 1 1
y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c =
r =

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

x = 107(10) ↦→ 1 0 7
y = 14(10) ↦→ 0 1 4 +
c = 0 1 0
r = 2 1

Example (b = 2)

x = 107(10) ↦→ 0 1 1 0 1 0 1 1
y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c =
r =

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

x = 107(10) ↦→ 1 0 7
y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0
r = 121(10) ↦→ 1 2 1

Example (b = 2)

x = 107(10) ↦→ 0 1 1 0 1 0 1 1
y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c =
r =

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

x = 107(10) ↦→ 1 0 7
y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0
r = 121(10) ↦→ 1 2 1

Example (b = 2)

x = 107(10) ↦→ 0 1 1 0 1 0 1 1
y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c = 0
r =

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

x = 107(10) ↦→ 1 0 7
y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0
r = 121(10) ↦→ 1 2 1

Example (b = 2)

x = 107(10) ↦→ 0 1 1 0 1 0 1 1
y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c = 0 0
r = 1

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

x = 107(10) ↦→ 1 0 7
y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0
r = 121(10) ↦→ 1 2 1

Example (b = 2)

x = 107(10) ↦→ 0 1 1 0 1 0 1 1
y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c = 1 0 0
r = 0 1

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

x = 107(10) ↦→ 1 0 7
y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0
r = 121(10) ↦→ 1 2 1

Example (b = 2)

x = 107(10) ↦→ 0 1 1 0 1 0 1 1
y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c = 1 1 0 0
r = 0 0 1

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

x = 107(10) ↦→ 1 0 7
y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0
r = 121(10) ↦→ 1 2 1

Example (b = 2)

x = 107(10) ↦→ 0 1 1 0 1 0 1 1
y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c = 1 1 1 0 0
r = 1 0 0 1

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

x = 107(10) ↦→ 1 0 7
y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0
r = 121(10) ↦→ 1 2 1

Example (b = 2)

x = 107(10) ↦→ 0 1 1 0 1 0 1 1
y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c = 0 1 1 1 0 0
r = 1 1 0 0 1

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

x = 107(10) ↦→ 1 0 7
y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0
r = 121(10) ↦→ 1 2 1

Example (b = 2)

x = 107(10) ↦→ 0 1 1 0 1 0 1 1
y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c = 0 0 1 1 1 0 0
r = 1 1 1 0 0 1

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

x = 107(10) ↦→ 1 0 7
y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0
r = 121(10) ↦→ 1 2 1

Example (b = 2)

x = 107(10) ↦→ 0 1 1 0 1 0 1 1
y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c = 0 0 0 1 1 1 0 0
r = 1 1 1 1 0 0 1

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

x = 107(10) ↦→ 1 0 7
y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0
r = 121(10) ↦→ 1 2 1

Example (b = 2)

x = 107(10) ↦→ 0 1 1 0 1 0 1 1
y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c = 0 0 0 0 1 1 1 0 0
r = 121(10) ↦→ 0 1 1 1 1 0 0 1

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: addition in practice: an algorithm (1)

Algorithm

Input: Two unsigned, n-digit, base-b integers x and y, and a 1-digit carry-in ci ∈ {0, 1}
Output: An unsigned, n-digit, base-b integer r = x + y, and a 1-digit carry-out co ∈ {0, 1}

1 r← 0, c0 ← ci
2 for i = 0 upto n − 1 step +1 do
3 ri ← (xi + yi + ci) mod b
4 if (xi + yi + ci) < b then ci+1 ← 0 else ci+1 ← 1
5 end
6 co← cn
7 return r, co

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: addition in practice: a circuit (1)

▶ Idea:
1. for b = 2, it’s clear from the algorithm that

co

s

ci
x
y

fi

ci
xi
yi

ci+1

ri

3 ri ← (xi + yi + ci) mod b
4 if (xi +yi + ci) < b then ci+1 ← 0 else ci+1 ← 1

2. the loop body is therefore analagous to a Boolean function

fi : {0, 1}3 → {0, 1}2
specified by the following truth table

ci x y co s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: addition in practice: a circuit (1)

▶ Idea:
3. the loop bound is fixed, i.e., n is some known constant, so we can unroll it to yield

