Computer Architecture

Daniel Page

Department of Computer Science,
University Of Bristol,
Merchant Venturers Building,
Woodland Road,

Bristol, BS8 1UB. UK.
({csdsp@bristol.ac.uk)

September 5, 2025

Keep in mind there are fwo PDFs available (of which this is the latter):
1. a PDF of examinable material used as lecture slides, and
2. a PDF of non-examinable, extra material:

> the associated notes page may be pre-populated with extra, written explaination of
material covered in lecture(s), plus

> anything with a “grey’ed out” header/footer represents extra material which is
useful and/or interesting but out of scope (and hence not covered).

Notes:

Notes:

COMS10015 lecture: week #4

> Problem: design a cyclic n-bit counter, i.e., a component whose output r steps
through values

0,1,...,2"-1,0,1,...
but is otherwise uncontrolled (or “free running”).

© Daniel P

Computer Architecture

COMS10015 lecture: week #4

git #b282dbb9 @ 2025-09-03

> Problem: design a cyclic n-bit counter, i.e., a component whose output r steps
through values

0,1,...,2"-1,0,1,...
but is otherwise uncontrolled (or “free running”).

ci co

> (Potential) solution: we already have an n-bit adder that can compute x + y, i.e,,

ci ci co ‘¢ co- >{ci cot—> CO

X X >x : x

y s ry s Py s ry
"1 . .

o O o

= > ~

T
=
=

S

- =
= >

1’14—‘

Yn-1

T
=
~

Notes:

Notes:

COMS10015 lecture: week #4

Notes:
> Problem: design a cyclic n-bit counter, i.e., a component whose output r steps
through values

0,1,...,2"-1,0,1,...

but is otherwise uncontrolled (or “free running”).

> (Potential) solution: we already have an n-bit adder that can compute x + y, i.e,,

0 ¢ co ¢ co ‘ci co;— >ci cot—>
x x . > X x
’—>y s ’—fy s Py s "’y s
— —‘ o —‘) : o
*
! ! ;
o ~ —
b ~ |
=
~

so we’ll just have it compute r «— r + 1 over and over again.

© Daniel Page (

Bk University of

Computer Architecture

ME] BRISTOL

git #b282dbb9 @ 2025-09-03

COMS10015 lecture: week #4

Notes:
> Problem: design a cyclic n-bit counter, i.e., a component whose output r steps
through values

0,1,...,2"-1,0,1,...
but is otherwise uncontrolled (or “free running”).

> (Potential) solution: we already have an n-bit adder that can compute x + y, i.e,,

0

co

¢ co ‘ci
X > X
y

Dt Il R P
A

co:- >ci cot—>

ci
x
y

so we’ll just have it compute r «<— r + 1 over and over again;

> (New) problem: this won’t work, because, for example,
1. we can’t initialise the value, and

2. we don't let the output of each full-adder settle before it’s used again as an input.

COMS10015 lecture: week #4

> (Actual) problem: combinatorial logic has some limitations, namely we can't
> control when a design computes some output (it does so continuously), nor
> remember the output when produced.
> (Actual) solution, and so agenda: sequential logic design, where, crucially,
> the output is a function of the input plus any state (e.g., stemming from previous inputs),
> computation is viewed as being discrete, i.e., step-by-step,

via coverage of
1. synchronisation of components ~+ clocks

2. components that maintain state ~> latches, flip-flops, and registers
3. mechanism for computational steps ~» structure plus strategy

© Daniel Page (EA University of

Computer Architecture ME] BRISTOL git #b282dbb9 @ 2025-09-03

Part 1: clocks (1)

> Concept: a clock is a signal that oscillates (or alternates) between 1 and 0.

Notes:

Definition
positive level negative level
R S e e B R
I I
clock cycle negative edge positive edge
where

> the clock signal is typically either

1. an input which needs to be supplied externally, or
2. produced internally by a clock generator.

> we use features of the clock to

1. trigger events (e.g., steps in some sequence of computations), and/or
2. synchronise components.

> the clock frequency is how many clock cycles happen per-second; it must be

> fast enough to to satisfy the design goals, yet
> slow enough to cope with the critical path of a given step.

Notes:

Part 1: clocks (2)

Notes:
> Concept: an n-phase clock is distributed as n separate signals along n separate wires.

