Computer Architecture

Daniel Page

Department of Computer Science,
University Of Bristol,
Merchant Venturers Building,
Woodland Road,

Bristol, BS8 1UB. UK.
({csdsp@bristol.ac.uk)

September 5, 2025

Keep in mind there are fwo PDFs available (of which this is the latter):
1. a PDF of examinable material used as lecture slides, and
2. a PDF of non-examinable, extra material:

> the associated notes page may be pre-populated with extra, written explaination of
material covered in lecture(s), plus

> anything with a “grey’ed out” header/footer represents extra material which is
useful and/or interesting but out of scope (and hence not covered).

Notes:

Notes:

COMS10015 lecture: week #4

> Problem: an n-bit register based on latches (resp. flip-flops) is limited in that
1. each latch (resp. flip-flop) in the register needs a relatively large number of transistors, which
limits the viable capacity (i.e.,), and
2. the register is not addressable, i.e.,

> an address (or index) allows dynamic rather than static reference to some stored datum, so
> by analogy, in a C program

Listing Listing

1 int A9, Al, A2, A3; 1 int A[4]
2 2

3 A0 = 0; 3 AL 0] =0;
4 AL = 0; 4 AL1]=0;
5 A2 = 0; 5 A[2] = 6;
6 A3 = 0; 6 A[3] =0;

we have the left-hand side, but we want the right-hand side.

© Daniel P

er Architecture S git #b282dbb9 @ 2025-09-03

COMS10015 lecture: week #4

> Solution: a memory component, i.e.,

control signals

user data bus

(e.g., CPU) MEM
address bus

such that

> MEM has a capacity of n = 2" addressable words, and
> each such word is w bits (where 1 > w).

Notes:

Notes:

COMS10015 lecture: week #4

Notes:

> Agenda:
1. memory cells,
2. memory devices,
noting there are various ways to classify memories, e.g.,
1. volatility:
> volatile, meaning the content is lost when the component is powered-off, or
> non-volatile, meaning the content is retained even after the component is powered-off.
2. interface type:
> synchronous, where a clock or pre-determined timing information synchronises steps, or
> asynchronous, where a protocol synchronises steps.
3. access type:

> random versus constrained (e.g., sequential) access to content,
> Random Access Memory (RAM) which we can read from and write to, and
> Read Only Memory (ROM) which, as suggested by the name, supports reads only.

4. ..
but we'll focus exclusively on a volatile, synchronous RAM.

git #b282dbb9 @ 2025-09-03

Notes:

> The EDSAC used delay line memory,

where the rough idea is:

> Each “line” is a tube of mercury (or
something else in which sound waves
propagate fairly slowly).

> Put a speaker at one end to store sound
waves into the line, and a microphone at
the other to read them out.

> Values are stored in the sense the
corresponding waves take time to
propagate; when they get to one end
they are either replaced or fed back into
the other.

> This is sequential access (cf. random
access): you need to wait for the data
you want to appear!

An Aside: some history

>

The Whirlwind used magnetic-core

memory, where the rough idea is:

> The memory is a matrix of small
magnetic rings, or “cores”, which can be
magnetically polarised to store values.

> Wires are threaded through the cores to
control them, i.e., to store or read values.

> The magnetic polarisation is retained, so
core memory is non-volatile!

You might still hear main memory
termed core memory (cf. core dump)
which is a throw-back to this
technology.

https://en.wikipedia.org/wiki/File:Project_Whirlwind_-_core_memory, _circa_1951_-_detail_1.JPG

© Daniel Page

Computer Architecture

Part 1: memory cells (1)

git #b282dbb9 @ 2025-09-03

vV VvV VvV VY

capacity),

more expensive to manufacture,
fast(er) access time (resp. lower access latency),
easy(er) to interface with,

ideal for latency-optimised contexts, e.g., as cache
memory.

Comparison Comparison
Static RAM (SRAM) is Dynamic RAM (DRAM) is
> manufacturable in lower densities (i.e., smaller >

>

manufacturable in higher densities (i.e., larger
capacity),

less expensive to manufacture,

slow(er) access time (resp. higher access latency),
hard(er) to interface with,

ideal for capacity-optimised contexts, e.g., as main
memory.

