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COMS10015 lecture: week #5

Definition

In contrast to a conventional programming language which are (typically) used to describe software, a Hardware
Description Language (HDL) is used to describe (or model) hardware (e.g., digital logic).

▶ (Selected) examples:
1. Verilog
2. VHDL
3. MyHDL ⊃ Python
4. Chisel ⊃ Scala
...
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COMS10015 lecture: week #5

Definition

In contrast to a conventional programming language which are (typically) used to describe software, a Hardware
Description Language (HDL) is used to describe (or model) hardware (e.g., digital logic).

▶ (Selected) examples:
1. Verilog
2. VHDL
3. MyHDL ⊃ Python
4. Chisel ⊃ Scala
...

▶ Agenda: Verilog, or, more specifically,
1. foundational concepts,
2. low-level modelling,
3. high-level modelling, and
4. development concepts, e.g., testing and test stimuli.

▶ Caveat!

∼ 2.5 hours ⇒ introductory coverage of core language features and workflow.
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Part 1: foundational concepts (1)

▶ Question: why?!
▶ Answer: HDLs (and EDA tools more generally) help to

1. facilitate automation, e.g., with respect to
▶ simulation,
▶ verification, and
▶ translation
of what is a more clearly machine-readable design,

2. address the challenge of scale, e.g., with respect to design size and complexity.
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Part 1: foundational concepts (2)

▶ Question: how?!
▶ Answer: as part of a broader development workflow, such as

Design

Functional Verification

Synthesis

Place and Route

Behavioural Verification

Manufacture

Testing

Verilog

Verilog

Netlist

Netlist + Annotation

Netlist + Annotation

Hardware

Hardware

▶ You can think of
synthesis ≃ compilation
place and route ≃ linking

since
▶ the former translates from high- to low-level, in this

case a HDL model to a gate-level netlist,
▶ the latter works out how to use the standard cell library

(e.g., the type and location of gates).
▶ Verification steps rely on simulation of the model at

different levels of detail.
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Part 1: foundational concepts (3)

▶ Analogy:

C

▶ A program is described using static function definitions.
▶ Each function has an interface (i.e., what it does and how

it can be used) and a body (i.e., how it does it).
▶ The functions reference each other via calls; a function

call implies an active, transient use.
▶ Values are stored in variables, on which computation is

performed by functions.

Verilog

▶ A model is described using static module definitions.
▶ Each module has an interface (i.e., what it does and how

it can be used) and a body (i.e., how it does it).
▶ The modules reference each other via instantiations; a

module instantiation implies an active, permanent use.
▶ Values are carried by nets, on which computation is

performed by modules.

but, beware:
▶ on one hand, the analogy is attractive if you have some C programming experience, but
▶ on the other hand, the analogy is unattractive (perhaps even dangerous) because it’s imperfect in

various ways.
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Part 1: foundational concepts (4)

▶ Example:

module fa( output wire co,
output wire s,
input wire ci,
input wire x,
input wire y );

wire w0, w1, w2;

xor t0( w0, x, y );
and t1( w1, x, y );

xor t2( s, w0, ci );
and t3( w2, w0, ci );

or t4( co, w1, w2 );

endmodule

↦→
yx

ci

s

co
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Part 1: foundational concepts (5)

▶ Example: a model can be described in
1. a high-level, behaviour-oriented style, or
2. a low-level, implementation-oriented style, or
3. a hybrid of the two
so, e.g.,

Option #1: switch-level Verilog

At the lowest-level, the model can be described using individual transistors. For example, the four transistor instances

pmos( t, VDD, b );
pmos( a, t, c );
nmos( a, VSS, c );
nmos( a, VSS, b );

replicate the previous circuit for a MOSFET-based NOR gate, meaning they continuously drive the wire a with the the
result of evaluating ¬(b ∨ c).
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Part 1: foundational concepts (5)

▶ Example: a model can be described in
1. a high-level, behaviour-oriented style, or
2. a low-level, implementation-oriented style, or
3. a hybrid of the two
so, e.g.,

Option #2: gate-level Verilog

Forces the model to be described at a a low-level, using only primitive logic gates (e.g., AND, OR, NOT). For example,
the gate instantiation

nor t( a, b, c );

continuously drives the wire awith the the result of evaluating ¬(b ∨ c).
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Part 1: foundational concepts (5)

▶ Example: a model can be described in
1. a high-level, behaviour-oriented style, or
2. a low-level, implementation-oriented style, or
3. a hybrid of the two
so, e.g.,

Option #3: Register Transfer Level (RTL) Verilog

Uses a syntax similar to C, but focuses on describing the model in terms of the data-flow between components rather
than high-level statements. For example, the continuous assignment

assign a = ~( b | c )

continuously drives the wire awith the the result of evaluating ¬(b ∨ c).
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Part 1: foundational concepts (5)

▶ Example: a model can be described in
1. a high-level, behaviour-oriented style, or
2. a low-level, implementation-oriented style, or
3. a hybrid of the two
so, e.g.,