Definition

o] [

51 52 53 54

where for n = 2, for example,

> features in a 1-phase clock (e.g., cycle, levels and edges), generalise to ®@; and @,
> there is a guarantee that positive levels of ®; and ®, don’t overlap, and

> the behaviour is parameterisable by altering 0;.

© Daniel Page (

Computer Architecture 2 git # b282dbb9 @ 2025-09-03

Part 2: latches, flip-flops, and register (1)

Concepts
Notes:

Definition

A bistable component can exist in two stable states, i.e., 0 or 1: at a given point, it can
> retain some current state Q (which can also be read as an output), and
> be updated to some next state Q" (which is provided as an input)

under control of an enable signal en.

Definition

The behaviour of a bistable is described by an excitation table, and sometimes expressed using a characteristic equation:
versus, e.g., a truth table, the idea is to capture the notion of time (cf. current and next).

Definition

A given bistable component controlled by an enable signal en can be

1. level-triggered, i.e., updated by a given level on en, or

2. edge-triggered, i.e., updated by a given edge on en.

The former type is termed a latch, whereas the latter type is termed a flip-flop.

mputer Arch

Part 2: latches, flip-flops, and register (2)

Concepts

Definition

Definition

An “SR” latch/flip-flop component has two inputs S (or
set) and R (or reset):

> when enabled, if

> S =0and R = 0, the component retains Q,

> S =1andR =0, the component updates to Q = 1,
> S =0and R = 1, the component updates to Q = 0,
> S =1and R = 1, the component is meta-stable

but

> when not enabled, the component is in storage mode
so retains Q.

The behaviour of such a component is specified by

Q' =SV(=RAQ),

and/or
Current Next
S R|Q Q|Q -~
0O 0] O0 1 0 1
0 0 1 0 1 0
0 1 ? ? 0 1
1 0 ? ? 1 0
1 1 ? ? ? ?

A “D” latch/flip-flop component has one input D:
> when enabled, if

1,
0,

> D =1, the component updates to Q =
> D =0, the component updates to Q =

but

> when not enabled, the component is in storage mode
so retains Q.

The behaviour of such a component is specified by

Q =D,
and/or
Current Next
D|IQ Q| Q -

0 ? ? 0 1
1 ? ? 1 0

© Daniel Page (

Computer Architecture

Part 2: latches, flip-flops, and register (3)

Concepts

git # b282dbb9 @ 2025-09-03

Notes:

Definition

Definition

A “JK” latch/flip-flop component has two inputs] (or set)
and K (or reset):

> when enabled, if

>] =0and K = 0, the component retains Q,
>] =1and K = 0, the component updates to Q = 1,
> J=0and K = 1, the component updates to Q = 0,
>] =1and K = 1, the component toggles Q,

but

> when not enabled, the component is in storage mode
so retains Q.

The behaviour of such a component is specified by

Q=0A-QV(=KArQ),

and/or
Current Next
J] K|Q Q| Q -
0 010 1 0 1
0 0 1 0 1 0
0 1 ? ? 0 1
1 0 ? ? 1 0
1 1 0 1 1 0
1 1 1 0 0 1

A “T” latch/flip-flop component has one input T:
> when enabled, if

> T =0, the component retains Q,
> T =1, the component toggles Q,

but

> when not enabled, the component is in storage mode
so retains Q.

The behaviour of such a component is specified by

Q=Tr-QV(ETAQ=Ta&Q,

and/or
Current Next
T|1Q Q|Q -~
0 0 1 0 1
0 1 0 1 0
110 1 1 0
1|1 0 0 1

mputer Archi

Notes:

Part 2: latches, flip-flops, and register (4)
Design(s)

> Problem #1: we need an initial design for, e.g., an SR latch.

> Solution: use two cross-coupled NOR gates.

Circuit
S SVQ 0
R RV —-Q Q

Computer Architecture

Part 2: latches, flip-flops, and register (4)
Design(s)

> Problem #1: we need an initial design for, e.g., an SR latch.

> Solution: use two cross-coupled NOR gates.

Circuit

Notes:

Notes:

Part 2: latches, flip-flops, and register (5)

Design(s)
Notes:
> Problem #2: we’d like to control when updates occur.

