
COMS10015 lecture: week #4

▶ Problem: design a cyclic n-bit counter, i.e., a component whose output r steps

through values

0, 1, . . . , 2n − 1, 0, 1, . . .

but is otherwise uncontrolled (or “free running”).
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through values

0, 1, . . . , 2n − 1, 0, 1, . . .

but is otherwise uncontrolled (or “free running”).

▶ (Potential) solution: we already have an n-bit adder that can compute x + y, i.e.,
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so we’ll just have it compute r← r + 1 over and over again.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


COMS10015 lecture: week #4

▶ Problem: design a cyclic n-bit counter, i.e., a component whose output r steps

through values

0, 1, . . . , 2n − 1, 0, 1, . . .

but is otherwise uncontrolled (or “free running”).

▶ (Potential) solution: we already have an n-bit adder that can compute x + y, i.e.,

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

0

1 0 0 0

r 0 r 1

r n
−

1

so we’ll just have it compute r← r + 1 over and over again;

▶ (New) problem: this won’t work, because, for example,

1. we can’t initialise the value, and

2. we don’t let the output of each full-adder settle before it’s used again as an input.
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COMS10015 lecture: week #4

▶ (Actual) problem: combinatorial logic has some limitations, namely we can’t

▶ control when a design computes some output (it does so continuously), nor

▶ remember the output when produced.

▶ (Actual) solution, and so agenda: sequential logic design, where, crucially,

▶ the output is a function of the input plus any state (e.g., stemming from previous inputs),

▶ computation is viewed as being discrete, i.e., step-by-step,

via coverage of

1. synchronisation of components ; clocks

2. components that maintain state ; latches, flip-flops, and registers

3. mechanism for computational steps ; structure plus strategy
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Part 1: clocks (1)

▶ Concept: a clock is a signal that oscillates (or alternates) between 1 and 0.

Definition

Pp

positive level negative level

negative edge positive edgeclock cycle

where

▶ the clock signal is typically either

1. an input which needs to be supplied externally, or

2. produced internally by a clock generator.
▶ we use features of the clock to

1. trigger events (e.g., steps in some sequence of computations), and/or

2. synchronise components.

▶ the clock frequency is how many clock cycles happen per-second; it must be

▶ fast enough to to satisfy the design goals, yet

▶ slow enough to cope with the critical path of a given step.
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Part 1: clocks (2)

▶ Concept: an n-phase clock is distributed as n separate signals along n separate wires.

Definition

Pp

Φ2

Φ1

δ1 δ2 δ3 δ4

where for n = 2, for example,

▶ features in a 1-phase clock (e.g., cycle, levels and edges), generalise to Φ1 and Φ2,

▶ there is a guarantee that positive levels of Φ1 and Φ2 don’t overlap, and

▶ the behaviour is parameterisable by altering 𝛿i.
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Part 2: latches, flip-flops, and register (1)

Concepts

Definition

Pp

A bistable component can exist in two stable states, i.e., 0 or 1: at a given point, it can

▶ retain some current state Q (which can also be read as an output), and
▶ be updated to some next state Q′ (which is provided as an input)

under control of an enable signal en.

Definition

Pp

The behaviour of a bistable is described by an excitation table, and sometimes expressed using a characteristic equation:

versus, e.g., a truth table, the idea is to capture the notion of time (cf. current and next).

Definition

Pp

A given bistable component controlled by an enable signal en can be

1. level-triggered, i.e., updated by a given level on en, or

2. edge-triggered, i.e., updated by a given edge on en.

The former type is termed a latch, whereas the latter type is termed a flip-flop.
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Part 2: latches, flip-flops, and register (2)

Concepts

Definition

Pp

An “SR” latch/flip-flop component has two inputs S (or

set) and R (or reset):
▶ when enabled, if

▶ S = 0 and R = 0, the component retains Q,

▶ S = 1 and R = 0, the component updates to Q = 1,

▶ S = 0 and R = 1, the component updates to Q = 0,

▶ S = 1 and R = 1, the component is meta-stable

but

▶ when not enabled, the component is in storage mode

so retains Q.

The behaviour of such a component is specified by

Q′ = S ∨ (¬R ∧Q),

and/or

Current Next

S R Q ¬Q Q′ ¬Q′
0 0 0 1 0 1

0 0 1 0 1 0

0 1 ? ? 0 1

1 0 ? ? 1 0

1 1 ? ? ? ?