Option #4: behavioural-level Verilog

Allows a high-level, C-style description of the model using assignments, loops and conditional statements. For example,
the procedural assignment

a = ~( b | c )

sets the register a equal to the result of evaluating ¬(b ∨ c).
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Part 2: low-level modelling (1)
Wires and values

▶ Concept: wires (resp. wire vectors)
▶ are a form of net used to communicate values,
▶ e.g.,

• wire w ⇒ an internal 1-bit wire w
• wire [ 3 : 0 ] x ⇒ an internal 4-bit wire vector x
• input wire [ 3 : 0 ] y ⇒ an input 4-bit wire vector y
• output wire [ 3 : 0 ] z ⇒ an output 4-bit wire vector y
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Part 2: low-level modelling (2)
Wires and values

▶ Concept: values
1. support the concept of 3-state logic, e.g.,

• 0 ⇒ 0 (i.e., logical false)
• 1 ⇒ 1 (i.e., logical true)
• X ⇒ unknown (i.e., neither 1 or 0)
• Z ⇒ high impedance (i.e., disconnected )

2. can be written in binary, decimal, or hexadecimal, e.g.,
• 2'b10 ⇒ a 2-bit binary literal, with value 10(2), 2(10), or 2(16)
• 8'd17 ⇒ a 8-bit decimal literal, with value 00010001(2), 17(10), or 11(16)
• 4'hF ⇒ a 4-bit hexadecimal literal, with value 1111(2), 15(10), or F(16)

3. can include 3-state values on a per-bit basis, e.g.,
• 1'bX ⇒ a 1-bit binary literal; the bit is unknown
• 4'b10XZ ⇒ a 4-bit binary literal; the bits are high impedance, unknown, 0, and 1
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Part 2: low-level modelling (3)
Wires and values

▶ Analogy:

C

▶ The definition

char u ❀ 8 separate 1-bit elements

but u is typically used as 1 single 8-bit object.
▶ The definition

char v[ 32 ] ❀ 32 separate 8-bit elements

and v is typically used as 32 separate 8-bit elements.

Verilog

▶ The definition

wire x ❀ 1 single 1-bit wire

and u is used as 1 single 1-bit object.
▶ The definition

wire [ 3 : 0 ] y ❀ 4 separate 1-bit wires

such that

1. y can be used as 1 single 4-bit object, or
2. y can be used as 4 separate 1-bit wires.

but, beware:
▶ a wire (resp. wire vector) cannot retain state (e.g., doesn’t behave like a C variable),
▶ we need to drive a value on it.
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Part 2: low-level modelling (4)
Wires and values

▶ Concept: subscript operator.
▶ consider a case where x = 8'b11110000, and

wire [ 7 : 0 ] x;

x[ 0 ]x[ 1 ]x[ 2 ]x[ 3 ]x[ 4 ]x[ 5 ]x[ 6 ]x[ 7 ]

x[ 7 : 4 ] x[ 3 : 0 ]

▶ we have that
▶ x[ 7 ], x[ 6 ], x[ 5 ] and x[ 4 ] are all 1-bit wires with value 1'b1,
▶ x[ 3 ], x[ 2 ], x[ 1 ] and x[ 0 ], are all 1-bit wires with value 1'b0,
▶ x[ 7 : 4 ] is a 4-bit wire vector with value 4'b1111, and
▶ x[ 3 : 0 ] is a 4-bit wire vector with value 4'b0000.
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Part 2: low-level modelling (5)
Wires and values

▶ Concept: concatenate operator.
▶ consider a case where x = 2'b10, y = 1'b1, and z = 1'b0, and

wire ywire [ 1 : 0 ] x wire z

{ x, y, z }

r

r[ 3 ] r[ 2 ] r[ 1 ] r[ 0 ]

▶ we have that
▶ { x, y, z } is a 4-bit wire vector with value 4'b1010,
▶ r[ 3 ] is a 1-bit wire with value 1'b1 (matching x[ 1 ]),
▶ r[ 2 ] is a 1-bit wire with value 1'b0 (matching x[ 0 ]),
▶ r[ 1 ] is a 1-bit wire with value 1'b1 (matching y), and
▶ r[ 0 ] is a 1-bit wire with value 1'b0 (matching z).
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Part 2: low-level modelling (6)
Wires and values

▶ Concept: replicate operator.
▶ consider a case where x = 1'b1, and

wire x

{ 4{ x } }

r

r[ 3 ] r[ 2 ] r[ 1 ] r[ 0 ]

▶ we have that
▶ { 4{ x } } is a 4-bit wire vector with value 4'b1111,
▶ r[ 3 ] is a 1-bit wire with value 1'b1,
▶ r[ 2 ] is a 1-bit wire with value 1'b1,
▶ r[ 1 ] is a 1-bit wire with value 1'b1, and
▶ r[ 0 ] is a 1-bit wire with value 1'b1.
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Part 2: low-level modelling (7)
Modules