> Solution: gate S and R, i.e,,

Circuit

noting that
> the same internal latch is evident, now with inputs S’ and R’,
> the external latch is such that

en=0 = § =SAen=SA0=0
= R =RAen=RA0=0
en=1 S =SAen=SA1=S

R'=RAen=RA1=R

I}

© Daniel Page (BIKE University of

M BRISTOL git # b282dbb9 @ 2025-09-03
8

Computer Architecture

Part 2: latches, flip-flops, and register (6)

Design(s)
Notes:

> Problem #3: we’d like to avoid the issue of meta-stability.
> Solution: force R = =S so we get either S=0and R=1,orS=1and R =0.

Circuit

Part 2: latches, flip-flops, and register (7)

Design(s)

Notes:
> Problem #4: we’d like an edge-triggered, rather than level-triggered design.
> Solution #1: “cheat” by approximation of an edge via a pulse generator.

Circuit Example

The pulse generator component Imagine we set the delay of
t 1. aNOT gate to 10ns, and

X @37 r 2. an AND gate to 20ns

and then flip en = 0 to en = 1 and back again:

is attached to the previous SR latch to give:
X — R
t

b -Q P
en 1} [2) 2] 2] 1] 1] 1]
=1 =1 [c =1 =1 =1
o o o o je} o o
Q — o o <+ n O

The result is a “pulse” matching the delay of a NOT gate
that approximates an edge because it is so short.

© Daniel Page ()
i o git #b282dbb9 @ 2025-09-03

Computer At

Part 2: latches, flip-flops, and register (8)

Design(s)
Notes:
. y
> PrOblem #4 we d llke an edge_trlggered/ rather than level_trlggered deSIgn- * Historically, the terms master and slave have often been used in place of primary and secondary. Per [8, Section 1.1], however, and
despite some debate, the former are typically viewed as inappropriate now. We deliberately use the latter, therefore, noting that doing

so may imply a need to translate the former when aligning with other literature.

> Solution #2: adopt a primary-secondary organisation of fwo latches, i.e.,

Circuit

where the idea is to split a clock cycle into to half-cycles:

en=1 = primary latch is enabled
en=0 = secondary latch is enabled

meaning
1. whileen =1, i.e., positive level on en, primary latch stores input, and
2. when en = 0, i.e., negative edge on en, secondary latch stores output of primary latch,

and hence we get edge-triggered behaviour.

Part 2: latches, flip-flops, and register (9)

Abstraction, via symbols

Definition Definition
> A D-type latch is described symbolically as > A D-type flip-flop is described symbolically as
4D ot 4D oFf
~en o en
-QF -QF
> The associated behaviour is, for example, > The associated behaviour is, for example,
en ' ' ' ' ' en f
Q I v Iy e I T——-
e e e b I
to t ty t3 ty ts to t ty
such that updates are level-triggered by en. such that updates are edge-triggered by en.

© Daniel Page (

Computer A c S git # b282dbb9 @ 2025-09-03

Part 2: latches, flip-flops, and register (10)

Aggregation, via registers

> Concept: we typically combine latches (resp. flip-flops) into registers, i.e.,

Circuit (latch version)

—

a
DQJ

-Q

s

’

=
2
v
s
=
n-1
=
=

e S o a
L»D QJ L. D QJ >D Q-
TM -Q T -Q -Q
en . .
where

> there are n instances, so we can store an n-bit value: the i-th instance stores the i-th bit,
> access is conceptually straightforward:

read from register : use current value Q
write toregister : drive next value onto ', then trigger update via en

> all instance share same en, so access to them is synchronised.

Notes:

Notes:

Part 2: latches, flip-flops, and register (10)

Aggregation, via registers

> Concept: we typically combine latches (resp. flip-flops) into registers, i.e.,

Circuit (flip-flop version)

—

a
DQ—T

-Q

=} —

’

jr n—1

o S o S
L' D Q —T L' D Q —T »D Q-
en en > en
T -Q F -Q -Q
en . .
where

> there are n instances, so we can store an n-bit value: the i-th instance stores the i-th bit,
> access is conceptually straightforward:

read from register : use current value Q
write toregister : drive next value onto ', then trigger update via en

> all instance share same en, so access to them is synchronised.