Notes:

Notes:

Part 1: memory cells (2)
An SRAM cell

Notes:

¢ The initial NOT-based circuit might look odd, but clearly has two stable states: either Q = 1and =Q = 0, or Q = 0 and =Q = 1. The
transistors re-enforce each other; the state is maintained as long as the cell is powered-on.

¢ To read the cell we pre-charge bl = 1 and bl = 1 then set wl = 1, after which =l (resp. bl) is discharged if state is 1 (resp. 0). To write
x into the cell we pre-charge bl = x and —bl = - then set wl = 1, after which the state matches x.

® The pre-charging steps are managed by extra bit line conditioning, the detail of which we ignore.

Circuit
wl
[
Q" -q
S
w— L]
Q o<} -Q
> Idea:

> internally, the cell is essentially two NOT gates,
> bl and —bl are the bit lines (via which the state is accessed),
> wl is the word line (which controls access to the state),
>

a “6T SRAM cell” requires 6 transistors (cf. ~ 20 or so for a D-type latch).

git # b282dbb

Part 1: memory cells (2)
An SRAM cell

Notes:

¢ The initial NOT-based circuit might look odd, but clearly has two stable states: either Q = 1and =Q =0, or Q = 0 and =Q = 1. The
transistors re-enforce each other; the state is maintained as long as the cell is powered-on.

¢ To read the cell we pre-charge bl = 1 and bl = 1 then set wl = 1, after which —bl (resp. bl) is discharged if state is 1 (resp. 0). To write
X into the cell we pre-charge bl = x and —bl = - then set wl = 1, after which the state matches x.

¢ The pre-charging steps are managed by extra bit line conditioning, the detail of which we ignore.

Circuit
wl

Vaa

P B 1

1 T

Hoooh

VSS
> Idea:

internally, the cell is essentially two NOT gates,

wl is the word line (which controls access to the state),

>

» bl and —bl are the bit lines (via which the state is accessed),
>

>

a “6T SRAM cell” requires 6 transistors (cf. ~ 20 or so for a D-type latch).

Part 1: memory cells (3)

A DRAM cell
Notes:
Circuit ¢ To read the cell we set wl = 1, after which current flows (resp. does not flow) on bl if the capacitor is charged (resp. not charged)
meaning the state is 1 (resp. 0). To write X into the cell we set bl = x then wl = 1, after which the capacitor charges (resp. discharges)
and the state matches x.
¢ The capacitor holds a tiny charge: this must be amplified to use as a driver in whatever circuit uses the cell.
wl
> Idea:
> internally, the cell is essentially one one transistor and one capacitor,
> bl is the bit line (via which the state is accessed),
> wl is the word line (which controls access to the state),
> the capacitor
1. discharges and charges (relatively) slowly,
2. discharges when the cell is read, and also over time even if it’s not read; this implies a need to refresh it.

© Daniel Page (

git # b282dbb9 @ 2025

Computer

Part 2: memory cells ~+ memory devices (1)

Notes:
> Concept: a memory device is constructed from (roughly) three components
1. a memory array (or matrix) of replicated cells with

> rrows, and

> ¢ columns

meaning a (7 - ¢)-cell capacity,
2. arow decoder which given an address (de)activates associated cells in that row, and
3. a column decoder which given an address (de)selects associated cells in that column

plus additional logic to allow use (depending on cell type), e.g.,
1. bit line conditioning to, e.g., ensure the bit lines are strong enough to be effective, and
2. sense amplifiers to, e.g., ensure output from the array is usable.

Part 2: memory cells ~» memory devices (2)
An SRAM device: design

> (Typical, or exemplar) design: an SRAM device.
1. interface:

auxiliary pin(s) for power and so on,

D, a single 1-bit data pin,

A, a collection of n” address pins where A4; is the i-th such pin,

a Chip Select (CS) pin, which enables the device,

a Output Enable (OE) pin, which signals the device is being read from,
a Write Enable (WE) pin, which signals the device is being written to.