▶ Concept: module definition
▶ are a passive (or static) description of a component,
▶ e.g.,

Listing (Verilog)

1 module mux2_1bit( output wire r,
2 input wire c,
3 input wire x,
4 input wire y );
5
6 ...
7
8 endmodule

Listing (Verilog)

1 module mux2_1bit( r, c, x, y );
2
3 output wire r;
4 input wire c;
5 input wire x;
6 input wire y;
7
8 ...
9

10 endmodule

noting the two forms are equivalent.
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Part 2: low-level modelling (8)
Modules

▶ Concept: module instantiation
▶ are an active (or dynamic) use of a component,
▶ e.g.,

mux2_1bit t( s, k, p, q ); ↦→ c

x

y
r

q

p

k

st

where we’ve
▶ created an instance of the mux2_1bitmodule identified by t, and
▶ connected the internal ports r, c, x and y to the external wires s, k, p and q
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Part 2: low-level modelling (9)
Modules

▶ Analogy:

C

▶ A caller function invokes (or calls) a callee function.
▶ 1 shared copy of a callee function is used by n invocations.
▶ Each invocation excutes in sequence, and discontinuously.

Verilog

▶ A instanciator module instanciates a instantiatee module.
▶ n separate copies of a instantiatee module are produced by

n instanciations.
▶ Each instance operates in parallel, and continuously.
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Part 2: low-level modelling (10)
Module implementation using gate-level Verilog

▶ Concept: gate-level module implementation
▶ describes module behaviour via

1. primitive (or built-in) modules, and/or
2. other user-defined modules,

▶ e.g.,
buf t0( r, x ); ↦→ r = x
not t1( r, x ); ↦→ r = ¬x
nand t2( r, x, y ); ↦→ r = x ∧ y
nor t3( r, x, y ); ↦→ r = x ∨ y
and t4( r, x, y ); ↦→ r = x ∧ y
or t5( r, x, y ); ↦→ r = x ∨ y
xor t6( r, x, y ); ↦→ r = x ⊕ y

noting that multi-input varients such as
xor t8( r, w, x, y ); ↦→ r = w ⊕ x ⊕ y
xor t9( r, w, x, y, z ); ↦→ r = w ⊕ x ⊕ y ⊕ z

are automatically available.
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Part 2: low-level modelling (11)
Module implementation using gate-level Verilog

▶ Concept: User-Defined Primitives (UDPs)
▶ describe module behaviour via a truth table,
▶ doing so assumes it models a Boolean function of the form

f : {0, 1}n → {0, 1}
▶ e.g.,

Listing (Verilog)

1 primitive mux2_1bit( output r,
2 input c,
3 input x,
4 input y );
5 table
6 0 0 ? : 0;
7 0 1 ? : 1;
8 1 ? 0 : 0;
9 1 ? 1 : 1;

10 endtable
11
12 endprimitive

Truth table

c x y r
0 0 ? 0
0 1 ? 1
1 ? 0 0
1 ? 1 1

which can then be used per a user-defined module.
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• In terms the UDP, there can be as many inputs as you like, there can be one output (which is first in the port list); both inputs and
outputs must be 1-bit wires (i.e., wire vectors are not allowed).

• The ? symbol denotes don’t care, meaning the first line can be read as “when c and x are both 0 and y is any value, set r to 0”.

Part 2: low-level modelling (12)
Module implementation using gate-level Verilog

▶ Example:

Listing (Verilog)
1 module fa( output wire co,
2 output wire s,
3 input wire ci,
4 input wire x,
5 input wire y );
6
7 wire w0, w1, w2;
8
9 xor t0( w0, x, y );

10 and t1( w1, x, y );
11
12 xor t2( s, w0, ci );
13 and t3( w2, w0, ci );
14
15 or t4( co, w1, w2 );
16
17 endmodule

Circuit (full-adder)

yx

ci

s

co

t0 t2

t1 t3

t4

w0

w1 w2
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Part 2: low-level modelling (13)
Module implementation using gate-level Verilog

▶ Example:

Listing (Verilog)
1 module mux2_1bit( output wire r,
2 input wire c,
3 input wire x,
4 input wire y );
5
6 wire w0, w1, w2;
7
8 not t0( w0, c );
9

10 and t1( w1, x, w0 );
11 and t2( w2, y, c );
12
13 or t3( r, w1, w2 );
14
15 endmodule

Circuit (2-input, 1-bit multiplexer)

c

r

x

y

t1

t3

t2

t0
w0

w1

w2
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Part 2: low-level modelling (14)
Module implementation using gate-level Verilog

▶ Example:

Listing (Verilog)
1 module mux2_4bit( output wire [ 3 : 0 ] r,
2 input wire c,
3 input wire [ 3 : 0 ] x,
4 input wire [ 3 : 0 ] y );
5
6 mux2_1bit t0( r[ 0 ], c, x[ 0 ], y[ 0 ] );
7 mux2_1bit t1( r[ 1 ], c, x[ 1 ], y[ 1 ] );
8 mux2_1bit t2( r[ 2 ], c, x[ 2 ], y[ 2 ] );
9 mux2_1bit t3( r[ 3 ], c, x[ 3 ], y[ 3 ] );