Definition

Pp

A “D” latch/flip-flop component has one input D:

▶ when enabled, if

▶ D = 1, the component updates to Q = 1,

▶ D = 0, the component updates to Q = 0,

but

▶ when not enabled, the component is in storage mode

so retains Q.

The behaviour of such a component is specified by

Q′ = D,

and/or

Current Next

D Q ¬Q Q′ ¬Q′
0 ? ? 0 1

1 ? ? 1 0
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Part 2: latches, flip-flops, and register (3)

Concepts

Definition

Pp

A “JK” latch/flip-flop component has two inputs J (or set)
and K (or reset):
▶ when enabled, if

▶ J = 0 and K = 0, the component retains Q,

▶ J = 1 and K = 0, the component updates to Q = 1,

▶ J = 0 and K = 1, the component updates to Q = 0,

▶ J = 1 and K = 1, the component toggles Q,

but

▶ when not enabled, the component is in storage mode

so retains Q.

The behaviour of such a component is specified by

Q′ = (J ∧ ¬Q) ∨ (¬K ∧Q),

and/or

Current Next

J K Q ¬Q Q′ ¬Q′
0 0 0 1 0 1

0 0 1 0 1 0

0 1 ? ? 0 1

1 0 ? ? 1 0

1 1 0 1 1 0

1 1 1 0 0 1

Definition

Pp

A “T” latch/flip-flop component has one input T:

▶ when enabled, if

▶ T = 0, the component retains Q,

▶ T = 1, the component toggles Q,

but

▶ when not enabled, the component is in storage mode

so retains Q.

The behaviour of such a component is specified by

Q′ = (T ∧ ¬Q) ∨ (¬T ∧Q) = T ⊕ Q,

and/or

Current Next

T Q ¬Q Q′ ¬Q′
0 0 1 0 1

0 1 0 1 0

1 0 1 1 0

1 1 0 0 1
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Part 2: latches, flip-flops, and register (4)

Design(s)

▶ Problem #1: we need an initial design for, e.g., an SR latch.

▶ Solution: use two cross-coupled NOR gates.

Circuit
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Part 2: latches, flip-flops, and register (5)

Design(s)

▶ Problem #2: we’d like to control when updates occur.

▶ Solution: gate S and R, i.e.,

Circuit

Pp

S

R

¬Q

Q

en

S′

R′

noting that

▶ the same internal latch is evident, now with inputs S′ and R′,
▶ the external latch is such that

en = 0 ⇒ S′ = S ∧ en = S ∧ 0 = 0

⇒ R′ = R ∧ en = R ∧ 0 = 0

en = 1 ⇒ S′ = S ∧ en = S ∧ 1 = S
⇒ R′ = R ∧ en = R ∧ 1 = R
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Part 2: latches, flip-flops, and register (6)

Design(s)

▶ Problem #3: we’d like to avoid the issue of meta-stability.

▶ Solution: force R = ¬S so we get either S = 0 and R = 1, or S = 1 and R = 0.

Circuit

Pp
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Part 2: latches, flip-flops, and register (7)

Design(s)

▶ Problem #4: we’d like an edge-triggered, rather than level-triggered design.

▶ Solution #1: “cheat” by approximation of an edge via a pulse generator.

Circuit

Pp

The pulse generator component

rx
t

is attached to the previous SR latch to give:

¬Q

Q

en

D

Example

Pp

Imagine we set the delay of

1. a NOT gate to 10ns, and

2. an AND gate to 20ns

and then flip en = 0 to en = 1 and back again:

x
t
r

0n
s

10
ns

20
ns

30
ns

40
ns

50
ns

60
ns

The result is a “pulse” matching the delay of a NOT gate

that approximates an edge because it is so short.
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Part 2: latches, flip-flops, and register (8)

Design(s)

▶ Problem #4: we’d like an edge-triggered, rather than level-triggered design.

▶ Solution #2: adopt a primary-secondary organisation of two latches, i.e.,

Circuit

Pp

Q

¬Q

D

en

where the idea is to split a clock cycle into to half-cycles:

en = 1 ⇒ primary latch is enabled

en = 0 ⇒ secondary latch is enabled

meaning

1. while en = 1, i.e., positive level on en, primary latch stores input, and

2. when en = 0, i.e., negative edge on en, secondary latch stores output of primary latch,

and hence we get edge-triggered behaviour.
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Part 2: latches, flip-flops, and register (9)

Abstraction, via symbols

Definition

Pp

▶ A D-type latch is described symbolically as

en

D Q

¬Q

▶ The associated behaviour is, for example,

en
Q
D

t0 t1 t2 t3 t4 t5

such that updates are level-triggered by en.

