
Computer Architecture

Daniel Page

Department of Computer Science,
University Of Bristol,

Merchant Venturers Building,
Woodland Road,

Bristol, BS8 1UB. UK.
〈csdsp@bristol.ac.uk〉

September 5, 2025

Keep in mind there are two PDFs available (of which this is the latter):
1. a PDF of examinable material used as lecture slides, and
2. a PDF of non-examinable, extra material:
▶ the associated notes page may be pre-populated with extra, written explaination of

material covered in lecture(s), plus
▶ anything with a “grey’ed out” header/footer represents extra material which is

useful and/or interesting but out of scope (and hence not covered).

Notes:

Notes:

COMS10015 lecture: week #3

▶ Problem: we have ¬, ∧, and ∨, so given the specification

xn−1 · · · x1 x0 r
0 · · · 0 0 1
0 · · · 0 1 0
0 · · · 1 0 1
0 · · · 1 1 0
...

...
...

...
1 · · · 1 1 0

for some Boolean function
r = f (x0 , x1 , . . . , xn−1),

design a Boolean expression e which can compute it.
▶ Solution: ?

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

COMS10015 lecture: week #3

▶ Agenda: combinatorial logic design, where, crucially,
▶ the output is a function of the input only,
▶ computation is viewed as being continuous,
via coverage of
1. special-purpose design patterns,
2. special-purpose building blocks, and
3. general-purpose derivation.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: special-purpose design patterns

▶ Pattern #1: decomposition.
▶ Any n-input, m-output Boolean function

f : Bn → Bm

can be rewritten as m separate n-input, 1-output Boolean functions, say

f0 : Bn → B
f1 : Bn → B

...
fm−1 : Bn → B

▶ As such, we have
f (x) ≡ f0(x) ‖ f1(x) ‖ . . . ‖ fm−1(x).

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: special-purpose design patterns

▶ Pattern #2: sharing.
▶ Imagine, for example, that we are given a 2-input, 1-bit AND gate.
▶ If, within some larger circuit, we compute

r = x ∧ y

and then, somewhere else,
r′ = x ∧ y

then we can replace the two AND gates with one: clearly

r = r′,
so we can share one definition between two usage points.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: special-purpose design patterns

▶ Pattern #3: independent replication.
▶ Imagine, for example, that we are given a 2-input, 1-bit AND gate.
▶ A 2-input, m-bit AND gate is simply replication of 2-input, 1-bit AND gates, i.e.,

r = x ∧ y

is computed via
ri = xi ∧ yi

for 0 ≤ i < m,
▶ for n = 4, as an example, this means

r0 = x0 ∧ y0
r1 = x1 ∧ y1
r2 = x2 ∧ y2
r3 = x3 ∧ y3

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: special-purpose design patterns

▶ Pattern #4: dependent replication.
▶ Imagine, for example, that we are given a 2-input, 1-bit AND gate.
▶ An n-input, 1-bit AND gate is simply replication of 2-input, 1-bit AND gates, i.e.,

r =
n−1∧
i=0

xi

is computed via
r = x0 ∧ (x1 ∧ · · · (xn−1)),

▶ for n = 4, as an example, this means

r = x0 ∧ (x1 ∧ x2 ∧ (x3))
= x0 ∧ x1 ∧ x2 ∧ x3
= (x0 ∧ x1) ∧ (x2 ∧ x3)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: special-purpose building blocks (1)
Choice

▶ Concept: the following building blocks can support most forms of choice
1. a multiplexer
▶ has m inputs,
▶ has 1 output,
▶ uses a (dlog2(m)e)-bit control signal input to choose which input is connected to the output,
while

2. a demultiplexer
▶ has 1 input,
▶ has m outputs,
▶ uses a (dlog2(m)e)-bit control signal input to choose which output is connected to the input,

noting that
▶ the input(s) and output(s) are n-bit, but clearly must match up,
▶ the connection made is continuous, since both components are combinatorial.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: special-purpose building blocks (2)
Choice

▶ Concept: by analogy,
1. the C switch statement

Listing

1 switch(c) {
2 case 0 : r = w; break;
3 case 1 : r = x; break;
4 case 2 : r = y; break;
5 case 3 : r = z; break;
6 }

acts similarly to a 4-input multiplexer,
2. the C switch statement

Listing

1 switch(c) {
2 case 0 : r0 = x; break;
3 case 1 : r1 = x; break;
4 case 2 : r2 = x; break;
5 case 3 : r3 = x; break;
6 }

acts similarly to a 4-output demultiplexer.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: special-purpose building blocks (3)
Choice

Definition

The behaviour of a 2-input, 1-bit multiplexer component

c

x

y
r

is described by the truth table

c x y r
0 0 ? 0
0 1 ? 1
1 ? 0 0
1 ? 1 1

which can be used to derive the following implementation:

r = (¬c ∧ x) ∨ (c ∧ y)

Circuit

c

r

x

y

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: special-purpose building blocks (4)
Choice

Definition

The behaviour of a 2-output, 1-bit demultiplexer compo-
nent

c

r0

r1

x

is described by the truth table

c x r1 r0
0 0 ? 0
0 1 ? 1
1 0 0 ?
1 1 1 ?

which can be used to derive the following implementation:

r0 = ¬c ∧ x
r1 = c ∧ x

Circuit

c

r0

r1

x

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

An Aside: application of design patterns

Circuit (2-input, 4-bit multiplexer via independent replication)

c

x

y
r

c

x

y
r

c

x

y
r

c

x

y
r

r0
x0
y0

c

r1
x1
y1

c

r2
x2
y2

c

r3
x3
y3

c

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

An Aside: application of design patterns

Circuit (4-input, 1-bit multiplexer via dependent replication)

c

x

y
r

c

x

y
r

c

x

y
r

c0

w
x

c1

r

c0

y
z

t0

t1

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: special-purpose building blocks (7)
Addition

▶ Concept: the following building blocks can support most forms of arithmetic
1. a half-adder
▶ has 2 inputs: x and y,
▶ computes the 2-bit result x + y,
▶ has 2 outputs: a sum s, and a carry-out co (which are the LSB and MSB of result),
while

2. a full-adder
▶ has 3 inputs: x and y plus a carry-in ci,
▶ computes the 2-bit result x + y + ci,
▶ has 2 outputs: a sum s, and a carry-out co (which are the LSB and MSB of result),

where all inputs and outputs are 1-bit.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: special-purpose building blocks (8)
Addition

Definition

The behaviour of a half-adder component

co

s
x
y

is described by the truth table

x y co s
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

which can be used to derive the following implementation:

co = x ∧ y
s = x ⊕ y

Circuit

yx s

co

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: special-purpose building blocks (9)
Addition

Definition

The behaviour of a full-adder component

co

s

ci
x
y

is described by the truth table

ci x y co s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

which can be used to derive the following implementation:

co = (x ∧ y) ∨ (x ∧ ci) ∨ (y ∧ ci)
= (x ∧ y) ∨ ((x ⊕ y) ∧ ci)

s = x ⊕ y ⊕ ci

Circuit

yx

ci

s

co

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: special-purpose building blocks (10)
Addition

Circuit (n-bit addition)

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

ci co

y 0x 0 r 0 y 1x 1 r 1

y n
−1

x n
−1

r n
−1

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: special-purpose building blocks (11)
Comparison

▶ Concept: the following building blocks can support most forms of comparison
1. an equality comparator
▶ has 2 inputs x and y,
▶ computes the 1 output as

r =
{

1 if x = y
0 otherwise

while
2. a less-than comparator
▶ has 2 inputs x and y,
▶ computes the 1 output as

r =
{

1 if x < y
0 otherwise

where all inputs and outputs are 1-bit.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: special-purpose building blocks (12)
Comparison

Definition

The behaviour of an equality comparator component

x

y
r

is described by the truth table

x y r
0 0 1
0 1 0
1 0 0
1 1 1

which can be used to derive the following implementation:

r = ¬(x ⊕ y)

Circuit

xy r

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: special-purpose building blocks (13)
Comparison

Definition

The behaviour of a less-than comparator component

x

y
r

is described by the truth table

x y r
0 0 0
0 1 1
1 0 0
1 1 0

which can be used to derive the following implementation:

r = ¬x ∧ y

Circuit

x

y r

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: special-purpose building blocks (14)
Comparison

Circuit (n-bit equality comparison)

=

=

=

=

x0y0

x1y1

xn−1yn−1

r

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: special-purpose building blocks (15)
Comparison

Circuit (n-bit less-than comparison)

< = < = < = <

x n
−1

y n
−1

x n
−1

y n
−1

x 1 y 1 x 1 y 1 x 0 y 0

r

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: special-purpose building blocks (16)
Control

▶ Concept: informally, encoders and decoders can be viewed as translators, i.e.,

Encoder Decoderx x

m-bit x′n-bit x n-bit x

or, more formally,
1. an n-to-m encoder translates an n-bit input into some m-bit code word, and
2. an m-to-n decoder translates an m-bit code word back into the same n-bit output
where if only one output (resp. input) is allowed to be 1 at a time, we call it a
one-of-many encoder (resp. decoder).