YyVYyVYVYYY

© Daniel Page

Computer git # b282dbb9 @ 2025-09-03

Part 2: memory cells ~+ memory devices (2)
An SRAM device: design

> (Typical, or exemplar) design: an SRAM device.

2. usage:

Notes:

¢ Insome cases, D might be split into two separate D;;; and Dy pins dedicated to input and output respectively.

Algorithm (SRAM-ReaD) Algorithm (SRAM-WRITE)

Having performed the following steps Having performed the following steps
> drive the address onto A, » drive the data onto D,
> set WE = false, OE = true and CS = true,

1-bit of data is read and made available on D, then we set > set WE = true, OE = false and CS = true,
CS = false.

> drive the address onto A,

1-bit of data is written, then we set CS = false.

Notes:

¢ Insome cases, D might be split into two separate Din and Dy,;,+ pins dedicated to input and output respectively.

Part 2: memory cells ~» memory devices (3)

An SRAM device: implementation

Notes:

e \
| |
: bit line conditioning i
| |
: hd hd X hd :
1 wl wl wl wl !
! - bl - bl o bl - bl |
1 SRAM SRAM D sRAM SRAM :
: hd hd X hd !
1 © wl wl Tl wl !
. < o-| bl ol bl o bl o-| bl .
| o) |

151 srAM sraM srAM sRAM «— WE
Ap_q...Ag — 3z . D L R i
: wl wl wl wl !

! z bl v ol el bl «— OE
! = SRAM SRAM SRAM SRAM }

i hd hd DA hd — Cs
. wl wl wl wl h
1 »- bl o bl o bl »- bl |
| |
| I sense amplifiers | :
| |
! [[[:
. column decode "
| |
| |
| |
R R 1

D
Part 2: memory cells ~» memory devices (4)
An SRAM device: implementation
Notes:

wustin Semiconductor, Inc.

\ﬁuslln i Inc.

1M x 1 SRAM PIN ASSIGNMENT
SRAM MEMORY ARRAY (Top View) FUNCTIONAL BLOCK DIAGRAM
AVAILABLE AS MILITARY 28PinDIP (C) 32PinLCC(EC)
'SPECIFICATIONS A 52PinS0J(0C) e e
e
Rttt ~ +
—
FEATURES °
Hie 2, As—|
Batey ackup: 2V dareenion A °
o poversandby g 105768 3
Sigl 45V G10%) Pocr Suppy a—>| 8 i g
ekt YS— H MEMORY ARRAY £ e
+ Allinputs and ouputs s TTL compuivle Asw| & 2w 20t 3
LR nv| 3 i e
OPTIONS MARKING hor| & e
T
» e
S Kine
s
e
Fiiseee Y ‘CoLUMN DECODER
)
Coprm e Trrtrrrttrt
CommielCC B Noan Ao A A Ao A A A A As A Ar
Corie ek FoNew
CemeicPy P, lem ‘GENERAL DESCRIPTION
e MTSCIO0! cnploys o powe igh o
e e e ol cocks o i e ik CMOS iy
Mty & rduces paer conmumplion and provdes fr greser PIN ASSIGNMENTS
R o PN [ASSIGNHENT
P — by inigh- e meorysypcaions. v
e fovponer L o chip cnbl (CE and vt bl (OF) caabiy. Arhig | Adoress s
These oancement can plce e ot i igh Z for i e Wete Enabe
it s et s e a0l 1yt dsign. Weing o tese dvies s
Py Sccmplabad hen ok crble(VE) snd CE s bt
LOW. Resing aceompined when WE emin HIGH whie o
CE\and OFY g0 LOW! The devices o a reced pover N o Comecion
For sy ke el TS o e Voo | +5 Pover Supply
please visit our web site at T L. verion provides an pproimte 5 et Vis Ground