10
11 endmodule

Circuit (2-input, 4-bit multiplexer)

c

x

y
r

c

x

y
r

c

x

y
r

c

x

y
r

r0
x0
y0

c

r1
x1
y1

c

r2
x2
y2

c

r3
x3
y3

c

t0

t1

t2

t3
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Part 2: low-level modelling (15)
Module implementation using gate-level Verilog

▶ Example:

Listing (Verilog)
1 module mux4_1bit( output wire r,
2 input wire c0,
3 input wire c1,
4 input wire w,
5 input wire x,
6 input wire y,
7 input wire z );
8
9 wire w0, w1;

10
11 mux2_1bit t0( w0, c0, w, x );
12 mux2_1bit t1( w1, c0, y, z );
13 mux2_1bit t2( r, c1, w0, w1 );
14
15 endmodule

Circuit (4-input, 1-bit multiplexer)

c

x

y
r

c

x

y
r

c

x

y
r

c0

w
x

c1

r

c0

y
z

t0

t2

t1

w0

w1
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Part 2: low-level modelling (16)
Module implementation using RTL-level Verilog

▶ Concept: Register Transfer Level (RTL) module implementation
▶ describes module behaviour via

1. a set of continuous assignments, plus
2. any additional gate-level description

▶ e.g.,

assign r = ( x | y ) & z; ↦→ or t0( w, x, y );
and t1( r, w, z ); ↦→

t0

t1

x
y

z r

w

▶ the LHS must be a wire or wire vector, whereas
▶ the RHS can contain many C-style operators
▶ arithmetic operators, e.g., +, -, and *,
▶ logical operators, e.g., <<, >>, ~, &, |, and ^,
▶ comparison operators, e.g., ==, >, and <.
involving wires or wire vectors as operands.

but, beware:
▶ it’s tempting to think of this as analogous to a C assignment,
▶ this is dangerous, because the RTL version is continuous.
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Part 2: low-level modelling (17)
Module implementation using RTL-level Verilog

▶ Concept: reduction operator.
▶ consider a case where wire [ 3 : 0 ] x, wire [ 3 : 0 ] y, and wire c,
▶ we have that

^x ↦→ ( ( x[3] ^ x[2] ) ^ x[1] ) ^ x[0]

so is analagous to reduce (or foldr) in Haskell.
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Part 2: low-level modelling (18)
Module implementation using RTL-level Verilog

▶ Concept: ternary operator.
▶ consider a case where wire [ 3 : 0 ] x, wire [ 3 : 0 ] y, and wire c,
▶ we have that

c ? y : x ↦→
{
x if c = 0
y if c = 1

so is analagous to a 2-input multiplexer.
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Part 2: low-level modelling (19)
Module implementation using RTL-level Verilog

▶ Example:

Listing (Verilog)
1 module fa( output wire co,
2 output wire s,
3 input wire ci,
4 input wire x,
5 input wire y );
6
7 wire w0, w1, w2;
8
9 xor t0( w0, x, y );

10 and t1( w1, x, y );
11
12 xor t2( s, w0, ci );
13 and t3( w2, w0, ci );
14
15 or t4( co, w1, w2 );
16
17 endmodule

Listing (Verilog)
1 module fa( output wire co,
2 output wire s,
3 input wire ci,
4 input wire x,
5 input wire y );
6
7 wire [ 1 : 0 ] t;
8
9 assign t = ci + x + y;

10
11 assign s = t[ 0 ];
12 assign co = t[ 1 ];
13
14 endmodule
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Part 2: low-level modelling (19)
Module implementation using RTL-level Verilog

▶ Example:

Listing (Verilog)
1 module fa( output wire co,
2 output wire s,
3 input wire ci,
4 input wire x,
5 input wire y );
6
7 wire w0, w1, w2;
8
9 xor t0( w0, x, y );

10 and t1( w1, x, y );
11
12 xor t2( s, w0, ci );
13 and t3( w2, w0, ci );
14
15 or t4( co, w1, w2 );
16
17 endmodule

Listing (Verilog)
1 module fa( output wire co,
2 output wire s,
3 input wire ci,
4 input wire x,
5 input wire y );
6
7 assign { co, s } = ci + x + y;
8
9 endmodule
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Part 2: low-level modelling (20)
Module implementation using RTL-level Verilog

▶ Example:

Listing (Verilog)
1 module mux2_1bit( output wire r,
2 input wire c,
3 input wire x,
4 input wire y );
5
6 wire w0, w1, w2;
7
8 not t0( w0, c );
9

10 and t1( w1, x, w0 );
11 and t2( w2, y, c );
12
13 or t3( r, w1, w2 );
14
15 endmodule

Listing (Verilog)
1 module mux2_1bit( output wire r,
2 input wire c,
3 input wire x,
4 input wire y );
5
6 assign r = c ? y : x;
7
8 endmodule
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Part 2: low-level modelling (21)
Module implementation using RTL-level Verilog

▶ Example:

Listing (Verilog)
1 module mux2_4bit( output wire [ 3 : 0 ] r,
2 input wire c,
3 input wire [ 3 : 0 ] x,
4 input wire [ 3 : 0 ] y );
5
6 mux2_1bit t0( r[ 0 ], c, x[ 0 ], y[ 0 ] );
7 mux2_1bit t1( r[ 1 ], c, x[ 1 ], y[ 1 ] );
8 mux2_1bit t2( r[ 2 ], c, x[ 2 ], y[ 2 ] );
9 mux2_1bit t3( r[ 3 ], c, x[ 3 ], y[ 3 ] );

10
11 endmodule

Listing (Verilog)
1 module mux2_4bit( output wire [ 3 : 0 ] r,
2 input wire c,
3 input wire [ 3 : 0 ] x,
4 input wire [ 3 : 0 ] y );
5
6 assign r = c ? y : x;
7
8 endmodule
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Part 2: low-level modelling (22)
Module implementation using RTL-level Verilog

▶ Example:

Listing (Verilog)
1 module mux4_1bit( output wire r,
2 input wire c0,
3 input wire c1,
4 input wire w,
5 input wire x,
6 input wire y,
7 input wire z );
8
9 wire w0, w1, w2, w3, w4, w5;

10
11 not t0( w0, c0 );
12 not t1( w1, c1 );
13
14 and t2( w2, w0, w1, w );
15 and t3( w3, c0, w1, x );
16 and t4( w4, w0, c1, y );
17 and t5( w5, c0, c1, z );
18
19 or t6( r, w2, w3, w4, w5 );
20
21 endmodule

Listing (Verilog)
1 module mux4_1bit( output wire r,
2 input wire c0,
3 input wire c1,
4 input wire w,
5 input wire x,
6 input wire y,
7 input wire z );
8
9 assign r = c1 ? ( c0 ? z : y ) :

10 ( c0 ? x : w ) ;
11
12 endmodule
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Part 3: high-level modelling (1)
Registers

▶ Concept: registers (resp. register vectors)
▶ are a form of net used to store values (i.e., retain state),
▶ e.g.,

• reg w ⇒ an internal 1-bit register w
• reg [ 3 : 0 ] x ⇒ an internal 4-bit register vector x

but, beware: registers feel analogous to C-style variables, but care is required re. use.
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Part 3: high-level modelling (2)
Registers

▶ Concept: module interfacing rules

Definition

input wire
wire

or
reg

output wire
or

output reg
wire

inout wire

wire

which are somewhat intuitive when read as

input port :
{

externally can be a wire or reg
internally must be a wire

output port :
{

internally can be a wire or reg
externally must be a wire

i.e., we must be pessimistic when crossing the module boundary.
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• There is an extra port type in this diagram: an inout port models bi-directional (i.e., input and output) rather than uni-directional (i.e.,
input or output) communication.

Part 3: high-level modelling (3)
Module implementation using behavioural-level Verilog

▶ Concept: behavioural-level module implementation
▶ describes module behaviour via

• (at least partly) using processes,
• each process is formed from blocks of statements,
• each process is “executed” in parallel with the others once triggered.

▶ e.g.,

Listing (Verilog)

1 initial begin:id
2 ...
3 end

Listing (Verilog)

1 always begin:id
2 ...
3 end

shows the two process types

• initial ⇒ triggered only once (when the module is first powered-on)
• always ⇒ triggered in a loop (as long as the module is powered-on)

noting the right-hand case is problematic as is ...
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• There is an implicit dependence on time and therefore state: if statements are executed as steps in sequence, we need to “remember”
values between steps.

• A statement (or block) cannot exist outside a process, and a process cannot exist outside a module; this would be analogous to writing an
if statement outside any function in C for example.

• We can still mix styles, so it is okay to describe the behaviour of a module partly in RTL and partly as a behavioural process for example.

• Each behavioural process (or block) is composed only of behavioural statements: you can’t place other things in them, with examples
including module instanciations (in an attempt to “call” a module like C function).



Part 3: high-level modelling (3)
Module implementation using behavioural-level Verilog

▶ Concept: behavioural-level module implementation
▶ describes module behaviour via

• (at least partly) using processes,
• each process is formed from blocks of statements,
• each process is “executed” in parallel with the others once triggered.

▶ e.g.,

Listing (Verilog)

1 always @ ( x ) begin
2 ...
3 end

Listing (Verilog)

1 always @ ( posedge x ) begin
2 ...
3 end

Listing (Verilog)

1 always @ ( negedge x ) begin
2 ...
3 end

shows processes that are triggered via a sensitivity list:

• @( x ) ⇒ triggers when x changes
• @( posedge x ) ⇒ triggers when x changes from 0 to 1 (a positive edge)
• @( negedge x ) ⇒ triggers when x changes from 1 to 0 (a negative edge)
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• There is an implicit dependence on time and therefore state: if statements are executed as steps in sequence, we need to “remember”
values between steps.

• A statement (or block) cannot exist outside a process, and a process cannot exist outside a module; this would be analogous to writing an
if statement outside any function in C for example.

• We can still mix styles, so it is okay to describe the behaviour of a module partly in RTL and partly as a behavioural process for example.

• Each behavioural process (or block) is composed only of behavioural statements: you can’t place other things in them, with examples
including module instanciations (in an attempt to “call” a module like C function).

Part 3: high-level modelling (4)
Module implementation using behavioural-level Verilog

▶ Concept: procedural assignment, e.g.,

Listing (Verilog)
1 module foo( input wire clk );
2
3 reg x, y;
4
5 always @ ( posedge clk ) begin
6 x = 1'b0;
7 y = 1'b1;
8 end
9

10 endmodule

which differ from a continuous assignment: they
1. must use a reigster as the LHS (versus a wire), and
2. the LHS is assigned to whatever the RHS evaluates to when the statement executes (versus

whenever the RHS changes).
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Part 3: high-level modelling (4)
Module implementation using behavioural-level Verilog

▶ Concept: procedural assignment, e.g.,

Listing (Verilog)
1 module foo( input wire clk );
2
3 reg x, y;
4
5 always @ ( posedge clk ) begin
6 x = 1'b0;
7 y = 1'b1;
8 end
9

10 endmodule

which can introduce modelled delay:
▶ a regular delay, e.g.,

#10 x = 0;

means that, relative to the previous statement, this one will execute 10 time units later, whereas
▶ an intra-assignment delay, e.g.,

x = #10 0;

means that the RHS is evaluated straight away, but only assigned to the LHS after 10 time
units.
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Part 3: high-level modelling (4)
Module implementation using behavioural-level Verilog

▶ Concept: procedural assignment, e.g.,

Listing (Verilog)
1 module foo( input wire clk );
2
3 reg x, y;
4
5 always @ ( posedge clk ) begin
6 x = 1'b0;
7 y = 1'b1;
8 end
9

10 endmodule

which come in blocking or non-blocking variants:
▶ if we write

x = 0; y = 1;

then the assignment to y is blocked until the assignment to x is executed, whereas
▶ if we write

x <= 0; y <= 1;

then the assignments to x and y are executed in parallel.
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Part 3: high-level modelling (5)
Module implementation using behavioural-level Verilog

▶ Concept: conditional statements, e.g.,

Listing (Verilog)
1 module bar( input wire clk );
2
3 reg x, y;
4
5 always @ ( posedge clk ) begin
6 if( x == 1'b0 ) begin
7 y = 1'b1;
8 end else begin
9 y = 1'b0;

10 end
11 end
12
13 endmodule

Listing (Verilog)
1 module baz( input wire clk );
2
3 reg x, y;
4
5 always @ ( posedge clk ) begin
6 case( x )
7 1'b0 : y = 1'b1;
8 1'b1 : y = 1'b0;
9 default : y = 1'b0;

10 endcase
11 end
12
13 endmodule

noting that
▶ it starts to be attractive to leave out the begin and end keywords for single line blocks; this is

equivalent to the same rule with “curly braces” in C,
▶ we need to take care with unknown or high impedance values; if x doesn’t equal 0 or 1 you

may get unexpected behaviour.
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Part 3: high-level modelling (6)
Module implementation using behavioural-level Verilog

▶ Example:

Listing (Verilog)
1 module dff( input wire en,
2
3 input wire D,
4 output wire Q );
5
6 wire w0, w1, w2, w3, w4, w5, w6, w7;
7
8 not t0( w0, en );
9 and t1( w1, w0, en );

10
11 buf t2( w2, D );
12 not t3( w3, D );
13
14 and t4( w4, w2, w1 );
15 and t5( w5, w3, w1 );
16
17 nor t6( w6, w4, w7 );
18 nor t7( w7, w5, w6 );
19
20 buf t8( Q, w7 );
21
22 endmodule

Circuit

¬Q

Q

en

D t6

t7

t4

t5

t1t0 t3

w0

w1

w2

w3

w4 w6

w5 w7
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Part 3: high-level modelling (6)
Module implementation using behavioural-level Verilog

▶ Example:

Listing (Verilog)
1 module dff( input wire en,
2
3 input wire D,
4 output wire Q );
5
6 reg t;
7
8 assign Q = t;
9

10 always @ ( posedge en ) begin
11 t = D;
12 end
13
14 endmodule

Circuit

¬Q

Q

en

D t6

t7

t4

t5

t1t0 t3

w0

w1

w2

w3

w4 w6

w5 w7
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Part 3: high-level modelling (7)
Module implementation using behavioural-level Verilog

▶ Example:

Algorithm

Sevenstart Sodd

Xi = 0

Xi = 1

Xi = 0

Xi = 1

Listing (Verilog)
1 module fsm( input wire clk,
2
3 output wire r,
4 input wire X );
5
6 reg Q;
7
8 assign r = ( Q == 1'b0 );
9

10 initial begin
11 Q = 1'b0;
12 end
13
14 always @ ( posedge clk ) begin
15 case( { Q, X } )
16 { 1'b0, 1'b0 } : Q = 1'b1;
17 { 1'b0, 1'b1 } : Q = 1'b0;
18 { 1'b1, 1'b0 } : Q = 1'b0;
19 { 1'b1, 1'b1 } : Q = 1'b1;
20 endcase
21 end
22
23 endmodule
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Part 4: development concepts (1)
Testing

▶ Concept: test stimulus (or test harness).

f

x0

x1

xn−1

r0

r1

rm−1

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 4: development concepts (1)
Testing

▶ Concept: test stimulus (or test harness).

X

x0

x1

x2

x3

r0

r1

r2

r3
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Part 4: development concepts (1)
Testing

▶ Concept: test stimulus (or test harness).

X

x0

x1

x2

x3

r0

r1

r2

r3

? ?
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Part 4: development concepts (1)
Testing

▶ Concept: test stimulus (or test harness).

X

x0

x1

x2

x3

r0

r1

r2

r3

X_test

reg x0

reg x1

reg x2

reg x3

wire r0

wire r1

wire r2

wire r3
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Part 4: development concepts (1)
Testing

▶ Concept: test stimulus (or test harness)

X

x0

x1

x2

x3

r0

r1

r2

r3

X_test

reg x0

reg x1

reg x2

reg x3

wire r0

wire r1

wire r2

wire r3

si
m

ul
at

io
n

en
vi

ro
nm

en
t

noting that X_test
▶ is termed a (or the) top-level module in the sense it has no inputs or outputs,
▶ can interact with the simuation environment is via system tasks and system functions, e.g.,

• $random ⇒ generates random value(s)
• $display ⇒ displays value(s) synchronously
• $monitor ⇒ displays value(s) asynchronously
• $stop ⇒ halt current simulation
• $finish ⇒ terminate current simulation

▶ will apply some form of test strategy to the instance of X.
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Part 4: development concepts (2)
Testing

▶ Example:

Listing (Verilog)
1 module fa_test();
2
3 wire t_co, t_s;
4 reg t_ci; t_x, t_y;
5
6 fa t( .co( t_co ), .s( t_s ), .ci( t_ci ), .x( t_x ), .y( t_y ) );
7
8 initial begin
9 #10 t_ci = 1'b0; t_x = 1'b0; t_y = 1'b0;

10 #10 $display( "co=%b s=%b ci=%b x=%b y=%b", t_co, t_s, t_ci, t_x, t_y );
11 #10 t_ci = 1'b0; t_x = 1'b0; t_y = 1'b1;
12 #10 $display( "co=%b s=%b ci=%b x=%b y=%b", t_co, t_s, t_ci, t_x, t_y );
13 #10 t_ci = 1'b0; t_x = 1'b1; t_y = 1'b0;
14 #10 $display( "co=%b s=%b ci=%b x=%b y=%b", t_co, t_s, t_ci, t_x, t_y );
15 #10 t_ci = 1'b0; t_x = 1'b1; t_y = 1'b1;
16 #10 $display( "co=%b s=%b ci=%b x=%b y=%b", t_co, t_s, t_ci, t_x, t_y );
17
18 #10 $finish;
19 end
20
21 endmodule
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Part 4: development concepts (3)
Testing

▶ Example:

Listing (Verilog)
1 module fa_test();
2
3 wire t_co, t_s;
4 reg t_ci; t_x, t_y;
5
6 fa t( .co( t_co ), .s( t_s ), .ci( t_ci ), .x( t_x ), .y( t_y ) );
7
8 initial begin
9 $monitor( "co=%b s=%b ci=%b x=%b y=%b", t_co, t_s, t_ci, t_x, t_y );

10
11 $monitoron;
12
13 #10 t_ci = 1'b0; t_x = 1'b0; t_y = 1'b0;
14 #10 t_ci = 1'b0; t_x = 1'b0; t_y = 1'b1;
15 #10 t_ci = 1'b0; t_x = 1'b1; t_y = 1'b0;
16 #10 t_ci = 1'b0; t_x = 1'b1; t_y = 1'b1;
17
18 #10 $monitoroff;
19 $finish;
20 end
21
22 endmodule
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Part 4: development concepts (4)
“Quality-of-life” features

▶ Concept: a “better” model ❀ greater generalisation, maintainability, etc.
1. We can use a pre-processor to
▶ define symbolic names for literals, e.g.,

`define TRUE 1
then

▶ use those symbolic names e.g.,
assign r = x ^ `TRUE;

2. We can use named ports to avoid misconnections, e.g.,
fa t( .co(a), .s(b), .ci(c), .x(d), .y(e) );

is the same as
fa t( .co(a), .s(b), .ci(c), .y(e), .x(d) );

3. We can parametrise modules:
▶ their interface and behaviour is be specified by a single fragment of source code,
▶ each instance can be altered to suit the context it is used in.

4. We can generate “regular” fragments of source code (cf. meta-programming, versus “copy
and paste”).
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Part 4: development concepts (5)
“Quality-of-life” features: pre-processor

▶ Example:

Listing (Verilog)
1 `define N 8
2
3 module mux2_nbit( output wire [ `N - 1 : 0 ] r,
4 input wire c,
5 input wire [ `N - 1 : 0 ] x,
6 input wire [ `N - 1 : 0 ] y );
7
8 assign r = c ? y : x;
9

10 endmodule
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Part 4: development concepts (6)
“Quality-of-life” features: pre-processor

▶ Example:

Listing (Verilog)
1 module mux2_1bit( output wire r,
2 input wire c,
3 input wire x,
4 input wire y );
5
6 `ifdef GATES
7 wire w0, w1, w2;
8
9 not t0( w0, c );

10
11 and t1( w1, x, w0 );
12 and t2( w2, y, c );
13
14 or t3( r, w1, w2 );
15 `else
16 assign r = c ? y : x;
17 `endif
18
19 endmodule
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Part 4: development concepts (7)
“Quality-of-life” features: parameterisation

▶ Example:

Listing (Verilog)
1 module mux2_nbit( r, c, x, y );
2
3 parameter N = 1;
4
5 output wire [ N - 1 : 0 ] r;
6 input wire c;
7 input wire [ N - 1 : 0 ] x;
8 input wire [ N - 1 : 0 ] y;
9

10 assign r = c ? y : x;
11
12 endmodule

Listing (Verilog)
1 module mux2_4bit( output wire [ 3 : 0 ] r,
2 input wire c,
3 input wire [ 3 : 0 ] x,
4 input wire [ 3 : 0 ] y );
5
6 mux2_nbit t( r, c, x, y );
7
8 defparam t.N = 4;
9

10 endmodule
11
12 module mux2_8bit( output wire [ 7 : 0 ] r,
13 input wire c,
14 input wire [ 7 : 0 ] x,
15 input wire [ 7 : 0 ] y );
16
17 mux2_nbit t( r, c, x, y );
18
19 defparam t.N = 8;
20
21 endmodule
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Part 4: development concepts (8)
“Quality-of-life” features: generation

▶ Example:

Listing (Verilog)
1 module mux2_4bit( output wire [ 3 : 0 ] r,
2 input wire c,
3 input wire [ 3 : 0 ] x,
4 input wire [ 3 : 0 ] y );
5
6 mux2_1bit t0( r[ 0 ], c, x[ 0 ], y[ 0 ] );
7 mux2_1bit t1( r[ 1 ], c, x[ 1 ], y[ 1 ] );
8 mux2_1bit t2( r[ 2 ], c, x[ 2 ], y[ 2 ] );
9 mux2_1bit t3( r[ 3 ], c, x[ 3 ], y[ 3 ] );

10
11 endmodule

Listing (Verilog)
1 module mux2_4bit( output wire [ 3 : 0 ] r,
2 input wire c,
3 input wire [ 3 : 0 ] x,
4 input wire [ 3 : 0 ] y );
5 genvar i;
6
7 generate
8 for( i = 0; i < 4; i = i + 1 ) begin:id
9 mux2_1bit t( r[ i ], c, x[ i ], y[ i ] );

10 end
11 endgenerate
12
13 endmodule
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Conclusions

▶ Take away points:
1. In essence, a HDL model is just machine-readable short-hand for a design you could develop

and reason about on paper.
2. It’s important to remember that, despite appearances,

HDL modelling ≠ software development,

i.e., you still have to understand the fundamentals and “think in hardware”.
3. Even within this unit, HDLs offer various useful properties, e.g.,
▶ adopt a more accurate experimental approach to design,
▶ deal with designs of a larger scale,
▶ interface with other concepts (e.g., verification),
▶ ...
so some up-front, invested effort could pay off ...
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Conclusions
▶ Example: Field Programmable Gate Arrays (FPGAs).

▶ basic idea is that the hardware fabric is reconfigurable, so, in a sense,

hardware
(e.g., ASIC)

hybrid
(e.g., FPGA)

software
(e.g., micro-processor)

▶ and therefore offers a trade-off:
efficiency ≃ hardware
flexibility ≃ software
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Additional Reading

▶ Wikipedia: Hardware Description Language (HDL). url: https://en.wikipedia.org/wiki/Hardware_description_language.
▶ Wikipedia: Verilog. url: https://en.wikipedia.org/wiki/Verilog.
▶ S. Palnitkar. Verilog HDL: A Guide in Digital Design and Synthesis. 2nd ed. Prentice Hall, 2003.
▶ D. Page. “Chapter 3: Hardware design using Verilog”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.
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