Circuit

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

ci co

y 0x 0 r 0 y 1x 1 r 1

y n
−1

x n
−1

r n
−1

which, now read left-to-right, mirrors the algorithm:
▶ the i-th instance fi implements the i-th loop iteration,
▶ the connection, or carry chain between instances captures c,
▶ those instances are termed full adder cells,
▶ this combination of them is termed a ripple-carry adder.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: addition in practice: a circuit (2)

▶ Beware:
▶ the magnitude of r = x + y can exceed what we can represent via r̂:

x̂ and ŷ are unsigned, and there is a carry-out ⇒ carry condition
x̂ and ŷ are signed, and the sign of r̂ is incorrect ⇒ overflow condition

▶ to cope, we typically
1. detect the condition,
2. potentially take some action (e.g., try to “fix” the result somehow),
3. potentially signal the condition somehow (e.g., via a status register or some form of exception).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: addition in practice: a circuit (3)

Example

Consider use of an unsigned representation:

x = 15(10) ↦→ 1 1 1 1
y = 1(10) ↦→ 0 0 0 1 +
c = 1 1 1 1 0
r = 0(10) ↦→ 0 0 0 0

Here, the carry-out indicates an error: the correct result
r = 16 is too large for n = 4 bits.

▶ Note that
1. detection:

cn = co = 0 ⇒ no carry
cn = co = 1 ⇒ carry

2. action, e.g., truncate the result to n bits.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: addition in practice: a circuit (4)

Example

Consider use of a signed representation:

x = −1(10) ↦→ 1 1 1 1
y = 1(10) ↦→ 0 0 0 1 +
c = 1 1 1 1 0
r = 0(10) ↦→ 0 0 0 0

Irrespective of the carry-out, the signs of inputs and output
make sense: there is no overflow, so r = 0 is correct.

Example

Consider use of a signed representation:

x = 7(10) ↦→ 0 1 1 1
y = 1(10) ↦→ 0 0 0 1 +
c = 0 1 1 1 0
r = −8(10) ↦→ 1 0 0 0

Irrespective of the carry-out, the signs of inputs and output
make no sense: there is an overflow, so r = −8 is incorrect.

▶ Note that
1. detection:

x +ve y -ve ⇒ no overflow
x -ve y +ve ⇒ no overflow
x +ve y +ve r +ve ⇒ no overflow
x +ve y +ve r -ve ⇒ overflow
x -ve y -ve r +ve ⇒ overflow
x -ve y -ve r -ve ⇒ no overflow

2. action, e.g., clamp (or saturate) the result to the largest magnitude representable in n bits.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Conclusions

▶ Take away points:
1. Computer arithmetic is a broad, interesting (sub-)field:
▶ it’s a broad topic with a rich history,
▶ there’s usually a large design space of potential approaches,
▶ they’re often easy to understand at an intuitive, high level,
▶ correctness and efficiency of resulting low-level solutions is vital and challenging.

2. The strategy we’ve employed is important and (fairly) general-purpose:
▶ explore and understand an approach in theory,
▶ translate, formalise, and generalise the approach into an algorithm,
▶ translate the algorithm, e.g., into circuit,
▶ refine (or select) the circuit to satisfy any design constraints.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Additional Reading

▶ Wikipedia: Computer Arithmetic. url: https://en.wikipedia.org/wiki/Category:Computer_arithmetic.
▶ D. Page. “Chapter 7: Arithmetic and logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.
▶ B. Parhami. “Part 2: Addition/subtraction”. In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford University

Press, 2000.
▶ W. Stallings. “Chapter 10: Computer arithmetic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.
▶ A.S. Tanenbaum and T. Austin. “Section 3.2.2: Arithmetic circuits”. In: Structured Computer Organisation. 6th ed. Prentice Hall,

2012.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

References

[1] Wikipedia: Computer Arithmetic. url: https://en.wikipedia.org/wiki/Category:Computer_arithmetic (see p. 57).

[2] D. Page. “Chapter 7: Arithmetic and logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009 (see
p. 57).

[3] B. Parhami. “Part 2: Addition/subtraction”. In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford
University Press, 2000 (see p. 57).

[4] W. Stallings. “Chapter 10: Computer arithmetic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013 (see
p. 57).

[5] A.S. Tanenbaum and T. Austin. “Section 3.2.2: Arithmetic circuits”. In: Structured Computer Organisation. 6th ed. Prentice Hall,
2012 (see p. 57).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