) o the st
Alldevicesoperson from asingle-+5V powerspply
ot nd vtpts el TTL compate

o | e

Daniel Page (

Part 2: memory cells ~» memory devices (5)
A DRAM device: interface

Notes:
> (Typlcal, or exemplar) deSIgn: a DRAM device. ¢ Insome cases, D might be split into two separate D;;; and D¢ pins dedicated to input and output respectively.
. . ’
1. interface: e Anaddress is basically just an unsigned integer: if you have an 1’ -bit address, you can therefore use it to identify any one of n = 2/
» auxiliary pin(s) for power and so on, addressable elements. An SRAM device will typically have n’ address pins, so one can provide the address in a single step. An DRAM
. . . ’
> D ,a smgle 1-bit data pin, device will typically have less than 1’ address pins, so one must provide the address in multiple steps: here we see the use of %
> A/ a collectlon Of 1’l/ / 2 address PlnS Where Ai 18 the Z'th SUCh Pln; address pins, for example, which are used to provide an n’ -bit address in 2 steps. The rationale for the latter is to cope with density. A
> a Chlp Select (CS) pin, which enables the device, DRAM device will typically has many addressable elements, but there is a physical limit on how many address pins are reasonable: by
> a Output Enable (OE) pin, which signals the device is being read from, multiplexing, or sharing them, this issue is mitigated to some extent. . .
> . ! . . L . A Note that saying “typical” here is an important caveat, because it is not easy to give one definitive answer: there are other approaches
a Write Enable (WE) pmn, which Slgrlals the device is belng written to, and exceptions, for example which might be valid, even if less useful.
> a Row Address Strobe (RAS), which controls the row buffer, and
>

a Column Address Strobe (CAS), which controls the column buffer.

git #b282dbb9 @ 2

Part 2: memory cells ~+ memory devices (5)
A DRAM device: interface

Notes:
> (Typlcal, or exemplar) deSIgl’l: a DRAM device. ¢ Insome cases, D might be split into two separate D;;, and D4 pins dedicated to input and output respectively.

’
e Anaddress is basically just an unsigned integer: if you have an 1’ -bit address, you can therefore use it to identify any one of n = 2"
addressable elements. An SRAM device will typically have n’ address pins, so one can provide the address in a single step. An DRAM
’
device will typically have less than 1’ address pins, so one must provide the address in multiple steps: here we see the use of "7
address pins, for example, which are used to provide an 7’ -bit address in 2 steps. The rationale for the latter is to cope with density. A
DRAM device will typically has many addressable elements, but there is a physical limit on how many address pins are reasonable: by
multiplexing, or sharing them, this issue is mitigated to some extent.
Note that saying “typical” here is an important caveat, because it is not easy to give one definitive answer: there are other approaches
and exceptions, for example which might be valid, even if less useful.

2. usage:

Algorithm (DRAM-READ) Algorithm (DRAM-WRITE)

Having performed the following steps Having performed the following steps

> drive the row address onto A, > drive the data onto D,

> set RAS = true to latch row address, > drive the row address onto A,

> drive the column address onto A, > set RAS = true to latch row address,

> set CAS = true to latch column address, > drive the column address onto A,

> set WE = false, OF = true and CS = true, > set CAS = true to latch column address,

1-bit of data is read and made available on D, then we set > set WE = false, OF = true and CS = true,

CS = RAS = CAS = false. 1-bit of data is written, then we set CS = RAS = CAS =

false.

Part 2: memory cells ~» memory devices (6)

A DRAM device: implementation

I
row decode

}4—‘ I row buffer

column buffer

DRAM DRAM DRAM DRAM
hd h N ?
wl wl) wl

y- bl »- bl o bl »- bl

DRAM DRAM DRAM DRAM
wl wl wl wl

y- bl »-- bl o bl > bl

DRAM DRAM DRAM DRAM
*
@ wl wl Wl
bl bl o bl bl
DRAM DRAM DRAM DRAM

’ sense amplifiers

l l l

column decode

© Daniel Page (

Computer Architecture

BAKE University of
ME] BRISTOL

Part 2: memory cells ~+ memory devices (7)

A DRAM device: implementation

INC MT4C1004J 883C
4MEG x 1 DRAM

DRAM 4 MEG x 1 DRAM

FAST PAGE MODE

git # b282dbb9 @ 2025-0

Notes:

¢ We also need some logic, which is not shown here, to refresh the cells At a high level, the idea is that to cope with decay of content, we
periodically read