Definition

Pp

▶ A D-type flip-flop is described symbolically as

en

D Q

¬Q

▶ The associated behaviour is, for example,

en
Q
D

t0 t1 t2

such that updates are edge-triggered by en.
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Part 2: latches, flip-flops, and register (10)

Aggregation, via registers

▶ Concept: we typically combine latches (resp. flip-flops) into registers, i.e.,

Circuit (latch version)

Pp

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

en

Q
′ 0

Q
′ 1

Q
′ n−

1

Q
0

Q
1

Q
n−

1

where

▶ there are n instances, so we can store an n-bit value: the i-th instance stores the i-th bit,

▶ access is conceptually straightforward:

read from register : use current value Q
write to register : drive next value onto Q′, then trigger update via en

▶ all instance share same en, so access to them is synchronised.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk


Part 2: latches, flip-flops, and register (10)

Aggregation, via registers

▶ Concept: we typically combine latches (resp. flip-flops) into registers, i.e.,

Circuit (flip-flop version)

Pp
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where

▶ there are n instances, so we can store an n-bit value: the i-th instance stores the i-th bit,

▶ access is conceptually straightforward:

read from register : use current value Q
write to register : drive next value onto Q′, then trigger update via en

▶ all instance share same en, so access to them is synchronised.
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Part 3: structure plus strategy (1)

Outcome: latch version, 2-phase clock

Design (latch version)

Pp

Combinatorial logic

Latch based
register(s)

Latch based
register(s)

Input

Output

Output

Output

Φ1

Φ2
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Part 3: structure plus strategy (2)

Outcome: latch version, 2-phase clock

Circuit (latch version)
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Part 3: structure plus strategy (3)

Outcome: latch version, 2-phase clock

Example (latch version)

Pp

Φ1

Φ2

input latches
reset
r← 0

input latches
store

r← r′

input latches
store

r← r′ · · ·

adder
computes

r + 1

adder
computes

r + 1

· · ·

output latches
store

r′ ← r + 1

output latches
store

r′ ← r + 1

· · ·
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Part 3: structure plus strategy (4)

Outcome: flip-flop version, 1-phase clock

Design (flip-flop version)

Pp

Combinatorial logic

Flip-flop based
register(s)

Input Output

Output

Clock
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Part 3: structure plus strategy (5)

Outcome: flip-flop version, 1-phase clock

Circuit (flip-flop version)
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Part 3: structure plus strategy (6)

Outcome: flip-flop version, 1-phase clock

Example (flip-flop version)

Pp

adder
computes

r + 1

adder
computes

r + 1 · · ·

flip-flops
reset
r← 0

flip-flops
update

r← r + 1

flip-flops
update

r← r + 1

· · ·
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Conclusions

▶ Take away points:

1. Sequential logic design is typically hard(er) to understand (at first) than combinatorial logic

design: invest some effort to address this now!

2. The main concept and challenge is time:
▶ this goes beyond time in the sense of delay,

▶ the goal is step-by-step, controlled (versus continuous, uncontrolled) computation,

▶ we need to understand and manage, e.g., with parallelism and synchronisation.

3. There is at least one higher-level design principle evident: we often see

▶ a data-path, of computational and/or storage components, and

▶ a control-path, that tells components in the data-path what to do and when to do it,

although the counter control-path is (very) simple.

4. The next step is to formalise this, allowing solution of more complex problems, e.g., through

more complex forms of control.
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Additional Reading

▶ Wikipedia: Sequential logic. url: https://en.wikipedia.org/wiki/Sequential_logic.

▶ D. Page. “Chapter 2: Basics of digital logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.

▶ W. Stallings. “Chapter 11: Digital logic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.

▶ A.S. Tanenbaum and T. Austin. “Section 3.2.2: Clocks”. In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012.

▶ A.S. Tanenbaum and T. Austin. “Section 3.3.4: Latches”. In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012.

▶ A.S. Tanenbaum and T. Austin. “Section 3.3.4: Flip-flops”. In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012.

▶ A.S. Tanenbaum and T. Austin. “Section 3.3.4: Registers”. In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012.
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