
COMS10015 lecture: week #2

▶ Concept: consider

x̂ ↦→ x
ŷ ↦→ y

f (x̂, ŷ) = r̂ ↦→ r = x + y

where f
1. has an action on x̂ and ŷ compatible with that of + on x and y:

▶ accepts n-bit

• addend x̂, and

• addend ŷ
as input, and

▶ produces an (n + 1)-bit sum r̂ as output,

2. is a Boolean function:

f : {0, 1}n × {0, 1}n → {0, 1}n+1

▶ Agenda: produce a design(s) for f , which

1. functions correctly, and

2. satisfies pertinent quality metrics (e.g., is efficient in time and/or space).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


COMS10015 lecture: week #2

▶ Concept: consider

x̂ ↦→ x
ŷ ↦→ y

f (x̂, ŷ) = r̂ ↦→

r = x + y

where f
1. has an action on x̂ and ŷ compatible with that of + on x and y:

▶ accepts n-bit

• addend x̂, and

• addend ŷ
as input, and

▶ produces an (n + 1)-bit sum r̂ as output,

2. is a Boolean function:

f : {0, 1}n × {0, 1}n → {0, 1}n+1

▶ Agenda: produce a design(s) for f , which

1. functions correctly, and

2. satisfies pertinent quality metrics (e.g., is efficient in time and/or space).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


COMS10015 lecture: week #2

▶ Concept: consider

x̂ ↦→ x
ŷ ↦→ y

f (x̂, ŷ) = r̂ ↦→ r = x + y

where f
1. has an action on x̂ and ŷ compatible with that of + on x and y:

▶ accepts n-bit

• addend x̂, and

• addend ŷ
as input, and

▶ produces an (n + 1)-bit sum r̂ as output,

2. is a Boolean function:

f : {0, 1}n × {0, 1}n → {0, 1}n+1

▶ Agenda: produce a design(s) for f , which

1. functions correctly, and

2. satisfies pertinent quality metrics (e.g., is efficient in time and/or space).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


COMS10015 lecture: week #2

▶ Concept: consider

x̂ ↦→ x
ŷ ↦→ y

f (x̂, ŷ) = r̂ ↦→ r = x + y

where f
1. has an action on x̂ and ŷ compatible with that of + on x and y:

▶ accepts n-bit

• addend x̂, and

• addend ŷ
as input, and

▶ produces an (n + 1)-bit sum r̂ as output,

2. is a Boolean function:

f : {0, 1}n × {0, 1}n → {0, 1}n+1

▶ Agenda: produce a design(s) for f , which

1. functions correctly, and

2. satisfies pertinent quality metrics (e.g., is efficient in time and/or space).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

Pp

x = 107(10) ↦→ 1 0 7

y = 14(10) ↦→ 0 1 4 +
c =

r =

Example (b = 2)

Pp

x = 107(10) ↦→ 0 1 1 0 1 0 1 1

y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c =

r =

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

Pp

x = 107(10) ↦→ 1 0 7

y = 14(10) ↦→ 0 1 4 +
c = 0

r =

Example (b = 2)

Pp

x = 107(10) ↦→ 0 1 1 0 1 0 1 1

y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c =

r =

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

Pp

x = 107(10) ↦→ 1 0 7

y = 14(10) ↦→ 0 1 4 +
c = 1 0

r = 1

Example (b = 2)

Pp

x = 107(10) ↦→ 0 1 1 0 1 0 1 1

y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c =

r =

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

Pp

x = 107(10) ↦→ 1 0 7

y = 14(10) ↦→ 0 1 4 +
c = 0 1 0

r = 2 1

Example (b = 2)

Pp

x = 107(10) ↦→ 0 1 1 0 1 0 1 1

y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c =

r =

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

Pp

x = 107(10) ↦→ 1 0 7

y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0

r = 121(10) ↦→ 1 2 1

Example (b = 2)

Pp

x = 107(10) ↦→ 0 1 1 0 1 0 1 1

y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c =

r =

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

Pp

x = 107(10) ↦→ 1 0 7

y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0

r = 121(10) ↦→ 1 2 1

Example (b = 2)

Pp

x = 107(10) ↦→ 0 1 1 0 1 0 1 1

y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c = 0

r =

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

Pp

x = 107(10) ↦→ 1 0 7

y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0

r = 121(10) ↦→ 1 2 1

Example (b = 2)

Pp

x = 107(10) ↦→ 0 1 1 0 1 0 1 1

y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c = 0 0

r = 1

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

Pp

x = 107(10) ↦→ 1 0 7

y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0

r = 121(10) ↦→ 1 2 1

Example (b = 2)

Pp

x = 107(10) ↦→ 0 1 1 0 1 0 1 1

y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c = 1 0 0

r = 0 1

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

Pp

x = 107(10) ↦→ 1 0 7

y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0

r = 121(10) ↦→ 1 2 1

Example (b = 2)

Pp

x = 107(10) ↦→ 0 1 1 0 1 0 1 1

y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c = 1 1 0 0

r = 0 0 1

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

Pp

x = 107(10) ↦→ 1 0 7

y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0

r = 121(10) ↦→ 1 2 1

Example (b = 2)

Pp

x = 107(10) ↦→ 0 1 1 0 1 0 1 1

y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c = 1 1 1 0 0

r = 1 0 0 1

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

Pp

x = 107(10) ↦→ 1 0 7

y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0

r = 121(10) ↦→ 1 2 1

Example (b = 2)

Pp

x = 107(10) ↦→ 0 1 1 0 1 0 1 1

y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c = 0 1 1 1 0 0

r = 1 1 0 0 1

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

Pp

x = 107(10) ↦→ 1 0 7

y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0

r = 121(10) ↦→ 1 2 1

Example (b = 2)

Pp

x = 107(10) ↦→ 0 1 1 0 1 0 1 1

y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c = 0 0 1 1 1 0 0

r = 1 1 1 0 0 1

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

Pp

x = 107(10) ↦→ 1 0 7

y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0

r = 121(10) ↦→ 1 2 1

Example (b = 2)

Pp

x = 107(10) ↦→ 0 1 1 0 1 0 1 1

y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c = 0 0 0 1 1 1 0 0

r = 1 1 1 1 0 0 1

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 1: addition in theory (1)

▶ Concept:

Example (b = 10)

Pp

x = 107(10) ↦→ 1 0 7

y = 14(10) ↦→ 0 1 4 +
c = 0 0 1 0

r = 121(10) ↦→ 1 2 1

Example (b = 2)

Pp

x = 107(10) ↦→ 0 1 1 0 1 0 1 1

y = 14(10) ↦→ 0 0 0 0 1 1 1 0 +
c = 0 0 0 0 1 1 1 0 0

r = 121(10) ↦→ 0 1 1 1 1 0 0 1

∴
1. this process matches our understanding of manual, “school-book” addition, and
2. the same process applies, irrespective of b.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 2: addition in practice: an algorithm (1)

Algorithm

Pp

Input: Two unsigned, n-digit, base-b integers x and y, and a 1-digit carry-in ci ∈ {0, 1}
Output: An unsigned, n-digit, base-b integer r = x + y, and a 1-digit carry-out co ∈ {0, 1}

1 r← 0, c0 ← ci
2 for i = 0 upto n − 1 step +1 do
3 ri ← (xi + yi + ci) mod b
4 if (xi + yi + ci) < b then ci+1 ← 0 else ci+1 ← 1

5 end
6 co← cn
7 return r, co

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 3: addition in practice: a circuit (1)

▶ Idea:

1. for b = 2, it’s clear from the algorithm that

co

s

ci
x
y

fi

ci
xi
yi

ci+1

ri

3 ri ← (xi + yi + ci) mod b
4 if (xi +yi + ci) < b then ci+1 ← 0 else ci+1 ← 1

2. the loop body is therefore analagous to a Boolean function

fi : {0, 1}3 → {0, 1}2

specified by the following truth table

ci x y co s
0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 3: addition in practice: a circuit (1)

▶ Idea:

3. the loop bound is fixed, i.e., n is some known constant, so we can unroll it to yield

Circuit

Pp

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

ci co
y 0x 0 r 0 y 1x 1 r 1

y n
−

1

x n
−

1

r n
−

1

which, now read left-to-right, mirrors the algorithm:

▶ the i-th instance fi implements the i-th loop iteration,

▶ the connection, or carry chain between instances captures c,

▶ those instances are termed full adder cells,

▶ this combination of them is termed a ripple-carry adder.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 3: addition in practice: a circuit (2)

▶ Beware:

▶ the magnitude of r = x + y can exceed what we can represent via r̂:

x̂ and ŷ are unsigned, and there is a carry-out ⇒ carry condition

x̂ and ŷ are signed, and the sign of r̂ is incorrect ⇒ overflow condition

▶ to cope, we typically

1. detect the condition,

2. potentially take some action (e.g., try to “fix” the result somehow),

3. potentially signal the condition somehow (e.g., via a status register or some form of exception).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 3: addition in practice: a circuit (3)

Example

Pp

Consider use of an unsigned representation:

x = 15(10) ↦→ 1 1 1 1

y = 1(10) ↦→ 0 0 0 1 +
c = 1 1 1 1 0

r = 0(10) ↦→ 0 0 0 0

Here, the carry-out indicates an error: the correct result

r = 16 is too large for n = 4 bits.

▶ Note that

1. detection:

cn = co = 0 ⇒ no carry

cn = co = 1 ⇒ carry

2. action, e.g., truncate the result to n bits.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 3: addition in practice: a circuit (4)

Example

Pp

Consider use of a signed representation:

x = −1(10) ↦→ 1 1 1 1

y = 1(10) ↦→ 0 0 0 1 +
c = 1 1 1 1 0

r = 0(10) ↦→ 0 0 0 0

Irrespective of the carry-out, the signs of inputs and output

make sense: there is no overflow, so r = 0 is correct.

Example

Pp

Consider use of a signed representation:

x = 7(10) ↦→ 0 1 1 1

y = 1(10) ↦→ 0 0 0 1 +
c = 0 1 1 1 0

r = −8(10) ↦→ 1 0 0 0

Irrespective of the carry-out, the signs of inputs and output

make no sense: there is an overflow, so r = −8 is incorrect.

▶ Note that

1. detection:

x +ve y -ve ⇒ no overflow

x -ve y +ve ⇒ no overflow

x +ve y +ve r +ve ⇒ no overflow

x +ve y +ve r -ve ⇒ overflow

x -ve y -ve r +ve ⇒ overflow

x -ve y -ve r -ve ⇒ no overflow

2. action, e.g., clamp (or saturate) the result to the largest magnitude representable in n bits.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Conclusions

▶ Take away points:

1. Computer arithmetic is a broad, interesting (sub-)field:

▶ it’s a broad topic with a rich history,

▶ there’s usually a large design space of potential approaches,

▶ they’re often easy to understand at an intuitive, high level,

▶ correctness and efficiency of resulting low-level solutions is vital and challenging.

2. The strategy we’ve employed is important and (fairly) general-purpose:

▶ explore and understand an approach in theory,

▶ translate, formalise, and generalise the approach into an algorithm,

▶ translate the algorithm, e.g., into circuit,

▶ refine (or select) the circuit to satisfy any design constraints.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Additional Reading

▶ Wikipedia: Computer Arithmetic. url: https://en.wikipedia.org/wiki/Category:Computer_arithmetic.

▶ D. Page. “Chapter 7: Arithmetic and logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.

▶ B. Parhami. “Part 2: Addition/subtraction”. In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford University

Press, 2000.

▶ W. Stallings. “Chapter 10: Computer arithmetic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.

▶ A.S. Tanenbaum and T. Austin. “Section 3.2.2: Arithmetic circuits”. In: Structured Computer Organisation. 6th ed. Prentice Hall,

2012.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

https://en.wikipedia.org/wiki/Category:Computer_arithmetic
mailto:csdsp@bristol.ac.uk


References

[1] Wikipedia: Computer Arithmetic. url: https://en.wikipedia.org/wiki/Category:Computer_arithmetic (see p. 26).

[2] D. Page. “Chapter 7: Arithmetic and logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009 (see

p. 26).

[3] B. Parhami. “Part 2: Addition/subtraction”. In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford

University Press, 2000 (see p. 26).

[4] W. Stallings. “Chapter 10: Computer arithmetic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013 (see

p. 26).

[5] A.S. Tanenbaum and T. Austin. “Section 3.2.2: Arithmetic circuits”. In: Structured Computer Organisation. 6th ed. Prentice Hall,

2012 (see p. 26).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

https://en.wikipedia.org/wiki/Category:Computer_arithmetic
mailto:csdsp@bristol.ac.uk