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: special-purpose building blocks (16)
Control

▶ A general building block is impossible since it depends on the scheme for
encoding/decoding: consider an example such that
1. to encode, take n inputs, say xi for 0 ≤ i < n, and produce a unsigned integer x′ that

determines which xi = 1,
2. to decode, take x′ and set the correct xi = 1
where for all j ≠ i, x′j = 0.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: special-purpose building blocks (17)
Control

Definition (example encoder)

The example encoder is described by the truth table

x3 x2 x1 x0 x′1 x′0
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

which can be used to derive the following implementation:

x′0 = x1 ∨ x3
x′1 = x2 ∨ x3

Circuit (example encoder)

x3

x1

x2

x′0

x′1

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: special-purpose building blocks (18)
Control

Definition (example decoder)

The example decoder is described by the truth table

x′1 x′0 x3 x2 x1 x0
0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

which can be used to derive the following implementation:

x0 = ¬x′0 ∧ ¬x′1
x1 = x′0 ∧ ¬x′1
x2 = ¬x′0 ∧ x′1
x3 = x′0 ∧ x′1

Circuit (example decoder)

x′0x′1

x3

x2

x1

x0

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: special-purpose building blocks (19)
Control

▶ Problem: if we break the rules and set both x1 = 1 and x2 = 1, the encoder fails by
producing

x′0 = x1 ∨ x3 = 1
x′1 = x2 ∨ x3 = 1

as the result.
▶ Solution: consider a priority encoder, where one input is given priority (or

preference) over another.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: special-purpose building blocks (19)
Control

Example

Imagine we want to give xj priority over each xk for j > k, so x2 over x1 and x0 for example:

x3 x2 x1 x0 x′1 x′0
0 0 0 1 0 0
0 0 1 ? 0 1
0 1 ? ? 1 0
1 ? ? ? 1 1

Now, although potentially x0 = 1 or x1 = 1 the output gives priority to x2 : as long as x2 = 1 and x3 = 0, the output will be
x′0 = 0 and x′1 = 1 irrespective of x0 and x1 .

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: general-purpose derivation (1)
Method #1

Algorithm

Input: A truth table for some Boolean function f , with n inputs and 1 output
Output: A Boolean expression e that implements f
First let ℐj denote the j-th input for 0 ≤ j < n and O denote the single output:
1. Find a set T such that i ∈ T iff. O = 1 in the i-th row of the truth table.
2. For each i ∈ T, form a term ti by AND’ing together all the variables while following two rules:

2.1 if ℐj = 1 in the i-th row, then we use
ℐj

as is, but
2.2 if ℐj = 0 in the i-th row, then we use

¬ℐj .

3. An expression implementing the function is then formed by OR’ing together all the terms, i.e.,

e =
∨
i∈T

ti ,

which is in SoP form.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: general-purpose derivation (2)
Method #1

Example

Consider the example of deriving an expression for XOR, i.e.,

r = f (x, y) = x ⊕ y,

a function described by the following truth table:

f
x y r
0 0 0
0 1 1
1 0 1
1 1 0

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: general-purpose derivation (2)
Method #1

Example

Consider the example of deriving an expression for XOR, i.e.,

r = f (x, y) = x ⊕ y,

a function described by the following truth table:

f
x y r
0 0 0
0 1 1 ❀ i = 1
1 0 1 ❀ i = 2
1 1 0

Following the algorithm produces:
1. Looking at the truth table, it is clear there are
▶ n = 2 inputs that we denote ℐ0 = x and ℐ1 = y, and
▶ one output that we denote O = r.

Clearly T = {1, 2} since O = 1 in rows 1 and 2, while O = 0 in rows 0 and 3.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: general-purpose derivation (2)
Method #1

Example

Consider the example of deriving an expression for XOR, i.e.,

r = f (x, y) = x ⊕ y,

a function described by the following truth table:

f
x y r
0 0 0
0 1 1 ❀ t1 = ¬x ∧ y
1 0 1 ❀ t2 = x ∧ ¬y
1 1 0

Following the algorithm produces:
2. Each term ti for i ∈ T = {1, 2} is formed as follows:
▶ For i = 1, we find
▶ ℐ0 = x = 0 and so we use ¬x,
▶ ℐ1 = y = 1 and so we use y
and hence form the term t1 = ¬x ∧ y.

▶ For i = 2, we find
▶ ℐ0 = x = 1 and so we use x,
▶ ℐ1 = y = 0 and so we use ¬y
and hence form the term t2 = x ∧ ¬y.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: general-purpose derivation (2)
Method #1

Example

Consider the example of deriving an expression for XOR, i.e.,

r = f (x, y) = x ⊕ y,

a function described by the following truth table:

f
x y r
0 0 0
0 1 1 ❀ t1 = ¬x ∧ y
1 0 1 ❀ t2 = x ∧ ¬y
1 1 0

Following the algorithm produces:
3. The expression implementing the function is therefore

e =
∨
i∈T

ti

=
∨

i∈{1,2}
ti

= (¬x ∧ y) ∨ (x ∧ ¬y)
which is in SoP form.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: general-purpose derivation (3)
Method #2: Karnaugh map

https://xkcd.com/74

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: general-purpose derivation (3)
Method #2: Karnaugh map

▶ Idea:
(x ∧ y) ∨ (x ∧ ¬y) ≡ x ∧ (y ∨ ¬y) (distribution)

≡ x ∧ 1 (inverse)
≡ x (identity)

https://xkcd.com/74

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: general-purpose derivation (4)
Method #2: Karnaugh map

Algorithm

Input: A truth table for some Boolean function f , with n inputs and 1 output
Output: A Boolean expression e that implements f

1. Draw a rectangular (p × q)-element grid, st.
1.1 p ≡ q ≡ 0 (mod 2), and
1.2 p · q = 2n

and each row and column represents one input combination; order rows and columns according to a Gray code.

2. Fill the grid elements with the output corresponding to inputs for that row and column.

3. Cover rectangular groups of adjacent 1 elements which are of total size 2m for some m; groups can “wrap around”
edges of the grid and overlap.

4. Translate each group into one term of an SoP form Boolean expression e where
4.1 bigger groups, and
4.2 less groups

mean a simpler expression.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: general-purpose derivation (5)
Method #2: Karnaugh map

Example

Natural sequence Gray code sequence

〈0, 0, 0, 0〉 ↦→ 0(10)
〈1, 0, 0, 0〉 ↦→ 1(10)
〈0, 1, 0, 0〉 ↦→ 2(10)
〈1, 1, 0, 0〉 ↦→ 3(10)
〈0, 0, 1, 0〉 ↦→ 4(10)
〈1, 0, 1, 0〉 ↦→ 5(10)
〈0, 1, 1, 0〉 ↦→ 6(10)
〈1, 1, 1, 0〉 ↦→ 7(10)

.

.

.

〈0, 0, 0, 0〉 ↦→ 0(10)
〈1, 0, 0, 0〉 ↦→ 1(10)
〈1, 1, 0, 0〉 ↦→ 3(10)
〈0, 1, 0, 0〉 ↦→ 2(10)
〈0, 1, 1, 0〉 ↦→ 6(10)
〈0, 0, 1, 0〉 ↦→ 4(10)
〈1, 0, 1, 0〉 ↦→ 5(10)
〈1, 1, 1, 0〉 ↦→ 7(10)

.

.

.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: general-purpose derivation (6)
Method #2: Karnaugh map

Example

Consider an example 4-input, 1-output function:

w x y z r
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The first two steps are simple: drawing a grid of an appropriate size then filling it with entries from the truth table are both trivial, even
though they still demand some care.

• Forming the groups is a little harder, in the sense that their “quality” (i.e., number and size) dictates how optimised the resulting
expression will be. This example has some non-intuitive cases: the blue group might not be obvious for example, but is within the rules
(although it is sort of inside-out, it is rectangular and a power-of-two in size).

• The last step is the hardest: we need to translate each group into a term that covers it. Put another way, we want a term that specifies
just the cells in that group. In a sense, the more variables that exist within a term place more restrictions on which cells we specify; this
highlights the fact that larger groups therefor contain fewer variables, and are therefore simpler. This example has three groups:
– The red group spans columns 0 and 1 and rows 0 and 1; provided w = 0 and y = 0 we specify just those cells, so the expression is ¬w ∧ ¬y. That is,

w = 0 restricts us to columns 0 and 1 (columns 2 and 3 have w = 1) and y = 0 restricts us to rows 0 and 1 (rows 2 and 3 have y = 1). Note that the
values of x and z don’t matter: cells in the group hold the value 1 regardless of x and y.

– The green group spans columns 2 and 3 in row 2; provided w = 1, y = 1 and z = 1 we specify just those cells, so the expression is w ∧ y ∧ z. That is,
w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 1 and z = 1 restricts us to row 2 (rows 0, 1 and 3 have at least one of
y = 0 or z = 0). Note that the value of x doesn’t matter: cells in the group hold the value 1 regardless of x.

– The blue group spans columns 0 and 3 and rows 0 and 3; provided x = 0 and z = 0 we specify just those cells, so the expression is ¬x ∧ ¬z. That is,
x = 0 restricts us to columns 0 and 3 (columns 1 and 2 have x = 1) and z = 0 restricts us to rows 0 and 3 (rows 1 and 2 have z = 1). Note that the
values of w and y don’t matter: cells in the group hold the value 1 regardless of w and y.

Part 3: general-purpose derivation (6)
Method #2: Karnaugh map

Example

Consider an example 4-input, 1-output function:

w x y z r
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

00 01 11 10

00

01

11

10

y

w

z

x

1
0

1
1

1
2

1
3

1
4

0
5

0
6

0
7

1
8

0
9

0
10

0
11

1
12

0
13

1
14

1
15

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The first two steps are simple: drawing a grid of an appropriate size then filling it with entries from the truth table are both trivial, even
though they still demand some care.

• Forming the groups is a little harder, in the sense that their “quality” (i.e., number and size) dictates how optimised the resulting
expression will be. This example has some non-intuitive cases: the blue group might not be obvious for example, but is within the rules
(although it is sort of inside-out, it is rectangular and a power-of-two in size).

• The last step is the hardest: we need to translate each group into a term that covers it. Put another way, we want a term that specifies
just the cells in that group. In a sense, the more variables that exist within a term place more restrictions on which cells we specify; this
highlights the fact that larger groups therefor contain fewer variables, and are therefore simpler. This example has three groups:
– The red group spans columns 0 and 1 and rows 0 and 1; provided w = 0 and y = 0 we specify just those cells, so the expression is ¬w ∧ ¬y. That is,

w = 0 restricts us to columns 0 and 1 (columns 2 and 3 have w = 1) and y = 0 restricts us to rows 0 and 1 (rows 2 and 3 have y = 1). Note that the
values of x and z don’t matter: cells in the group hold the value 1 regardless of x and y.

– The green group spans columns 2 and 3 in row 2; provided w = 1, y = 1 and z = 1 we specify just those cells, so the expression is w ∧ y ∧ z. That is,
w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 1 and z = 1 restricts us to row 2 (rows 0, 1 and 3 have at least one of
y = 0 or z = 0). Note that the value of x doesn’t matter: cells in the group hold the value 1 regardless of x.

– The blue group spans columns 0 and 3 and rows 0 and 3; provided x = 0 and z = 0 we specify just those cells, so the expression is ¬x ∧ ¬z. That is,
x = 0 restricts us to columns 0 and 3 (columns 1 and 2 have x = 1) and z = 0 restricts us to rows 0 and 3 (rows 1 and 2 have z = 1). Note that the
values of w and y don’t matter: cells in the group hold the value 1 regardless of w and y.

Part 3: general-purpose derivation (6)
Method #2: Karnaugh map

Example

Consider an example 4-input, 1-output function:

w x y z r
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

00 01 11 10

00

01

11

10

y

w

z

x

1
0

1
1

1
2

1
3

1
4

0
5

0
6

0
7

1
8

0
9

0
10

0
11

1
12

0
13

1
14

1
15

Each group translates into one term of the SoP form expression

r = (¬w ∧ ¬y)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The first two steps are simple: drawing a grid of an appropriate size then filling it with entries from the truth table are both trivial, even
though they still demand some care.

• Forming the groups is a little harder, in the sense that their “quality” (i.e., number and size) dictates how optimised the resulting
expression will be. This example has some non-intuitive cases: the blue group might not be obvious for example, but is within the rules
(although it is sort of inside-out, it is rectangular and a power-of-two in size).

• The last step is the hardest: we need to translate each group into a term that covers it. Put another way, we want a term that specifies
just the cells in that group. In a sense, the more variables that exist within a term place more restrictions on which cells we specify; this
highlights the fact that larger groups therefor contain fewer variables, and are therefore simpler. This example has three groups:
– The red group spans columns 0 and 1 and rows 0 and 1; provided w = 0 and y = 0 we specify just those cells, so the expression is ¬w ∧ ¬y. That is,

w = 0 restricts us to columns 0 and 1 (columns 2 and 3 have w = 1) and y = 0 restricts us to rows 0 and 1 (rows 2 and 3 have y = 1). Note that the
values of x and z don’t matter: cells in the group hold the value 1 regardless of x and y.

– The green group spans columns 2 and 3 in row 2; provided w = 1, y = 1 and z = 1 we specify just those cells, so the expression is w ∧ y ∧ z. That is,
w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 1 and z = 1 restricts us to row 2 (rows 0, 1 and 3 have at least one of
y = 0 or z = 0). Note that the value of x doesn’t matter: cells in the group hold the value 1 regardless of x.

– The blue group spans columns 0 and 3 and rows 0 and 3; provided x = 0 and z = 0 we specify just those cells, so the expression is ¬x ∧ ¬z. That is,
x = 0 restricts us to columns 0 and 3 (columns 1 and 2 have x = 1) and z = 0 restricts us to rows 0 and 3 (rows 1 and 2 have z = 1). Note that the
values of w and y don’t matter: cells in the group hold the value 1 regardless of w and y.

Part 3: general-purpose derivation (6)
Method #2: Karnaugh map

Example

Consider an example 4-input, 1-output function:

w x y z r
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

00 01 11 10

00

01

11

10

y

w

z

x

1
0

1
1

1
2

1
3

1
4

0
5

0
6

0
7

1
8

0
9

0
10

0
11

1
12

0
13

1
14

1
15

Each group translates into one term of the SoP form expression

r = (¬w ∧ ¬y) ∨
(w ∧ y ∧ z)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The first two steps are simple: drawing a grid of an appropriate size then filling it with entries from the truth table are both trivial, even
though they still demand some care.

• Forming the groups is a little harder, in the sense that their “quality” (i.e., number and size) dictates how optimised the resulting
expression will be. This example has some non-intuitive cases: the blue group might not be obvious for example, but is within the rules
(although it is sort of inside-out, it is rectangular and a power-of-two in size).

• The last step is the hardest: we need to translate each group into a term that covers it. Put another way, we want a term that specifies
just the cells in that group. In a sense, the more variables that exist within a term place more restrictions on which cells we specify; this
highlights the fact that larger groups therefor contain fewer variables, and are therefore simpler. This example has three groups:
– The red group spans columns 0 and 1 and rows 0 and 1; provided w = 0 and y = 0 we specify just those cells, so the expression is ¬w ∧ ¬y. That is,

w = 0 restricts us to columns 0 and 1 (columns 2 and 3 have w = 1) and y = 0 restricts us to rows 0 and 1 (rows 2 and 3 have y = 1). Note that the
values of x and z don’t matter: cells in the group hold the value 1 regardless of x and y.

– The green group spans columns 2 and 3 in row 2; provided w = 1, y = 1 and z = 1 we specify just those cells, so the expression is w ∧ y ∧ z. That is,
w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 1 and z = 1 restricts us to row 2 (rows 0, 1 and 3 have at least one of
y = 0 or z = 0). Note that the value of x doesn’t matter: cells in the group hold the value 1 regardless of x.

– The blue group spans columns 0 and 3 and rows 0 and 3; provided x = 0 and z = 0 we specify just those cells, so the expression is ¬x ∧ ¬z. That is,
x = 0 restricts us to columns 0 and 3 (columns 1 and 2 have x = 1) and z = 0 restricts us to rows 0 and 3 (rows 1 and 2 have z = 1). Note that the
values of w and y don’t matter: cells in the group hold the value 1 regardless of w and y.

Part 3: general-purpose derivation (6)
Method #2: Karnaugh map

Example

Consider an example 4-input, 1-output function:

w x y z r
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

00 01 11 10

00

01

11

10

y

w

z

x

1
0

1
1

1
2

1
3

1
4

0
5

0
6

0
7

1
8

0
9

0
10

0
11

1
12

0
13

1
14

1
15

Each group translates into one term of the SoP form expression

r = (¬w ∧ ¬y) ∨
(w ∧ y ∧ z) ∨
(¬x ∧ ¬z)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The first two steps are simple: drawing a grid of an appropriate size then filling it with entries from the truth table are both trivial, even
though they still demand some care.

• Forming the groups is a little harder, in the sense that their “quality” (i.e., number and size) dictates how optimised the resulting
expression will be. This example has some non-intuitive cases: the blue group might not be obvious for example, but is within the rules
(although it is sort of inside-out, it is rectangular and a power-of-two in size).

• The last step is the hardest: we need to translate each group into a term that covers it. Put another way, we want a term that specifies
just the cells in that group. In a sense, the more variables that exist within a term place more restrictions on which cells we specify; this
highlights the fact that larger groups therefor contain fewer variables, and are therefore simpler. This example has three groups:
– The red group spans columns 0 and 1 and rows 0 and 1; provided w = 0 and y = 0 we specify just those cells, so the expression is ¬w ∧ ¬y. That is,

w = 0 restricts us to columns 0 and 1 (columns 2 and 3 have w = 1) and y = 0 restricts us to rows 0 and 1 (rows 2 and 3 have y = 1). Note that the
values of x and z don’t matter: cells in the group hold the value 1 regardless of x and y.

– The green group spans columns 2 and 3 in row 2; provided w = 1, y = 1 and z = 1 we specify just those cells, so the expression is w ∧ y ∧ z. That is,
w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 1 and z = 1 restricts us to row 2 (rows 0, 1 and 3 have at least one of
y = 0 or z = 0). Note that the value of x doesn’t matter: cells in the group hold the value 1 regardless of x.

– The blue group spans columns 0 and 3 and rows 0 and 3; provided x = 0 and z = 0 we specify just those cells, so the expression is ¬x ∧ ¬z. That is,
x = 0 restricts us to columns 0 and 3 (columns 1 and 2 have x = 1) and z = 0 restricts us to rows 0 and 3 (rows 1 and 2 have z = 1). Note that the
values of w and y don’t matter: cells in the group hold the value 1 regardless of w and y.

Part 3: general-purpose derivation (7)
Method #2: Karnaugh map

Example

Consider an example 3-input, 1-output function:

x y z r
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 ?
1 1 0 1
1 1 1 ?

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• Note the differing shape of this grid versus the previous example: since there are n = 3 variables, we set p = 2 and q = 4 such that the
grid contains 2 · 4 = 23 = 8 cells.

• Adopting the same approach as the previous example, by not ignoring the don’t care entries (i.e., assuming they are 0) we have two
groups. However, opting to treat one of them as a 1 (which is fine: by definition we don’t care what the output is) we only have one:
– The red group spans column 1 and rows 0 and 1; provided x = 0 and y = 1 we specify just those cells, so the expression is ¬x∧ y. That is, x = 0 and

y = 1 restricts us to column 1 (columns 0, 2 and 3 have at least one of x = 1 or y = 0) which is all we need because the group spans all rows. Note
that the value of z doesn’t matter: cells in the group hold the value 1 regardless of z.

– The green group spans columns 1 and 2, in row 0; provided y = 1 and z = 0 we specify just those cells, so the expression is y ∧ ¬z. That is, y = 1
restricts us to columns 1 and 2 (columns 0 and 3 have y = 0) and z = 0 restricts us to row 0 (row 1 has z = 1). Note that the value of x doesn’t
matter: cells in the group hold the value 1 regardless of x.

– The blue group spans columns 1 and 2 and rows 0 and 1; provided y = 1 we specify just those cells, so the expression is y That is, y = 1 restricts us
to columns 1 and 2 (columns 0 and 3 have y = 0) which is all we need because the group spans all rows. Note that the values of x and z don’t
matter: cells in the group hold the value 1 regardless of x and z.

Part 3: general-purpose derivation (7)
Method #2: Karnaugh map

Example

Consider an example 3-input, 1-output function:

x y z r
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 ?
1 1 0 1
1 1 1 ?

00 01 11 10

0

1

x

z

y

0
0

1
1

0
2

1
3

0
4

1
5

?
6

?
7

00 01 11 10

0

1

x

z

y

0
0

1
1

0
2

1
3

0
4

1
5

?
6

?
7

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• Note the differing shape of this grid versus the previous example: since there are n = 3 variables, we set p = 2 and q = 4 such that the
grid contains 2 · 4 = 23 = 8 cells.

• Adopting the same approach as the previous example, by not ignoring the don’t care entries (i.e., assuming they are 0) we have two
groups. However, opting to treat one of them as a 1 (which is fine: by definition we don’t care what the output is) we only have one:
– The red group spans column 1 and rows 0 and 1; provided x = 0 and y = 1 we specify just those cells, so the expression is ¬x∧ y. That is, x = 0 and

y = 1 restricts us to column 1 (columns 0, 2 and 3 have at least one of x = 1 or y = 0) which is all we need because the group spans all rows. Note
that the value of z doesn’t matter: cells in the group hold the value 1 regardless of z.

– The green group spans columns 1 and 2, in row 0; provided y = 1 and z = 0 we specify just those cells, so the expression is y ∧ ¬z. That is, y = 1
restricts us to columns 1 and 2 (columns 0 and 3 have y = 0) and z = 0 restricts us to row 0 (row 1 has z = 1). Note that the value of x doesn’t
matter: cells in the group hold the value 1 regardless of x.

– The blue group spans columns 1 and 2 and rows 0 and 1; provided y = 1 we specify just those cells, so the expression is y That is, y = 1 restricts us
to columns 1 and 2 (columns 0 and 3 have y = 0) which is all we need because the group spans all rows. Note that the values of x and z don’t
matter: cells in the group hold the value 1 regardless of x and z.

Part 3: general-purpose derivation (7)
Method #2: Karnaugh map

Example

Consider an example 3-input, 1-output function:

x y z r
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 ?
1 1 0 1
1 1 1 ?

00 01 11 10

0

1

x

z

y

0
0

1
1

0
2

1
3

0
4

1
5

?
6

?
7

00 01 11 10

0

1

x

z

y

0
0

1
1

0
2

1
3

0
4

1
5

?
6

?
7

Each group translates into one term of the SoP form expressions

r = (¬x ∧ y)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• Note the differing shape of this grid versus the previous example: since there are n = 3 variables, we set p = 2 and q = 4 such that the
grid contains 2 · 4 = 23 = 8 cells.

• Adopting the same approach as the previous example, by not ignoring the don’t care entries (i.e., assuming they are 0) we have two
groups. However, opting to treat one of them as a 1 (which is fine: by definition we don’t care what the output is) we only have one:
– The red group spans column 1 and rows 0 and 1; provided x = 0 and y = 1 we specify just those cells, so the expression is ¬x∧ y. That is, x = 0 and

y = 1 restricts us to column 1 (columns 0, 2 and 3 have at least one of x = 1 or y = 0) which is all we need because the group spans all rows. Note
that the value of z doesn’t matter: cells in the group hold the value 1 regardless of z.

– The green group spans columns 1 and 2, in row 0; provided y = 1 and z = 0 we specify just those cells, so the expression is y ∧ ¬z. That is, y = 1
restricts us to columns 1 and 2 (columns 0 and 3 have y = 0) and z = 0 restricts us to row 0 (row 1 has z = 1). Note that the value of x doesn’t
matter: cells in the group hold the value 1 regardless of x.

– The blue group spans columns 1 and 2 and rows 0 and 1; provided y = 1 we specify just those cells, so the expression is y That is, y = 1 restricts us
to columns 1 and 2 (columns 0 and 3 have y = 0) which is all we need because the group spans all rows. Note that the values of x and z don’t
matter: cells in the group hold the value 1 regardless of x and z.

Part 3: general-purpose derivation (7)
Method #2: Karnaugh map

Example

Consider an example 3-input, 1-output function:

x y z r
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 ?
1 1 0 1
1 1 1 ?

00 01 11 10

0

1

x

z

y

0
0

1
1

0
2

1
3

0
4

1
5

?
6

?
7

00 01 11 10

0

1

x

z

y

0
0

1
1

0
2

1
3

0
4

1
5

?
6

?
7

Each group translates into one term of the SoP form expressions

r = (¬x ∧ y) ∨ (y ∧ ¬z)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• Note the differing shape of this grid versus the previous example: since there are n = 3 variables, we set p = 2 and q = 4 such that the
grid contains 2 · 4 = 23 = 8 cells.

• Adopting the same approach as the previous example, by not ignoring the don’t care entries (i.e., assuming they are 0) we have two
groups. However, opting to treat one of them as a 1 (which is fine: by definition we don’t care what the output is) we only have one:
– The red group spans column 1 and rows 0 and 1; provided x = 0 and y = 1 we specify just those cells, so the expression is ¬x∧ y. That is, x = 0 and

y = 1 restricts us to column 1 (columns 0, 2 and 3 have at least one of x = 1 or y = 0) which is all we need because the group spans all rows. Note
that the value of z doesn’t matter: cells in the group hold the value 1 regardless of z.

– The green group spans columns 1 and 2, in row 0; provided y = 1 and z = 0 we specify just those cells, so the expression is y ∧ ¬z. That is, y = 1
restricts us to columns 1 and 2 (columns 0 and 3 have y = 0) and z = 0 restricts us to row 0 (row 1 has z = 1). Note that the value of x doesn’t
matter: cells in the group hold the value 1 regardless of x.

– The blue group spans columns 1 and 2 and rows 0 and 1; provided y = 1 we specify just those cells, so the expression is y That is, y = 1 restricts us
to columns 1 and 2 (columns 0 and 3 have y = 0) which is all we need because the group spans all rows. Note that the values of x and z don’t
matter: cells in the group hold the value 1 regardless of x and z.

Part 3: general-purpose derivation (7)
Method #2: Karnaugh map

Example

Consider an example 3-input, 1-output function:

x y z r
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 ?
1 1 0 1
1 1 1 ?

00 01 11 10

0

1

x

z

y

0
0

1
1

0
2

1
3

0
4

1
5

?
6

?
7

00 01 11 10

0

1

x

z

y

0
0

1
1

0
2

1
3

0
4

1
5

?
6

?
7

Each group translates into one term of the SoP form expressions

r = (¬x ∧ y) ∨ (y ∧ ¬z) r = y

where effective use of don’t care states yields a clear improvement!

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• Note the differing shape of this grid versus the previous example: since there are n = 3 variables, we set p = 2 and q = 4 such that the
grid contains 2 · 4 = 23 = 8 cells.

• Adopting the same approach as the previous example, by not ignoring the don’t care entries (i.e., assuming they are 0) we have two
groups. However, opting to treat one of them as a 1 (which is fine: by definition we don’t care what the output is) we only have one:
– The red group spans column 1 and rows 0 and 1; provided x = 0 and y = 1 we specify just those cells, so the expression is ¬x∧ y. That is, x = 0 and

y = 1 restricts us to column 1 (columns 0, 2 and 3 have at least one of x = 1 or y = 0) which is all we need because the group spans all rows. Note
that the value of z doesn’t matter: cells in the group hold the value 1 regardless of z.

– The green group spans columns 1 and 2, in row 0; provided y = 1 and z = 0 we specify just those cells, so the expression is y ∧ ¬z. That is, y = 1
restricts us to columns 1 and 2 (columns 0 and 3 have y = 0) and z = 0 restricts us to row 0 (row 1 has z = 1). Note that the value of x doesn’t
matter: cells in the group hold the value 1 regardless of x.

– The blue group spans columns 1 and 2 and rows 0 and 1; provided y = 1 we specify just those cells, so the expression is y That is, y = 1 restricts us
to columns 1 and 2 (columns 0 and 3 have y = 0) which is all we need because the group spans all rows. Note that the values of x and z don’t
matter: cells in the group hold the value 1 regardless of x and z.

Part 3: general-purpose derivation (8)
Method #2: Karnaugh map

Example

Consider an example 3-input, 1-output function:

x y z r
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:
• – The red group spans columns 2 and 3, in row 1; provided x = 1 and z = 1 we specify just those cells, so the expression is x ∧ z. x = 1 restricts us to

columns 2 and 3 (columns 0 and 1 have x = 0) and z = 1 restricts us to row 1 (row 0 has z = 0). Note that the value of y doesn’t matter: cells in the
group hold the value 1 regardless of y.

– The green group spans column 3 and rows 0 and 1; provided x = 1 and y = 0 we specify just those cells, so the expression is x ∧ ¬y. That is, x = 1
and y = 0 restricts us to column 3 (columns 0, 1 and 2 have at least one of x = 0 or y = 1) which is all we need because the group spans all rows.
Note that the value of z doesn’t matter: cells in the group hold the value 1 regardless of z.

– The blue group spans columns 0 and 1, in row 0; provided x = 0 and z = 0 we specify just those cells, so the expression is ¬x∧¬z. x = 0 restricts us
to columns 0 and 1 (columns 2 and 3 have x = 1) and z = 0 restricts us to row 0 (row 1 has z = 1). Note that the value of y doesn’t matter: cells in
the group hold the value 1 regardless of y.

Part 3: general-purpose derivation (8)
Method #2: Karnaugh map

Example

Consider an example 3-input, 1-output function:

x y z r
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

00 01 11 10

0

1

x

z

y

1
0

1
1

0
2

0
3

1
4

0
5

1
6

1
7

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:
• – The red group spans columns 2 and 3, in row 1; provided x = 1 and z = 1 we specify just those cells, so the expression is x ∧ z. x = 1 restricts us to

columns 2 and 3 (columns 0 and 1 have x = 0) and z = 1 restricts us to row 1 (row 0 has z = 0). Note that the value of y doesn’t matter: cells in the
group hold the value 1 regardless of y.

– The green group spans column 3 and rows 0 and 1; provided x = 1 and y = 0 we specify just those cells, so the expression is x ∧ ¬y. That is, x = 1
and y = 0 restricts us to column 3 (columns 0, 1 and 2 have at least one of x = 0 or y = 1) which is all we need because the group spans all rows.
Note that the value of z doesn’t matter: cells in the group hold the value 1 regardless of z.

– The blue group spans columns 0 and 1, in row 0; provided x = 0 and z = 0 we specify just those cells, so the expression is ¬x∧¬z. x = 0 restricts us
to columns 0 and 1 (columns 2 and 3 have x = 1) and z = 0 restricts us to row 0 (row 1 has z = 1). Note that the value of y doesn’t matter: cells in
the group hold the value 1 regardless of y.

Part 3: general-purpose derivation (8)
Method #2: Karnaugh map

Example

Consider an example 3-input, 1-output function:

x y z r
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

00 01 11 10

0

1

x

z

y

1
0

1
1

0
2

0
3

1
4

0
5

1
6

1
7

Each group translates into one term of the SoP form expression

r = (x ∧ z)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:
• – The red group spans columns 2 and 3, in row 1; provided x = 1 and z = 1 we specify just those cells, so the expression is x ∧ z. x = 1 restricts us to

columns 2 and 3 (columns 0 and 1 have x = 0) and z = 1 restricts us to row 1 (row 0 has z = 0). Note that the value of y doesn’t matter: cells in the
group hold the value 1 regardless of y.

– The green group spans column 3 and rows 0 and 1; provided x = 1 and y = 0 we specify just those cells, so the expression is x ∧ ¬y. That is, x = 1
and y = 0 restricts us to column 3 (columns 0, 1 and 2 have at least one of x = 0 or y = 1) which is all we need because the group spans all rows.
Note that the value of z doesn’t matter: cells in the group hold the value 1 regardless of z.

– The blue group spans columns 0 and 1, in row 0; provided x = 0 and z = 0 we specify just those cells, so the expression is ¬x∧¬z. x = 0 restricts us
to columns 0 and 1 (columns 2 and 3 have x = 1) and z = 0 restricts us to row 0 (row 1 has z = 1). Note that the value of y doesn’t matter: cells in
the group hold the value 1 regardless of y.

Part 3: general-purpose derivation (8)
Method #2: Karnaugh map

Example

Consider an example 3-input, 1-output function:

x y z r
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

00 01 11 10

0

1

x

z

y

1
0

1
1

0
2

0
3

1
4

0
5

1
6

1
7

Each group translates into one term of the SoP form expression

r = (x ∧ z) ∨
(x ∧ ¬y)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:
• – The red group spans columns 2 and 3, in row 1; provided x = 1 and z = 1 we specify just those cells, so the expression is x ∧ z. x = 1 restricts us to

columns 2 and 3 (columns 0 and 1 have x = 0) and z = 1 restricts us to row 1 (row 0 has z = 0). Note that the value of y doesn’t matter: cells in the
group hold the value 1 regardless of y.

– The green group spans column 3 and rows 0 and 1; provided x = 1 and y = 0 we specify just those cells, so the expression is x ∧ ¬y. That is, x = 1
and y = 0 restricts us to column 3 (columns 0, 1 and 2 have at least one of x = 0 or y = 1) which is all we need because the group spans all rows.
Note that the value of z doesn’t matter: cells in the group hold the value 1 regardless of z.

– The blue group spans columns 0 and 1, in row 0; provided x = 0 and z = 0 we specify just those cells, so the expression is ¬x∧¬z. x = 0 restricts us
to columns 0 and 1 (columns 2 and 3 have x = 1) and z = 0 restricts us to row 0 (row 1 has z = 1). Note that the value of y doesn’t matter: cells in
the group hold the value 1 regardless of y.

Part 3: general-purpose derivation (8)
Method #2: Karnaugh map

Example

Consider an example 3-input, 1-output function:

x y z r
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

00 01 11 10

0

1

x

z

y

1
0

1
1

0
2

0
3

1
4

0
5

1
6

1
7

Each group translates into one term of the SoP form expression

r = (x ∧ z) ∨
(x ∧ ¬y) ∨
(¬x ∧ ¬z)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:
• – The red group spans columns 2 and 3, in row 1; provided x = 1 and z = 1 we specify just those cells, so the expression is x ∧ z. x = 1 restricts us to

columns 2 and 3 (columns 0 and 1 have x = 0) and z = 1 restricts us to row 1 (row 0 has z = 0). Note that the value of y doesn’t matter: cells in the
group hold the value 1 regardless of y.

– The green group spans column 3 and rows 0 and 1; provided x = 1 and y = 0 we specify just those cells, so the expression is x ∧ ¬y. That is, x = 1
and y = 0 restricts us to column 3 (columns 0, 1 and 2 have at least one of x = 0 or y = 1) which is all we need because the group spans all rows.
Note that the value of z doesn’t matter: cells in the group hold the value 1 regardless of z.

– The blue group spans columns 0 and 1, in row 0; provided x = 0 and z = 0 we specify just those cells, so the expression is ¬x∧¬z. x = 0 restricts us
to columns 0 and 1 (columns 2 and 3 have x = 1) and z = 0 restricts us to row 0 (row 1 has z = 1). Note that the value of y doesn’t matter: cells in
the group hold the value 1 regardless of y.

Part 3: general-purpose derivation (9)
Method #2: Karnaugh map

Example

Consider an example 4-input, 2-output function:

w x y z r1 r0
0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 ? ?
0 1 0 0 0 1
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 1 ? ?
1 0 0 0 1 0
1 0 0 1 0 0
1 0 1 0 0 1
1 0 1 1 ? ?
1 1 0 0 ? ?
1 1 0 1 ? ?
1 1 1 0 ? ?
1 1 1 1 ? ?

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:
• – The red group spans columns 2 and 3 in row 0; provided w = 1, y = 0 and z = 0 we specify just those cells, so the expression is w∧¬y∧¬z. That is,

w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 0 and z = 0 restricts us to row 0 (rows 1, 2 and 3 have at least one of
y = 1 or z = 1). Note that the value of x doesn’t matter: cells in the group hold the value 1 regardless of x.

– The green group spans column 1 and rows 2 and 3; provided w = 0, x = 0 and y = 1 we specify just those cells, so the expression is ¬w ∧ ¬x ∧ y.
That is, w = 0 and x = 0 restricts us to column 0 (columns 1, 2 and 3 have at least one of w = 1 or x = 1) and y = 1 restricts us to rows 2 and 3 (rows
0 and 1 have y = 0). Note that the value of z doesn’t matter: cells in the group hold the value 1 regardless of z.

– The blue group spans columns 1 and 2 and rows 1 and 2; provided x = 1 and z = 1 we specify just those cells, so the expression is x ∧ z. That is,
x = 1 restricts us to columns 1 and 2 (columns 0 and 3 have x = 0) and z = 1 restricts us to rows 1 and 2 (rows 0 and 3 have z = 0). Note that the
value of w and y don’t matter: cells in the group hold the value 1 regardless of w and y.

– The magenta group spans columns 1 and 2 in row 0; provided x = 1, y = 0 and z = 0 we specify just those cells, so the expression is x ∧ ¬y ∧ ¬z.
That is, x = 1 restricts us to columns 1 and 2 (columns 0 and 3 have x = 0) and y = 0 and z = 0 restricts us to row 0 (rows 1, 2 and 3 have at least one
of y = 1 or z = 1) Note that the value of w doesn’t matter: cells in the group hold the value 1 regardless of w.

– The yellow group spans column 0 and rows 1 and 2; provided w = 0, x = 0 and z = 1 we specify just those cells, so the expression is ¬w ∧ ¬x ∧ z.
That is, w = 0 and x = 0 restricts us to column 0 (columns 1, 2 and 3 have at least one of w = 1 or x = 1) and y = 1 restricts us to rows 1 and 2 (rows
0 and 1 have y = 0) Note that the value of w doesn’t matter: cells in the group hold the value 1 regardless of w.

– The orange group spans columns 2 and 3 and rows 2 and 3; provided w = 1 and y = 1 we specify just those cells, so the expression is w∧ y. That is,
w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 1 restricts us to rows 2 and 3 (rows 0 and 1 have y = 0). Note that the
value of x and z don’t matter: cells in the group hold the value 1 regardless of x and z.

Part 3: general-purpose derivation (9)
Method #2: Karnaugh map

Example

Consider an example 4-input, 2-output function:

w x y z r1 r0
0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 ? ?
0 1 0 0 0 1
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 1 ? ?
1 0 0 0 1 0
1 0 0 1 0 0
1 0 1 0 0 1
1 0 1 1 ? ?
1 1 0 0 ? ?
1 1 0 1 ? ?
1 1 1 0 ? ?
1 1 1 1 ? ?

00 01 11 10

00

01

11

10

r1

y

w

z

x

0
0

0
1

0
2

1
3

1
4

?
5

0
6

?
7

1
8

0
9

?
10

?
11

0
12

?
13

?
14

?
15

00 01 11 10

00

01

11

10

r0

y

w

z

x

0
0

1
1

1
2

0
3

0
4

?
5

0
6

?
7

0
8

0
9

?
10

?
11

1
12

?
13

?
14

?
15

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:
• – The red group spans columns 2 and 3 in row 0; provided w = 1, y = 0 and z = 0 we specify just those cells, so the expression is w∧¬y∧¬z. That is,

w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 0 and z = 0 restricts us to row 0 (rows 1, 2 and 3 have at least one of
y = 1 or z = 1). Note that the value of x doesn’t matter: cells in the group hold the value 1 regardless of x.

– The green group spans column 1 and rows 2 and 3; provided w = 0, x = 0 and y = 1 we specify just those cells, so the expression is ¬w ∧ ¬x ∧ y.
That is, w = 0 and x = 0 restricts us to column 0 (columns 1, 2 and 3 have at least one of w = 1 or x = 1) and y = 1 restricts us to rows 2 and 3 (rows
0 and 1 have y = 0). Note that the value of z doesn’t matter: cells in the group hold the value 1 regardless of z.

– The blue group spans columns 1 and 2 and rows 1 and 2; provided x = 1 and z = 1 we specify just those cells, so the expression is x ∧ z. That is,
x = 1 restricts us to columns 1 and 2 (columns 0 and 3 have x = 0) and z = 1 restricts us to rows 1 and 2 (rows 0 and 3 have z = 0). Note that the
value of w and y don’t matter: cells in the group hold the value 1 regardless of w and y.

– The magenta group spans columns 1 and 2 in row 0; provided x = 1, y = 0 and z = 0 we specify just those cells, so the expression is x ∧ ¬y ∧ ¬z.
That is, x = 1 restricts us to columns 1 and 2 (columns 0 and 3 have x = 0) and y = 0 and z = 0 restricts us to row 0 (rows 1, 2 and 3 have at least one
of y = 1 or z = 1) Note that the value of w doesn’t matter: cells in the group hold the value 1 regardless of w.

– The yellow group spans column 0 and rows 1 and 2; provided w = 0, x = 0 and z = 1 we specify just those cells, so the expression is ¬w ∧ ¬x ∧ z.
That is, w = 0 and x = 0 restricts us to column 0 (columns 1, 2 and 3 have at least one of w = 1 or x = 1) and y = 1 restricts us to rows 1 and 2 (rows
0 and 1 have y = 0) Note that the value of w doesn’t matter: cells in the group hold the value 1 regardless of w.

– The orange group spans columns 2 and 3 and rows 2 and 3; provided w = 1 and y = 1 we specify just those cells, so the expression is w∧ y. That is,
w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 1 restricts us to rows 2 and 3 (rows 0 and 1 have y = 0). Note that the
value of x and z don’t matter: cells in the group hold the value 1 regardless of x and z.

Part 3: general-purpose derivation (9)
Method #2: Karnaugh map

Example

Consider an example 4-input, 2-output function:

w x y z r1 r0
0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 ? ?
0 1 0 0 0 1
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 1 ? ?
1 0 0 0 1 0
1 0 0 1 0 0
1 0 1 0 0 1
1 0 1 1 ? ?
1 1 0 0 ? ?
1 1 0 1 ? ?
1 1 1 0 ? ?
1 1 1 1 ? ?

00 01 11 10

00

01

11

10

r1

y

w

z

x

0
0

0
1

0
2

1
3

1
4

?
5

0
6

?
7

1
8

0
9

?
10

?
11

0
12

?
13

?
14

?
15

00 01 11 10

00

01

11

10

r0

y

w

z

x

0
0

1
1

1
2

0
3

0
4

?
5

0
6

?
7

0
8

0
9

?
10

?
11

1
12

?
13

?
14

?
15

Each group translates into one term of the SoP form expressions

r1 = (w ∧ ¬y ∧ ¬z)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:
• – The red group spans columns 2 and 3 in row 0; provided w = 1, y = 0 and z = 0 we specify just those cells, so the expression is w∧¬y∧¬z. That is,

w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 0 and z = 0 restricts us to row 0 (rows 1, 2 and 3 have at least one of
y = 1 or z = 1). Note that the value of x doesn’t matter: cells in the group hold the value 1 regardless of x.

– The green group spans column 1 and rows 2 and 3; provided w = 0, x = 0 and y = 1 we specify just those cells, so the expression is ¬w ∧ ¬x ∧ y.
That is, w = 0 and x = 0 restricts us to column 0 (columns 1, 2 and 3 have at least one of w = 1 or x = 1) and y = 1 restricts us to rows 2 and 3 (rows
0 and 1 have y = 0). Note that the value of z doesn’t matter: cells in the group hold the value 1 regardless of z.

– The blue group spans columns 1 and 2 and rows 1 and 2; provided x = 1 and z = 1 we specify just those cells, so the expression is x ∧ z. That is,
x = 1 restricts us to columns 1 and 2 (columns 0 and 3 have x = 0) and z = 1 restricts us to rows 1 and 2 (rows 0 and 3 have z = 0). Note that the
value of w and y don’t matter: cells in the group hold the value 1 regardless of w and y.

– The magenta group spans columns 1 and 2 in row 0; provided x = 1, y = 0 and z = 0 we specify just those cells, so the expression is x ∧ ¬y ∧ ¬z.
That is, x = 1 restricts us to columns 1 and 2 (columns 0 and 3 have x = 0) and y = 0 and z = 0 restricts us to row 0 (rows 1, 2 and 3 have at least one
of y = 1 or z = 1) Note that the value of w doesn’t matter: cells in the group hold the value 1 regardless of w.

– The yellow group spans column 0 and rows 1 and 2; provided w = 0, x = 0 and z = 1 we specify just those cells, so the expression is ¬w ∧ ¬x ∧ z.
That is, w = 0 and x = 0 restricts us to column 0 (columns 1, 2 and 3 have at least one of w = 1 or x = 1) and y = 1 restricts us to rows 1 and 2 (rows
0 and 1 have y = 0) Note that the value of w doesn’t matter: cells in the group hold the value 1 regardless of w.

– The orange group spans columns 2 and 3 and rows 2 and 3; provided w = 1 and y = 1 we specify just those cells, so the expression is w∧ y. That is,
w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 1 restricts us to rows 2 and 3 (rows 0 and 1 have y = 0). Note that the
value of x and z don’t matter: cells in the group hold the value 1 regardless of x and z.

Part 3: general-purpose derivation (9)
Method #2: Karnaugh map

Example

Consider an example 4-input, 2-output function:

w x y z r1 r0
0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 ? ?
0 1 0 0 0 1
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 1 ? ?
1 0 0 0 1 0
1 0 0 1 0 0
1 0 1 0 0 1
1 0 1 1 ? ?
1 1 0 0 ? ?
1 1 0 1 ? ?
1 1 1 0 ? ?
1 1 1 1 ? ?

00 01 11 10

00

01

11

10

r1

y

w

z

x

0
0

0
1

0
2

1
3

1
4

?
5

0
6

?
7

1
8

0
9

?
10

?
11

0
12

?
13

?
14

?
15

00 01 11 10

00

01

11

10

r0

y

w

z

x

0
0

1
1

1
2

0
3

0
4

?
5

0
6

?
7

0
8

0
9

?
10

?
11

1
12

?
13

?
14

?
15

Each group translates into one term of the SoP form expressions

r1 = (w ∧ ¬y ∧ ¬z) ∨
(y ∧ ¬w ∧ ¬x)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:
• – The red group spans columns 2 and 3 in row 0; provided w = 1, y = 0 and z = 0 we specify just those cells, so the expression is w∧¬y∧¬z. That is,

w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 0 and z = 0 restricts us to row 0 (rows 1, 2 and 3 have at least one of
y = 1 or z = 1). Note that the value of x doesn’t matter: cells in the group hold the value 1 regardless of x.

– The green group spans column 1 and rows 2 and 3; provided w = 0, x = 0 and y = 1 we specify just those cells, so the expression is ¬w ∧ ¬x ∧ y.
That is, w = 0 and x = 0 restricts us to column 0 (columns 1, 2 and 3 have at least one of w = 1 or x = 1) and y = 1 restricts us to rows 2 and 3 (rows
0 and 1 have y = 0). Note that the value of z doesn’t matter: cells in the group hold the value 1 regardless of z.

– The blue group spans columns 1 and 2 and rows 1 and 2; provided x = 1 and z = 1 we specify just those cells, so the expression is x ∧ z. That is,
x = 1 restricts us to columns 1 and 2 (columns 0 and 3 have x = 0) and z = 1 restricts us to rows 1 and 2 (rows 0 and 3 have z = 0). Note that the
value of w and y don’t matter: cells in the group hold the value 1 regardless of w and y.

– The magenta group spans columns 1 and 2 in row 0; provided x = 1, y = 0 and z = 0 we specify just those cells, so the expression is x ∧ ¬y ∧ ¬z.
That is, x = 1 restricts us to columns 1 and 2 (columns 0 and 3 have x = 0) and y = 0 and z = 0 restricts us to row 0 (rows 1, 2 and 3 have at least one
of y = 1 or z = 1) Note that the value of w doesn’t matter: cells in the group hold the value 1 regardless of w.

– The yellow group spans column 0 and rows 1 and 2; provided w = 0, x = 0 and z = 1 we specify just those cells, so the expression is ¬w ∧ ¬x ∧ z.
That is, w = 0 and x = 0 restricts us to column 0 (columns 1, 2 and 3 have at least one of w = 1 or x = 1) and y = 1 restricts us to rows 1 and 2 (rows
0 and 1 have y = 0) Note that the value of w doesn’t matter: cells in the group hold the value 1 regardless of w.

– The orange group spans columns 2 and 3 and rows 2 and 3; provided w = 1 and y = 1 we specify just those cells, so the expression is w∧ y. That is,
w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 1 restricts us to rows 2 and 3 (rows 0 and 1 have y = 0). Note that the
value of x and z don’t matter: cells in the group hold the value 1 regardless of x and z.

Part 3: general-purpose derivation (9)
Method #2: Karnaugh map

Example

Consider an example 4-input, 2-output function:

w x y z r1 r0
0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 ? ?
0 1 0 0 0 1
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 1 ? ?
1 0 0 0 1 0
1 0 0 1 0 0
1 0 1 0 0 1
1 0 1 1 ? ?
1 1 0 0 ? ?
1 1 0 1 ? ?
1 1 1 0 ? ?
1 1 1 1 ? ?

00 01 11 10

00

01

11

10

r1

y

w

z

x

0
0

0
1

0
2

1
3

1
4

?
5

0
6

?
7

1
8

0
9

?
10

?
11

0
12

?
13

?
14

?
15

00 01 11 10

00

01

11

10

r0

y

w

z

x

0
0

1
1

1
2

0
3

0
4

?
5

0
6

?
7

0
8

0
9

?
10

?
11

1
12

?
13

?
14

?
15

Each group translates into one term of the SoP form expressions

r1 = (w ∧ ¬y ∧ ¬z) ∨
(y ∧ ¬w ∧ ¬x) ∨
(x ∧ z)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:
• – The red group spans columns 2 and 3 in row 0; provided w = 1, y = 0 and z = 0 we specify just those cells, so the expression is w∧¬y∧¬z. That is,

w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 0 and z = 0 restricts us to row 0 (rows 1, 2 and 3 have at least one of
y = 1 or z = 1). Note that the value of x doesn’t matter: cells in the group hold the value 1 regardless of x.

– The green group spans column 1 and rows 2 and 3; provided w = 0, x = 0 and y = 1 we specify just those cells, so the expression is ¬w ∧ ¬x ∧ y.
That is, w = 0 and x = 0 restricts us to column 0 (columns 1, 2 and 3 have at least one of w = 1 or x = 1) and y = 1 restricts us to rows 2 and 3 (rows
0 and 1 have y = 0). Note that the value of z doesn’t matter: cells in the group hold the value 1 regardless of z.

– The blue group spans columns 1 and 2 and rows 1 and 2; provided x = 1 and z = 1 we specify just those cells, so the expression is x ∧ z. That is,
x = 1 restricts us to columns 1 and 2 (columns 0 and 3 have x = 0) and z = 1 restricts us to rows 1 and 2 (rows 0 and 3 have z = 0). Note that the
value of w and y don’t matter: cells in the group hold the value 1 regardless of w and y.

– The magenta group spans columns 1 and 2 in row 0; provided x = 1, y = 0 and z = 0 we specify just those cells, so the expression is x ∧ ¬y ∧ ¬z.
That is, x = 1 restricts us to columns 1 and 2 (columns 0 and 3 have x = 0) and y = 0 and z = 0 restricts us to row 0 (rows 1, 2 and 3 have at least one
of y = 1 or z = 1) Note that the value of w doesn’t matter: cells in the group hold the value 1 regardless of w.

– The yellow group spans column 0 and rows 1 and 2; provided w = 0, x = 0 and z = 1 we specify just those cells, so the expression is ¬w ∧ ¬x ∧ z.
That is, w = 0 and x = 0 restricts us to column 0 (columns 1, 2 and 3 have at least one of w = 1 or x = 1) and y = 1 restricts us to rows 1 and 2 (rows
0 and 1 have y = 0) Note that the value of w doesn’t matter: cells in the group hold the value 1 regardless of w.

– The orange group spans columns 2 and 3 and rows 2 and 3; provided w = 1 and y = 1 we specify just those cells, so the expression is w∧ y. That is,
w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 1 restricts us to rows 2 and 3 (rows 0 and 1 have y = 0). Note that the
value of x and z don’t matter: cells in the group hold the value 1 regardless of x and z.

Part 3: general-purpose derivation (9)
Method #2: Karnaugh map

Example

Consider an example 4-input, 2-output function:

w x y z r1 r0
0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 ? ?
0 1 0 0 0 1
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 1 ? ?
1 0 0 0 1 0
1 0 0 1 0 0
1 0 1 0 0 1
1 0 1 1 ? ?
1 1 0 0 ? ?
1 1 0 1 ? ?
1 1 1 0 ? ?
1 1 1 1 ? ?

00 01 11 10

00

01

11

10

r1

y

w

z

x

0
0

0
1

0
2

1
3

1
4

?
5

0
6

?
7

1
8

0
9

?
10

?
11

0
12

?
13

?
14

?
15

00 01 11 10

00

01

11

10

r0

y

w

z

x

0
0

1
1

1
2

0
3

0
4

?
5

0
6

?
7

0
8

0
9

?
10

?
11

1
12

?
13

?
14

?
15

Each group translates into one term of the SoP form expressions

r1 = (w ∧ ¬y ∧ ¬z) ∨
(y ∧ ¬w ∧ ¬x) ∨
(x ∧ z)

r0 = (x ∧ ¬y ∧ ¬z)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:
• – The red group spans columns 2 and 3 in row 0; provided w = 1, y = 0 and z = 0 we specify just those cells, so the expression is w∧¬y∧¬z. That is,

w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 0 and z = 0 restricts us to row 0 (rows 1, 2 and 3 have at least one of
y = 1 or z = 1). Note that the value of x doesn’t matter: cells in the group hold the value 1 regardless of x.

– The green group spans column 1 and rows 2 and 3; provided w = 0, x = 0 and y = 1 we specify just those cells, so the expression is ¬w ∧ ¬x ∧ y.
That is, w = 0 and x = 0 restricts us to column 0 (columns 1, 2 and 3 have at least one of w = 1 or x = 1) and y = 1 restricts us to rows 2 and 3 (rows
0 and 1 have y = 0). Note that the value of z doesn’t matter: cells in the group hold the value 1 regardless of z.

– The blue group spans columns 1 and 2 and rows 1 and 2; provided x = 1 and z = 1 we specify just those cells, so the expression is x ∧ z. That is,
x = 1 restricts us to columns 1 and 2 (columns 0 and 3 have x = 0) and z = 1 restricts us to rows 1 and 2 (rows 0 and 3 have z = 0). Note that the
value of w and y don’t matter: cells in the group hold the value 1 regardless of w and y.

– The magenta group spans columns 1 and 2 in row 0; provided x = 1, y = 0 and z = 0 we specify just those cells, so the expression is x ∧ ¬y ∧ ¬z.
That is, x = 1 restricts us to columns 1 and 2 (columns 0 and 3 have x = 0) and y = 0 and z = 0 restricts us to row 0 (rows 1, 2 and 3 have at least one
of y = 1 or z = 1) Note that the value of w doesn’t matter: cells in the group hold the value 1 regardless of w.

– The yellow group spans column 0 and rows 1 and 2; provided w = 0, x = 0 and z = 1 we specify just those cells, so the expression is ¬w ∧ ¬x ∧ z.
That is, w = 0 and x = 0 restricts us to column 0 (columns 1, 2 and 3 have at least one of w = 1 or x = 1) and y = 1 restricts us to rows 1 and 2 (rows
0 and 1 have y = 0) Note that the value of w doesn’t matter: cells in the group hold the value 1 regardless of w.

– The orange group spans columns 2 and 3 and rows 2 and 3; provided w = 1 and y = 1 we specify just those cells, so the expression is w∧ y. That is,
w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 1 restricts us to rows 2 and 3 (rows 0 and 1 have y = 0). Note that the
value of x and z don’t matter: cells in the group hold the value 1 regardless of x and z.

Part 3: general-purpose derivation (9)
Method #2: Karnaugh map

Example

Consider an example 4-input, 2-output function:

w x y z r1 r0
0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 ? ?
0 1 0 0 0 1
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 1 ? ?
1 0 0 0 1 0
1 0 0 1 0 0
1 0 1 0 0 1
1 0 1 1 ? ?
1 1 0 0 ? ?
1 1 0 1 ? ?
1 1 1 0 ? ?
1 1 1 1 ? ?

00 01 11 10

00

01

11

10

r1

y

w

z

x

0
0

0
1

0
2

1
3

1
4

?
5

0
6

?
7

1
8

0
9

?
10

?
11

0
12

?
13

?
14

?
15

00 01 11 10

00

01

11

10

r0

y

w

z

x

0
0

1
1

1
2

0
3

0
4

?
5

0
6

?
7

0
8

0
9

?
10

?
11

1
12

?
13

?
14

?
15

Each group translates into one term of the SoP form expressions

r1 = (w ∧ ¬y ∧ ¬z) ∨
(y ∧ ¬w ∧ ¬x) ∨
(x ∧ z)

r0 = (x ∧ ¬y ∧ ¬z) ∨
(z ∧ ¬w ∧ ¬x)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:
• – The red group spans columns 2 and 3 in row 0; provided w = 1, y = 0 and z = 0 we specify just those cells, so the expression is w∧¬y∧¬z. That is,

w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 0 and z = 0 restricts us to row 0 (rows 1, 2 and 3 have at least one of
y = 1 or z = 1). Note that the value of x doesn’t matter: cells in the group hold the value 1 regardless of x.

– The green group spans column 1 and rows 2 and 3; provided w = 0, x = 0 and y = 1 we specify just those cells, so the expression is ¬w ∧ ¬x ∧ y.
That is, w = 0 and x = 0 restricts us to column 0 (columns 1, 2 and 3 have at least one of w = 1 or x = 1) and y = 1 restricts us to rows 2 and 3 (rows
0 and 1 have y = 0). Note that the value of z doesn’t matter: cells in the group hold the value 1 regardless of z.

– The blue group spans columns 1 and 2 and rows 1 and 2; provided x = 1 and z = 1 we specify just those cells, so the expression is x ∧ z. That is,
x = 1 restricts us to columns 1 and 2 (columns 0 and 3 have x = 0) and z = 1 restricts us to rows 1 and 2 (rows 0 and 3 have z = 0). Note that the
value of w and y don’t matter: cells in the group hold the value 1 regardless of w and y.

– The magenta group spans columns 1 and 2 in row 0; provided x = 1, y = 0 and z = 0 we specify just those cells, so the expression is x ∧ ¬y ∧ ¬z.
That is, x = 1 restricts us to columns 1 and 2 (columns 0 and 3 have x = 0) and y = 0 and z = 0 restricts us to row 0 (rows 1, 2 and 3 have at least one
of y = 1 or z = 1) Note that the value of w doesn’t matter: cells in the group hold the value 1 regardless of w.

– The yellow group spans column 0 and rows 1 and 2; provided w = 0, x = 0 and z = 1 we specify just those cells, so the expression is ¬w ∧ ¬x ∧ z.
That is, w = 0 and x = 0 restricts us to column 0 (columns 1, 2 and 3 have at least one of w = 1 or x = 1) and y = 1 restricts us to rows 1 and 2 (rows
0 and 1 have y = 0) Note that the value of w doesn’t matter: cells in the group hold the value 1 regardless of w.

– The orange group spans columns 2 and 3 and rows 2 and 3; provided w = 1 and y = 1 we specify just those cells, so the expression is w∧ y. That is,
w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 1 restricts us to rows 2 and 3 (rows 0 and 1 have y = 0). Note that the
value of x and z don’t matter: cells in the group hold the value 1 regardless of x and z.

Part 3: general-purpose derivation (9)
Method #2: Karnaugh map

Example

Consider an example 4-input, 2-output function:

w x y z r1 r0
0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 ? ?
0 1 0 0 0 1
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 1 ? ?
1 0 0 0 1 0
1 0 0 1 0 0
1 0 1 0 0 1
1 0 1 1 ? ?
1 1 0 0 ? ?
1 1 0 1 ? ?
1 1 1 0 ? ?
1 1 1 1 ? ?

00 01 11 10

00

01

11

10

r1

y

w

z

x

0
0

0
1

0
2

1
3

1
4

?
5

0
6

?
7

1
8

0
9

?
10

?
11

0
12

?
13

?
14

?
15

00 01 11 10

00

01

11

10

r0

y

w

z

x

0
0

1
1

1
2

0
3

0
4

?
5

0
6

?
7

0
8

0
9

?
10

?
11

1
12

?
13

?
14

?
15

Each group translates into one term of the SoP form expressions

r1 = (w ∧ ¬y ∧ ¬z) ∨
(y ∧ ¬w ∧ ¬x) ∨
(x ∧ z)

r0 = (x ∧ ¬y ∧ ¬z) ∨
(z ∧ ¬w ∧ ¬x) ∨
(w ∧ y)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:
• – The red group spans columns 2 and 3 in row 0; provided w = 1, y = 0 and z = 0 we specify just those cells, so the expression is w∧¬y∧¬z. That is,

w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 0 and z = 0 restricts us to row 0 (rows 1, 2 and 3 have at least one of
y = 1 or z = 1). Note that the value of x doesn’t matter: cells in the group hold the value 1 regardless of x.

– The green group spans column 1 and rows 2 and 3; provided w = 0, x = 0 and y = 1 we specify just those cells, so the expression is ¬w ∧ ¬x ∧ y.
That is, w = 0 and x = 0 restricts us to column 0 (columns 1, 2 and 3 have at least one of w = 1 or x = 1) and y = 1 restricts us to rows 2 and 3 (rows
0 and 1 have y = 0). Note that the value of z doesn’t matter: cells in the group hold the value 1 regardless of z.

– The blue group spans columns 1 and 2 and rows 1 and 2; provided x = 1 and z = 1 we specify just those cells, so the expression is x ∧ z. That is,
x = 1 restricts us to columns 1 and 2 (columns 0 and 3 have x = 0) and z = 1 restricts us to rows 1 and 2 (rows 0 and 3 have z = 0). Note that the
value of w and y don’t matter: cells in the group hold the value 1 regardless of w and y.

– The magenta group spans columns 1 and 2 in row 0; provided x = 1, y = 0 and z = 0 we specify just those cells, so the expression is x ∧ ¬y ∧ ¬z.
That is, x = 1 restricts us to columns 1 and 2 (columns 0 and 3 have x = 0) and y = 0 and z = 0 restricts us to row 0 (rows 1, 2 and 3 have at least one
of y = 1 or z = 1) Note that the value of w doesn’t matter: cells in the group hold the value 1 regardless of w.

– The yellow group spans column 0 and rows 1 and 2; provided w = 0, x = 0 and z = 1 we specify just those cells, so the expression is ¬w ∧ ¬x ∧ z.
That is, w = 0 and x = 0 restricts us to column 0 (columns 1, 2 and 3 have at least one of w = 1 or x = 1) and y = 1 restricts us to rows 1 and 2 (rows
0 and 1 have y = 0) Note that the value of w doesn’t matter: cells in the group hold the value 1 regardless of w.

– The orange group spans columns 2 and 3 and rows 2 and 3; provided w = 1 and y = 1 we specify just those cells, so the expression is w∧ y. That is,
w = 1 restricts us to columns 2 and 3 (columns 0 and 1 have w = 0) and y = 1 restricts us to rows 2 and 3 (rows 0 and 1 have y = 0). Note that the
value of x and z don’t matter: cells in the group hold the value 1 regardless of x and z.

Conclusions

▶ Take away points:
1. There are a huge number of challenges, even with (relatively) simple problems, e.g.,
▶ how do we describe what the design should do?
▶ how do we structure the design?
▶ what sort of standard cell library do we use?
▶ do we aim for the fewest gates?
▶ do we aim for shortest critical path?
▶ how do we cope with propagation delay and fan-out?
▶ ...

2. The three themes we’ve covered, i.e.,
▶ high-level design patterns,
▶ low-level, mechanical derivation and optimisation of Boolean expressions,
▶ building-block components,
allows us to address such challenges: in combination, they support development of effective
(combinatorial) design and implementation.

3. In many cases, use of appropriate Electronic Design Automation (EDA) tools can provide
(semi-)automatic solutions.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Additional Reading

▶ Wikipedia: Combinational logic. url: https://en.wikipedia.org/wiki/Combinational_logic.
▶ D. Page. “Chapter 2: Basics of digital logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.
▶ W. Stallings. “Chapter 11: Digital logic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.
▶ A.S. Tanenbaum and T. Austin. “Section 3.2.2: Combinatorial circuits”. In: Structured Computer Organisation. 6th ed. Prentice

Hall, 2012.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

References

[1] Wikipedia: Combinational logic. url: https://en.wikipedia.org/wiki/Combinational_logic (see p. 125).

[2] D. Page. “Chapter 2: Basics of digital logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009 (see
p. 125).

[3] W. Stallings. “Chapter 11: Digital logic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013 (see p. 125).

[4] A.S. Tanenbaum and T. Austin. “Section 3.2.2: Combinatorial circuits”. In: Structured Computer Organisation. 6th ed. Prentice
Hall, 2012 (see p. 125).

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