AUSTIN SEMICONDU

MT4C1004J 883C
4MEG x 1 DRAM

oy e FAST e i shvays ni-
s

s

thectip
SHicH iniscomctsste

omnaddrs obed inby CAS CASmay beoggedn
by ol A LOW and b et ot

by mantaningpowerand executing ny RAScycle READ)
WRITE, RREONLY, CAS BEFORE RAS or HIDDEN RE-

[e e

FRESH) o that all
{A0-A9) are exccuted at et very Tems, regaraless of
Saquence, The CAS. BEFORERAF ycie wil ok the

RS sddresing

FUNCTIONAL BLOCK DIAGRAM
FAST PAGE MODE

AVAILABLE AS MILITARY
 SPECIFICATONS PIN ASSIGNMENT (Top View)
MD 5962.90622
e 18-Pin DIP 20-PinZIP.
FEATURES =
* sy | it i s o ==
pad o v
+ B perormance S ps procss 0w
© Single 15V £10°% pow e
o 25 o S0 cive typic e
it upus and cocsare Tl T g NS e
compatd w o
« Tibore s ons B
© Rafreh modes: RASONLY, CAS BEFORE RS (CTR), o 2
and HlDD!r\ .
FAST PAGEMODE secsscyce oo e
-, i WE S HICH GEDR et mode copsbl i
BR)
OPTIONS MARKING
+ Tuning
Tons aecess 7
onssccss 4
100 sccess 10
1200 sccms 1
Ceramic DIP (300 i) o New
Ceramic DIP (100) C o New
Conmic LCC BN Nox
Coramic SO] B Nosw
Ceramic 217 <z Now
Coramic Gull Wing, EG Noow
A ot o I O REFRES
GENERAL TION
e MICIon s oy cesed it g i of WEGr O whichowr oo st 70
b heoutputpint
RSy M o L0V
i
RS, he saleced el dt S
andt €A the br 1 b, A READ ot WRITE ke s les f WE or RAS). Tois LATE WE pul rsut i 3
e FASTPAGEMODE perstions llow
o whie loic LOW on WE dicotes WRITE faster dataoperatons (READ, WRITE or KEAD-MODIFY-
mode. During a WRITE ccle,datain (D) i tched by the WRITE) witin 3 row-address (A0-A10) defined poge.

Daniel Page (

“NOTE: TWELOW prir o T LOW, EW detckon ot otpu & HIGH (EARLY.WAITE)
GRS LOW pror o WE LOW. EW ctcton oo o & 5 LOW (LATE-WAITE)

Notes:

Part 2: memory cells ~» memory devices (8)
A ROM device: implementation

_ -
e |
| |
! \ bit line conditioning ‘ |
| |
| |
hd I
1 L L L ‘
| ViaalVss VaalVss o 1 VaalVss VaalVss |
| i
| . |
) v]—[l 1 1 |
I e] b1 L e e TL, i
I 8 VaalVss Vil Vss VaalVss VaalVss !
|
Ap-_1...Ap T % * I . . !
| = VialVss VialVss © 1+ VialVss VaalVss .
‘ e
1) D R A =
| G P |
| VaalVss | VaalVss 3 VaalVss © | Vaal Vs |
i |
| \ sense amplifiers ‘ |
| |
1 1 1 [1
| column decode |
| |
| |
| |
R (SN |
D
© Daniel Page (
Computer Architecture 2 git # b282dbb9 @ 2025-09-03
Part 2: memory cells ~» memory devices (9)
Notes:

> Concept:
> externally, the configuration of a device is described as something like

OXwXp

(plus maybe some timing information) where

> § relates to capacity, usually measured in (large multiples of) bits,
> w describes the width of words, measured in bits, and

> B is the number of internal logical banks.

> internally, this implies some organisational choices: for example,

1. for w > 1, we replicate the memory device internally to give w arrays (each copy relates to one bit of a
w-bit word),

2. for the arrays, r and ¢ can be selected to match physical requirements (e.g., to get “square” or “thin”
arrays), and

3. for f > 1, each array is split into logical banks.