© Daniel Page (

Computer A c S git # b282dbb9 @ 2025-09-03

Part 3: structure plus strategy (1)

Outcome: latch version, 2-phase clock

Design (latch version)

Latch based ~> Output
register(s) @,

- > Output
Combinatorial logic

Latch based -»> Output
register(s) @,

Notes:

Notes:

Part 3: structure plus strategy (2)

Outcome: latch version, 2-phase clock

Circuit (latch version)
D Q D Q >D Q D Q
en en »en en
-Q -Q -Q -Q
@, .
rst —|>o j
0 i ¢ c ¢ co
X X > X
y s y s >y s
- (=1 (=}
D Q D Q »D Q- D Q
en en >.en en
-Q -Q -Q -Q
Dy
£ e

Tn-1

Computer Architecture

Part 3: structure plus strategy (3)

Outcome: latch version, 2-phase clock

input latches
reset
re0

—_—

[]

Dy

input latches input latches
store store
rer rer

—_—

—_—

Notes:

git # b282dbb9 @

Notes:

rer+1

adder adder
computes computes
r+1 r+1
@ | [[[[
N —_— [
output latches output latches o
store store
rer+1

Part 3: structure plus strategy (4)

Outcome: flip-flop version, 1-phase clock
Notes:
Design (flip-flop version)
]_nput RSP . . Lt Output
Combinatorial logic
Flip-flop based > Output
register(s) Clock
© Daniel Page (
Computer . git # b282dbb9 @ 2025-09-03
Part 3: structure plus strategy (5)
Outcome: flip-flop version, 1-phase clock
Notes:

Circuit (flip-flop version)

rst—1>0
0 ¢ co i co
x >x
y s >y s
— (=}
»D Q .
a; >l

clk

o
rn
Tn-1

Part 3: structure plus strategy (6)

Outcome: flip-flop version, 1-phase clock

adder adder
computes computes
r+1 r+1

o s I s Y oy O
[A |

flip-flops flip-flops flip-flops
reset update update
r<0 rer+1 rer+1

EAE University of

7 T
nputer Architecture B} BRISTOL git #b282dbb9 @ 2025

Conclusions

> Take away points:
1. Sequential logic design is typically hard(er) to understand (at first) than combinatorial logic
design: invest some effort to address this now!
2. The main concept and challenge is time:
> this goes beyond time in the sense of delay,
> the goal is step-by-step, controlled (versus continuous, uncontrolled) computation,
> we need to understand and manage, e.g., with parallelism and synchronisation.

Notes:

Notes:

Conclusions

Notes:

> Take away points:

3. There is at least one higher-level design principle evident: we often see
> a data-path, of computational and/or storage components, and
> a control-path, that tells components in the data-path what to do and when to do it,
although the counter control-path is (very) simple.
4. The next step is to formalise this, allowing solution of more complex problems, e.g., through
more complex forms of control.

© Daniel Page (

Computer Architecture ait# b282dbb9 @ 2

Additional Reading

Notes:

Wikipedia: Sequential logic. urL: https://en.wikipedia.org/wiki/Sequential_logic.

D. Page. “Chapter 2: Basics of digital logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.

W. Stallings. “Chapter 11: Digital logic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.

A.S. Tanenbaum and T. Austin. “Section 3.2.2: Clocks”. In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012.
A.S. Tanenbaum and T. Austin. “Section 3.3.4: Latches”. In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012.
A.S. Tanenbaum and T. Austin. “Section 3.3.4: Flip-flops”. In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012.

>
>
>
>
>
>
>

A.S. Tanenbaum and T. Austin. “Section 3.3.4: Registers”. In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012.

References

[3]
[41

151

Wikipedia: Sequential logic. urL: https://en.wikipedia.org/wiki/Sequential_logic (see p. 59).

D. Page. “Chapter 2: Basics of digital logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009 (see
p- 59).

W. Stallings. “Chapter 11: Digital logic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013 (see p. 59).

A.S. Tanenbaum and T. Austin. “Section 3.2.2: Clocks”. In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012 (see
p- 59).

A.S. Tanenbaum and T. Austin. “Section 3.3.4: Flip-flops”. In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012 (see
p- 59).

A.S. Tanenbaum and T. Austin. “Section 3.3.4: Latches”. In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012 (see
p-59).

A.S. Tanenbaum and T. Austin. “Section 3.3.4: Registers”. In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012 (see
p-59).

M. Knodel and N. ten Oever. Terminology, Power and Oppressive Language. Internet Engineering Task Force (IETF) Internet
Draft. 2018. urL: https://tools.ietf.org/id/draft-knodel-terminology-00.html (see p. 36).

© Daniel Page (

Computer Architecture ait# b282dbb9 @ 2

Notes:

