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COMS10015 lecture: week #2 + #3

▶ Concept:
1. micro-electronic devices are based on micro-electronic switches:

switch is on ⇒ connected ❀ allows flow of electrons
switch is off ⇒ disconnected ❀ disallows flow of electrons

2. however, we need those switches to be
• efficient in terms of space, i.e., their physical size
• efficient in terms of time, i.e., how quickly they operate
• reliable, i.e., low probability of failure
• manufacturable, e.g., high yield, even given high complexity and density
• useable, i.e., packaged into high(er)-level building blocks
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COMS10015 lecture: week #2 + #3

▶ Agenda:
semi-conductors ❀ transistors ❀ logic gates,

i.e.,
1. physical foundations,
2. semi-conductors and transistors,
3. logic gates, and
4. physical constraints and properties.

▶ Caveat!
▶ this is CS not EE, so we carefully limit the level of detail,
▶ e.g., “transistors are just switches” is reasonable (although clearly there’s more to it than that).
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Part 1: foundations (1)

https://xkcd.com/567
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Part 1: foundations (2)

▶ Fact #1:
▶ A given atom is built from

1. a group of nucleons, either protons or neutrons, called the nucleus, and
2. a cloud of electrons arranged in shells,
e.g., lithium (Li):

+ + + −− −

▶ The number of protons dictates atomic number; the number of neutrons dictates isotope.
▶ The electron configuration is not arbitrary: the n-th shell can accommodate upto 2n2 electrons.
▶ An unfilled slot within a shell is called a hole.
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Part 1: foundations (3)

▶ Fact #2:
▶ Each sub-atomic particle has an associated electrical charge, i.e.,

electrons ↦→ negative charge (hence −)
protons ↦→ positive charge (hence +)

neutrons ↦→ neutral charge

and an ion is an atom with a non-zero overall charge.
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Part 1: foundations (3)

▶ Fact #2:

▶ The binding between particles can be disrupted:
▶ As an electron absorbs more energy, it becomes excited; at some threshold, it will be displaced and then

becomes free.
▶ A free electron can move between shells, or between atoms (i.e., between their outer shells); roughly

speaking, they are “attracted” by holes.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:



Part 1: foundations (4)

▶ Fact #3:
▶ An electrical current is a flow of electrons, i.e., a flow of charge.
▶ Free electrons (bound to atoms or not) “move” from low to high potential: this is how
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−
−

i.e., a capacitor (or battery) works.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: foundations (4)

▶ Fact #3:

▶ A given material can be classified in terms of how easily electrons can move:

conductor (e.g., a metal) ↦→ high-conductivity ≡ low-resistivity
↦→ does allow electrons to move easily

insulator (e.g., a vacuum) ↦→ low-conductivity ≡ high-resistivity
↦→ does not allow electrons to move easily
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Part 1: foundations (5)

▶ Fact #4:
▶ Silicon (Si) is really useful, because

1. it’s abundant, i.e., there’s lots of it and so it doesn’t cost much,
2. it’s fairly inert, i.e., it’s stable enough not to react in weird ways with other things, and
3. it can be doped with a donor material, e.g.,

silicon (Si) + ( boron (B) or aluminium (Al) ) ❀ extra holes
silicon (Si) + ( phosphorus (P) or arsenic (As) ) ❀ extra electrons

allowing construction of materials with specific sub-atomic properties.
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Part 1: foundations (5)

▶ Fact #4:

▶ The result is a semi-conductor:
extra holes ❀ P-type semi-conductor
extra electrons ❀ N-type semi-conductor

▶ A “sandwich” of P-type and N-type layers means electrons can only move one direction, e.g.,
from an N-type layer to a P-type layer, but not vice versa.
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Part 2: semi-conductors and transistors (1)
Design

▶ Concept: a Metal Oxide Silicon Field Effect Transistor (MOSFET)

Circuit

source draingate

body

where
▶ FET transistors allow charge to flow through a conductive channel between source and drain

terminals,
▶ the channel width, and hence conductivity, is controlled by the potential difference applied to

gate terminal,
▶ in a MOSFET transistor, the channel is induced (versus a JFET, where an explicit

semi-conductor layer is used).
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Part 2: semi-conductors and transistors (2)
Design

Definition

An N-MOSFET (or N-type MOSFET, or N-channel MOS-
FET, or NPN MOSFET) is constructed from N-type semi-
conductor terminals and a P-type body:
▶ applying a potential difference to the gate widens the

conductive channel, meaning source and drain are
connected (i.e., act like a conductor); the transistor is
activated.

▶ removing the potential difference from the gate
narrows the conductive channel, meaning source and
drain are disconnected (i.e., act like an insulator); the
transistor is deactivated.

Using d, s and g to denote the drain, source and gate ter-
minals, an N-MOSFET is described symbolically as

d

s

g

Definition

A P-MOSFET (or P-type MOSFET, or P-channel MOS-
FET, or PNP MOSFET) is constructed from P-type semi-
conductor terminals and an N-type body:
▶ applying a potential difference to the gate narrows the

conductive channel, meaning source and drain are
disconnected (i.e., act like an insulator); the transistor
is deactivated.

▶ removing the potential difference from the gate
widens the conductive channel, meaning source and
drain are connected (i.e., act like a conductor); the
transistor is activated.

Using d, s and g to denote the drain, source and gate ter-
minals, an P-MOSFET is described symbolically as

d

s

g
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Part 2: semi-conductors and transistors (3)
Design

▶ Concept: a Complementary Metal-Oxide-Semiconductor (CMOS) cell

Circuit

N-type N-type
P-type

P-type P-type
N-type

where
1. each cell combines one N-MOSFET and one P-MOSFET,
2. only switching from one state to another consumes much power (or dynamic consumption)

since one transistor does the opposite of the other,
3. there isn’t much “leakage” (or static consumption) at other times.
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An Aside: some history

▶ A historically dominant switch
technology was the vacuum tube:
▶ Looks like a light-bulb with a glass

envelope holding a vacuum.
▶ Inside vacuum is an electron producing

filament (or cathode) and a metal plate
(or anode).

▶ When filament is heated, electrons are
produced into vacuum which are
attracted by plate.

▶ Reliability of vacuum tubes was
reasonably good, but most failed during
power-on or power-off ...

▶ ... the terms bug and debug both
allegedly stem (in part) from failure of
this sort.

https://en.wikipedia.org/wiki/File:6P1P.jpg
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An Aside: some history

▶ The replacement for this generation of
technology is the transistor.

▶ There are many types, but a potted
overview of the one we’ll focus on is:
▶ 1925: Field Effect Transistor (FET).
▶ 1952: junction gate FET (or JFET).
▶ 1960: Metal Oxide Semi-conductor FET

(MOSFET).

https://en.wikipedia.org/wiki/File:Replica-of-first-transistor.jpg
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Part 2: semi-conductors and transistors (6)
Fabrication (or manufacture)

▶ Concept: Complementary Metal-Oxide-Semiconductor (CMOS) fabrication

Algorithm

1. Start with a clean, prepared wafer.

2. Apply a layer of substrate material, e.g., metal or
semi-conductor.

3. Apply a layer of photoresist material.

4. Expose the photoresist to a precise negative or mask of
design; this hardens the exposed photoresist.

5. Wash away unhardened photoresist.

6. Etch away uncovered substrate.

7. Strip hardened photoresist.

Example

where
▶ the algorithm iterates to produce many layers, i.e., the result is 3D not 2D,
▶ regularity offers a significant advantage: we can manufacture many similar components in a

layer within one iteration,
▶ the feature size (e.g., 90nm CMOS), and so density, relates to the resolution of this process.
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Part 2: semi-conductors and transistors (7)
Fabrication (or manufacture)

▶ Concept: the result is a wafer, e.g.,

https://www.intel.com/pressroom/archive/releases/2010/20100107comp_sm.htm
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• In this case, each “block” on the LHS is an individual component, i.e., a Westmere model Intel processor, shown in detail by the RHS.

Part 2: semi-conductors and transistors (8)
Fabrication (or manufacture)

▶ Concept: each component is packaged before use, e.g.,

which
▶ protects against damage, often including a heat sink as well, and
▶ provides a usable interface, via external pins bonded to internal inputs and outputs.

https://www.intel.com/pressroom/archive/releases/2010/20100107comp_sm.htm
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Part 2: semi-conductors and transistors (9)
Fabrication (or manufacture)

Moore’s Law: originally an observation
The complexity for minimum component costs has in-
creased at a rate of roughly a factor of two per year.
Certainly over the short term this rate can be expected
to continue, if not to increase. Over the longer term, the
rate of increase is a bit more uncertain, although there
is no reason to believe it will not remain nearly constant
for at least 10 years. That means by 1975, the number
of components per integrated circuit for minimum cost
will be 65, 000.

– Moore [8]
and later updated: in short “number of transistors
in unit area doubles roughly every two years”.

https://download.intel.com/pressroom/images/events/moores_law_40th/Gordon_Moore/GordonMoore_young.jpg
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Part 2: semi-conductors and transistors (10)
Fabrication (or manufacture)

Example (Moore’s Law [8], from 1970 to 2005)
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Part 2: semi-conductors and transistors (10)
Fabrication (or manufacture)

Example (Moore’s Law [8], from 1970 to 2005)
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Part 3: logic gates (1)

Circuit

rx

Vdd

Vss

▶ Question: what does this organisation of MOSFET transistors do?
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Part 3: logic gates (1)

Circuit

rx

Vdd

Vss

▶ Connect x to Vss:
1. the top P-MOSFET will be connected,
2. the bottom N-MOSFET will be disconnected,
3. r will be connected to Vdd.

▶ Connect x to Vdd:
1. the top P-MOSFET will be disconnected,
2. the bottom N-MOSFET will be connected,
3. r will be connected to Vss.

▶ Question: what does this organisation of MOSFET transistors do?
▶ Answer: this matches the behaviour of NOT, i.e., it’s an inverter!
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Part 3: logic gates (1)
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Part 3: logic gates (1)

Circuit

▶ Question: what does this organisation of MOSFET transistors do?
▶ Answer: this matches the behaviour of NOT, i.e., it’s an inverter!

https://zeptobars.com/en/read/CD4049-cmos-inverter-metal-gate
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Part 3: logic gates (1)

Circuit

▶ Question: what does this organisation of MOSFET transistors do?
▶ Answer: this matches the behaviour of NOT, i.e., it’s an inverter!

https://www.ti.com/product/CD4049UB
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Part 3: logic gates (2)

https://xkcd.com/2497
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Part 3: logic gates (3)
A NAND gate

Circuit

x

y

r

Vss

Vdd
▶ Connect both x and y to Vss:

1. both top P-MOSFETs will be connected,
2. both bottom N-MOSFETS will be disconnected,
3. r will be connected to Vdd.

▶ Connect x to Vdd and y to Vss:
1. the right-most P-MOSFET will be connected,
2. the upper-most N-MOSFET will be disconnected,
3. r will be connected to Vdd.

▶ Connect x to Vss and y to Vdd:
1. the left-most P-MOSFET will be connected,
2. the lower-most N-MOSFET will be disconnected,
3. r will be connected to Vdd.

▶ Connect both x and y to Vdd:
1. both top P-MOSFETs will be disconnected,
2. both bottom N-MOSFETS will be connected,
3. r will be connected to Vss.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: logic gates (3)
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3. r will be connected to Vss.
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Part 3: logic gates (4)
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Part 3: logic gates (5)

In summary, we should
1. form a
▶ pull-up network of P-MOSFET transistors

connected to Vdd,
▶ pull-down network of N-MOSFET transistors

connected to Vss,

2. relabel

Vss = 0V ≃ GND |= 0
Vdd = 5V |= 1

and assume the power rails are everywhere,
3. specify the functionality of each logic gate

using a truth table, e.g.,

x r
0 1
1 0

x y r
0 0 1
0 1 1
1 0 1
1 1 0

x y r
0 0 1
0 1 0
1 0 0
1 1 0

and represent it using an associated symbol.

https://en.wikipedia.org/wiki/File:ClaudeShannon_MFO3807.jpg
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Part 3: logic gates (6)

Definition

r is x ≡ r = x ≡ x r

r is NOT x ≡ r = ¬x ≡ x r

r is x NAND y ≡ r = x ∧ y ≡ xy r

r is x NOR y ≡ r = x ∨ y ≡ xy r

r is x AND y ≡ r = x ∧ y ≡ xy r

r is x OR y ≡ r = x ∨ y ≡ xy r

r is x XOR y ≡ r = x ⊕ y ≡ xy r
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Part 4: physical limitations (1)
Delay

Definition

Within some combinatorial logic, two classes of delay (which is often described as propagation delay, with a hint toward
delay of signals more generally) dictate the time between change to some input and corresponding change (if any) in an
output: these are
▶ wire delay, which relates to the time taken for current to move through the conductive wire from one point to

another, and
▶ gate delay, which relates to the time taken for transistors in each gate to switch between connected and unconnected

states.
The latter is typically larger than the former, and both relate to the associated implementations: the latter relates to
properties of the transistors used, the former to properties of the wire (e.g., conductivity, length, and so on).

Definition

The critical path through some combinatorial logic is the longest sequential path between an input and output, i.e., the
path which has the largest total delay (stemming from the individual wire and/or gate delays).
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Part 4: physical limitations (2)
Delay

▶ Example: consider the MOSFET-based NOT gate
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where
▶ the left-hand side illustrates an idealised, square response, whereas
▶ the right-hand side illustrates a (more) realistic, curved response.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:



Part 4: physical limitations (3)
Delay

▶ Example: static (i.e., time-agnostic) evaluation:

Circuit

r

x

y

t0

t1

t2

t3

setting x = 0, y = 1 means the circuit will compute

x = = 0
y = = 1
t0 = ¬x = 1
t1 = ¬y = 0
t2 = t0 ∧ y = 1
t3 = t1 ∧ x = 0
r = t2 ∨ t3 = 1
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Part 4: physical limitations (3)
Delay

▶ Example: dynamic (i.e., time-considerate) evaluation:

Circuit

r

x

y

t0

t1

t2

t3

imagine that
NOT gate ❀ 10ns
AND gate ❀ 20ns

OR gate ❀ 20ns
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Part 4: physical limitations (3)
Delay

▶ Example: dynamic (i.e., time-considerate) evaluation:

Circuit

r
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t3

x
y
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t1

t2
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r

0n
s

10
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20
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30
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40
ns

50
ns

flipping x = 0, y = 1 to x = 1, y = 1 means the circuit will compute

x = = 1
y = = 1
t0 = ¬x = 0
t1 = ¬y = 0
t2 = t0 ∧ y = 0
t3 = t1 ∧ x = 0
r = t2 ∨ t3 = 0
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Part 4: physical limitations (3)
Delay

▶ Example: dynamic (i.e., time-considerate) evaluation:

Circuit
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but, crucially,
1. it takes some time matching the critical path (i.e, 50ns through a NOT, an AND and an OR

gate) to settle into the correct state, so
2. at some points in time, the output doesn’t match the inputs.
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Part 4: physical limitations (4)
3-state Logic

▶ Concept: 3-state logic, which introduces an “extra” pseudo-value where
1. 0 represents false,
2. 1 represents true, and
3. Z represents high impedance,
can be a useful model of real circuits.

▶ Think of high impedance as being the null value; the idea is to allow a wire to be
“disconnected” per

x r

en

x en r
0 0 Z
1 0 Z
Z 0 Z
0 1 0
1 1 1
Z 1 Z
0 Z Z
1 Z Z
Z Z Z

such that the Enable gate is really just a switch.
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Part 4: physical limitations (5)
Fan-in and Fan-out

Definition

Consider a given logic gate:
▶ The term fan-in is used to describe the number of inputs to a given gate.
▶ The term fan-out is used to describe the number of inputs (so in a rough sense the number of other gates) the output

of a given gate is connected to.

Example

xy

m target gates
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Conclusions

▶ Take away points:
1. We now have a suite of logic gates, where it’s clear

behavioural properties ⇔ transistors
⇔ semi-conductors
⇔ Physics

functional properties ⇔ Boolean algebra
⇔ Mathematics

i.e., there’s no “magic” steps involved.
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Conclusions

▶ Take away points:

2. Arguably, tougher challenges stem from design and optimisation tasks, i.e., how do we
▶ match some specification, e.g., “implement some function f”, and
▶ safisfy some design goals, e.g., “use less than X gates (or Y transistors)” or “ensure a delay less than

Zns”.
3. Modern transistor design and manufacture imply various constraints: at least a high-level,

understanding of these (e.g., Moore’s Law etc.) is valuable.
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Additional Reading

▶ Wikipedia: Transistor. url: https://en.wikipedia.org/wiki/Transistor.
▶ Wikipedia: Logic gate. url: https://en.wikipedia.org/wiki/Logic_gate.
▶ D. Page. “Chapter 2: Basics of digital logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.
▶ R.J. Smith and R.C. Dorf. “Chapter 12: Transistors and Integrated Circuits”. In: Circuits, Devices and Systems. 5th ed. Wiley, 1992.
▶ W. Stallings. “Chapter 11: Digital logic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.
▶ A.S. Tanenbaum and T. Austin. “Section 3.1: Gates and Boolean algebra”. In: Structured Computer Organisation. 6th ed. Prentice

Hall, 2012.
▶ A.S. Tanenbaum and T. Austin. “Section 3.2.1: Integrated circuits”. In: Structured Computer Organisation. 6th ed. Prentice Hall,

2012.
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