[

Part 2: memory cells ~» memory devices (10)

_ -

| bit line conditioning |

@ @ al w0
b o |ebl o
@ 0 wl w0
§ bl o [enl bl WE
S s | | s |0 s s <
<
g D . .)
al wl Wl al 1
Ap_y...Ay — ¢ 2 o g el gl «— OE
2 s | s e[s
!
e a al al !
bl bl . 1l bl «— CS
| sense amplifiers |

[[
. column decode

=

v

git # b282dbb9 ¢

_ -

e W % al w
5 |8 ol oo e bl
RAS — 1B (] LS — WE
! S g) . .
A A | z |3 al al al il !
W 0—>:r g |8 bl 1 o bl bl «— OE
L=] oo | o oo E | oo

| E h
CAS —» PR P PR U (P ~— CS

oM orav oM oA

sense amplifiers |

column decode
=

Part 2: memory cells ~» memory devices (12)

> A 64Mbit x 8 x 1 internal configuration:

> The total capacity is 64Mbit - 8 - 1 = 512Mbit.
> Thereis f = 1logical bank: the bank consists of w = 8

> Address x refers to cell x of each array; for example,
x = 42(1) refers to cell 42 of each array, and therefore to

an 8-bit word overall.

arrays, each of which has 6 = r-c = 64 -1024 - 1024 cells.

— WE
Bank #0 «— OE
= CS

P

D

© Daniel Page

Computer

Part 2: memory cells ~» memory devices (12)

> A 32Mbit X 8 x 2 internal configuration:

> The total capacity is 32Mbit - 8 - 2 = 512Mbit.

> There are f = 2 logical banks: each bank consists of
@ = 8 arrays, each of which has
6 =r-c=32-1024-1024 cells.

> Address x refers to

[N bank : xmod B
cell : x divp

of each array; for example,

> x= 4219 refers to cell 21 of each array in bank 0, while
> x =43 refers to cell 21 of each array in bank 1,

each case therefore referring to 8-bit word overall.

git #b282dbb9 @ 2025-09-03

Bank #0

Bank #1

— WE
«— OE
= CS

T <

Notes:

Notes:

Part 2: memory cells ~» memory devices (12)

_ -
> A 16Mbit X 8 x 4 internal configuration:
> The total capacity is 16Mbit - 8 - 4 = 512Mbit. Bank #0
> There are f = 4 logical banks: each bank consists of an
@ = 8 arrays, each of which has
6 =r-c=16-1024 1024 cells.
>
Address x refers to Bank #1 e WE
o, | bank : x mod B
* cell : x divp A~ < OE
= CS
of each array; for example, Bank #2
> x =42 refers to cell 10 of each array in bank 2, while
> x =43 refers to cell 21 of each array in bank 3,
each case therefore referring to 8-bit word overall. Bank #3
!
D
© Daniel Page (
Computer Architecture . git # b282dbb9 @ 2025-09-03
Part 3: memory devices ~ memory modules (1)
Notes:

> Concept: a memory module is essentially the combination of

1. one or more memory devices, plus

2. an interface which controls access.

with two (physical) package types dominating:

1. Single Inline Memory Module (SIMM), which is (roughly) 1-sided, has less pins and a
narrower word size, and

2. Dual Inline Memory Module (DIMM), which is (roughly) 2-sided, has more pins and a
wider word size

and are capable of housing different device types (e.g., EDO or SDRAM devices).

Part 3: memory devices ~ memory modules (2)

> Concept:
> externally, the configuration of a module is described as something like

AXQ

(plus maybe some timing information) where
> A relates to capacity, usually measured in (large multiplies of) bytes, and
> () describes the width of words, measured in bits.
> internally, this implies some organisational choices: for example,
1. usually Q > w so the module is “filled” using multiple devices to form one physical bank, and
2. depending on the module type, the devices are organised into one or more ranks.

© Daniel Page (

git # b282dbb9 @ 2025-09-03

Computer

Part 3: memory devices ~ memory modules (3)

> A 4MB X 32, 1-device configuration:

> The device has a capacity of
IMbit - 32 - 1 = 32Mbit = 4MB, arranged into 32-bit
words.

> The bank, which has a 32-bit data-path, is filled by the
single device: address x refers to the word MEM.

[1Mbit x 32 x 1 SDRAM |
b

)
* MEMs;.0

MEM <>

Notes:

Notes:

Part 3: memory devices ~ memory modules (3)

_ -

> A 4MB x 32, 2-device configuration:

> Each device has a capacity of

1IMbit - 16 - 1 = 16Mbit = 2MB, arranged into 16-bit X —>
words.
> Since there are 2 devices, the total capacity is
2-2MB = 4MB. :
> The bank, which has a 32-bit data-path, is filled by | 1Mbit x 16 X 1 SDRAM |
merging the devices: address x refers to 1
X MEM;s_ o
Yo { bits 15... 0 of MEM from device 0
bit 31...16 f MEM from device 1
" ° om device [1Mbit x 16 x 1 SDRAM |
merging each 16-bit part into the word MEM. 1 ¢
* MEM3;_.16

MEM <«

© Daniel Page (

Computer A S git # b282dbb9 @ 2025-09-03

Part 3: memory devices ~ memory modules (3)

_ -

> A 4MB X 32, 4-device configuration:

> Each device has a capacity of

1Mbit - 8 - 1 = 8Mbit = IMB, arranged into 8-bit words. x — [1Mbit x 8 X 1 SDRAM |
> Since there are 4 devices, the total capacity is 1 {
4-1MB = 4MB. X MEM; o
> The bank, which has a 32-bit data-path, is filled by "
merging the devices: address x refers to I 1Mbit ?8 x1 iDRAM |
bits 7... 0 of MEM from device 0 x
s bits 15... 8 of MEM from device 1 " MEMs.5
x bits 23...16 of MEM from device 2 I 1Mbit x 8 x 1 SDRAM |
bits 31...24 of MEM from device 3 1
X
merging each 8-bit part into the word MEM. MEMz..16
[1Mbit x 8 x 1 SDRAM |
MEM <> T

X MEM3;. 24

Conclusions

> Take away points:
1. The initial goal was an n-element memory of w-bit words; the final solution is motivated by
divide-and-conquer, i.e.,
1.1 one or more channels, each backed by
1.2 one or more physical banks, each composed from
1.3 one or more devices, each composed from
1.4 one or more logical banks, of
1.5 one or more arrays, of
1.6 many cells
2. The major complication is a large range of increasingly detailed options:
> lots of parameters mean lots of potential trade-offs (e.g., between size, speed and power consumption),
> need to take care of detail: there are so many cells, any minor change can have major consequences!
3. Even so, there is just one key concept: we have some cells, and however they are organised we
just need to identify and use the right cells given some address.

© Daniel Page (

Computer A cture git #b282dbb9 @ 2

Additional Reading

>
>
>
>

Wikipedia: Computer Memory. urL: https://en.wikipedia.org/wiki/Category:Computer_memory.
D. Page. “Chapter 8: Memory and storage”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.
A.S. Tanenbaum and T. Austin. “Section 3.3.5: Memory chips”. In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012.

A.S. Tanenbaum and T. Austin. “Section 3.3.6: RAMs and ROMs”. In: Structured Computer Organisation. 6th ed. Prentice Hall,
2012.

> W. Stallings. “Chapter 5: Internal memory”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.

Notes:

Notes:

References

[1
[2]

131
141

Wikipedia: Computer Memory. urL: https://en.wikipedia.org/wiki/Category:Computer_memory (see p. 67).

D. Page. “Chapter 8: Memory and storage”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009 (see
p- 67).

W. Stallings. “Chapter 5: Internal memory”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013 (see p. 67).

A.S. Tanenbaum and T. Austin. “Section 3.3.5: Memory chips”. In: Structured Computer Organisation. 6th ed. Prentice Hall,
2012 (see p. 67).

A.S. Tanenbaum and T. Austin. “Section 3.3.6: RAMs and ROMs”. In: Structured Computer Organisation. 6th ed. Prentice Hall,
2012 (see p. 67).

© Daniel Page

Computer Architecture ait# b282dbb9 @ 2

Notes:

