Computer Architecture

Daniel Page

Department of Computer Science, University Of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB. UK. ⟨csdsp@bristol.ac.uk⟩

September 5, 2025

Keep in mind there are *two* PDFs available (of which this is the latter):

- 1. a PDF of examinable material used as lecture slides, and
- 2. a PDF of non-examinable, extra material:
 - the associated notes page may be pre-populated with extra, written explaination of material covered in lecture(s), plus

 anything with a "grey'ed out" header/footer represents extra material which is
 - useful and/or interesting but out of scope (and hence not covered).

Notes.		
1		
1		
1		
Notes:		

COMS10015 lecture: week #7

► Concept: consider

$$\begin{array}{ccc} \hat{x} & \mapsto & x \\ \hat{y} & \mapsto & y \end{array}$$

© Daniel Page (csdsp@bristol.ac.uk)	
Computer Architecture	

git # b282dbb9 @ 2025-09-03

COMS10015 lecture: week #7

► Concept: consider

$$\begin{array}{cccc} \hat{x} & \longmapsto & x \\ \hat{y} & \longmapsto & y \\ & & r = x \times y \end{array}$$

Notes:	

Notes:		

COMS10015 lecture: week #7

► Concept: consider

where *f*

- 1. has an action on \hat{x} and \hat{y} compatible with that of \times on x and y:
 - accepts *n*-bit
 - multiplier ŷ (that "does the multiplying"), and
 multiplicand û (that "is multiplied")

as input, and

- produces an $(2 \cdot n)$ -bit **product** \hat{r} as output,
- 2. is a Boolean function:

$$f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^{2 \cdot n}$$

COMS10015 lecture: week #7

- ► Agenda: produce a design(s) for *f* , which
 - 1. functions correctly, and
 - 2. satisfies pertinent quality metrics (e.g., is efficient in time and/or space).

	Notes:
_	
	Notes:

COMS10015 lecture: week #7

Quote

I do not like \times as a symbol for multiplication, as it is easily confounded with x; often I simply relate two quantities by an interposed dot and indicate multiplication by $ZC \cdot LM$.

- Leibniz (https://en.wikiquote.org/wiki/Gottfried_Leibniz)

git # b282dbb9 @ 2025-09-03

COMS10015 lecture: week #7

NT .			
Notes:			

Part 1: multiplication in theory (1)

Example							
$x = 623_{(10)} \mapsto$				6	2	3	
$y = 567_{(10)} \mapsto$				5	6	7	X
$p_0 = 7 \cdot 3 \cdot 10^0 = 21_{(10)} \mapsto$					2	1	•
$p_1 = 7 \cdot 2 \cdot 10^1 = 140_{(10)} \mapsto$				1	4		
$p_2 = 7 \cdot 6 \cdot 10^2 = 4200_{(10)} \mapsto$			4	2			
$p_3 = 6 \cdot 3 \cdot 10^1 = 180_{(10)} \mapsto$				1	8		
$p_4 = 6 \cdot 2 \cdot 10^2 = 1200_{(10)} \mapsto$			1	2			
$p_5 = 6 \cdot 6 \cdot 10^3 = 36000_{(10)} \mapsto$		3	6				
$p_6 = 5 \cdot 3 \cdot 10^2 = 1500_{(10)} \mapsto$			1	5			
$p_7 = 5 \cdot 2 \cdot 10^3 = 10000_{(10)} \mapsto$		1	0				
$p_8 = 5 \cdot 6 \cdot 10^4 = 300000_{(10)} \mapsto$	3	0					
$r = 353241_{(10)} \mapsto$	3	5	3	2	4	1	•
, ,							•

© Daniel Page (csdsp@bristol.ac.uk)	University of BRISTOL	
Computer Architecture	S BRISTOL	git # b282dbb9 @ 2025-09-03

Part 1: multiplication in theory (2)

	Notes:	
_		

Notes:	

Part 2: multiplication in practice: an algorithm (1) $_{\mbox{\scriptsize Operand scanning}}$

```
Algorithm (operand scanning)
   Input: Two unsigned, base-b integers x and y
   Output: An unsigned, base-b integer r = x \cdot y
1 \quad l_x \leftarrow |x|, l_y \leftarrow |y|, l_r \leftarrow l_x + l_y
r \leftarrow 0
3 for j = 0 upto l_y - 1 step +1 do
     |c \leftarrow 0
       for i = 0 upto l_x - 1 step +1 do
          u \cdot b + v = t \leftarrow y_j \cdot x_i + r_{j+i} + c
          r_{j+i} \leftarrow v
          c \leftarrow u
       end
10
      r_{j+lx} \leftarrow c
11 end
12 return r
```

```
© Daniel Page ( - displants of acc. )

Computer Architecture

Str. University of BRISTOL git # b282dbb9 @ 2025-
```

Part 2: multiplication in practice: an algorithm (2) Operand scanning

era	nd	scanning)							
Consider a case where $b = 10$, $x = 623_{(10)}$ and $y = 567_{(10)}$:									
j	i	r	С	y_i	x_j	$t = y_i \cdot x_i + r_{i+j} + c$	r'	c'	
		(0,0,0,0,0,0)							
0	0	(0,0,0,0,0,0)	0	7	3	21	$\langle 1, 0, 0, 0, 0, 0 \rangle$	2	
0	1	$\langle 1, 0, 0, 0, 0, 0, 0 \rangle$	2	7	2	16	$\langle 1, 6, 0, 0, 0, 0 \rangle$	1	
0	2	$\langle 1, 6, 0, 0, 0, 0, 0 \rangle$	1	7	6	43	$\langle 1, 6, 3, 0, 0, 0 \rangle$	4	
0		$\langle 1, 6, 3, 0, 0, 0 \rangle$	4				$\langle 1, 6, 3, 4, 0, 0 \rangle$		
1	0	$\langle 1, 6, 3, 4, 0, 0 \rangle$	0	6	3	24	$\langle 1, 4, 3, 4, 0, 0 \rangle$	2	
1	1	$\langle 1, 4, 3, 4, 0, 0 \rangle$	2	6	2	17	$\langle 1, 4, 7, 4, 0, 0 \rangle$	1	
1	2	$\langle 1, 4, 7, 4, 0, 0 \rangle$	1	6	6	41	$\langle 1, 4, 7, 1, 0, 0 \rangle$	4	
1		$\langle 1, 4, 7, 1, 0, 0 \rangle$	4				$\langle 1, 4, 7, 1, 4, 0 \rangle$		
2	0	$\langle 1, 4, 7, 1, 4, 0 \rangle$	0	5	3	22	$\langle 1, 4, 2, 1, 4, 0 \rangle$	2	
2	1	$\langle 1, 4, 2, 1, 4, 0 \rangle$	2	5	2	13	$\langle 1, 4, 2, 3, 4, 0 \rangle$	1	
2	2	,	1	5	6	35		3	
2		,	3			-		3	
		(1,4,2,3,5,3)					(, , , , -, -, -,		
F () () ()	0 0 0 0 1 1 1 1 2 2	nere $b = \frac{j i}{0 0}$ 0 0 1 0 2 0 1 1 0 1 1 2 1 2 0 2 1 2 2 2	there $b = 10, x = 623_{(10)}$ and j i r $0,0,0,0,0,0,0$ 0 $0,0,0,0,0,0,0$ 0 $1,0,0,0,0,0$ 0 $1,0,0,0,0,0$ 0 0 $1,0,0,0,0,0$ 0 0 $1,0,0,0,0,0$ 0 $1,0,0,0,0,0$ $1,0,0,0,0,0$ $1,0,0,0,0,0$ $1,0,0,0,0,0,0$ $1,0,0,0,0,0,0,0,0$ $1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$	phere $b = 10, x = 623_{(10)}$ and $y = \frac{j}{j}$ i r c c $(0,0,0,0,0,0,0)$ 0 0 $(0,0,0,0,0,0)$ 0 0 1 $(1,0,0,0,0,0)$ 2 0 2 $(1,6,0,0,0,0)$ 1 0 $(1,6,3,0,0,0)$ 4 1 0 $(1,6,3,4,0,0)$ 0 1 1 $(1,4,3,4,0,0)$ 2 1 2 $(1,4,7,4,0,0)$ 1 1 $(1,4,7,1,0,0)$ 4 2 0 $(1,4,7,1,4,0)$ 0 2 1 $(1,4,7,1,4,0)$ 0 2 2 1 $(1,4,2,1,4,0)$ 2 2 1 $(1,4,2,3,5,0)$ 3	nere $b = 10$, $x = 623_{(10)}$ and $y = 567_{(10)}$ $y = 567_{($	nere $b = 10$, $x = 623_{(10)}$ and $y = 567_{(10)}$: $ \begin{array}{c ccccc} \hline j & i & r & c & y_i & x_j \\ \hline 0 & 0 & \langle 0,0,0,0,0,0 \rangle & 0 & 7 & 3 \\ 0 & 1 & \langle 1,0,0,0,0,0 \rangle & 2 & 7 & 2 \\ 0 & 2 & \langle 1,6,0,0,0,0 \rangle & 1 & 7 & 6 \\ 0 & & \langle 1,6,3,0,0,0 \rangle & 4 \\ 1 & 0 & \langle 1,6,3,4,0,0 \rangle & 0 & 6 & 3 \\ 1 & 1 & \langle 1,4,3,4,0,0 \rangle & 2 & 6 & 2 \\ 1 & 2 & \langle 1,4,7,4,0,0 \rangle & 1 & 6 & 6 \\ 1 & & \langle 1,4,7,1,0,0 \rangle & 4 \\ 2 & 0 & \langle 1,4,7,1,4,0 \rangle & 0 & 5 & 3 \\ 2 & 1 & \langle 1,4,2,1,4,0 \rangle & 2 & 5 & 2 \\ 2 & 2 & \langle 1,4,2,3,5,0 \rangle & 3 \\ \end{array} $	here $b=10, x=623_{(10)}$ and $y=567_{(10)}$:	nere $b = 10, x = 623_{(10)}$ and $y = 567_{(10)}$: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

	Notes:	
L		

Part 2: multiplication in practice: an algorithm (3) Product scanning

```
Algorithm (product scanning)
   Input: Two unsigned, base-b integers x and y
   Output: An unsigned, base-b integer r = x \cdot y
1 \quad l_x \leftarrow |x|, l_y \leftarrow |y|, l_r \leftarrow l_x + l_y
r \leftarrow 0, c_0 \leftarrow 0, c_1 \leftarrow 0, c_2 \leftarrow 0
3 for k = 0 upto l_x + l_y - 1 step +1 do
      for j = 0 upto l_y - 1 step +1 do
            for i = 0 upto l_x - 1 step +1 do
             if (j + i) = k then
                   u \cdot b + v = t \leftarrow y_i \cdot x_i
                    c \cdot b + c_0 = t \leftarrow c_0 + v
                    c \cdot b + c_1 = t \leftarrow c_1 + u + c
10
                 c_2 \leftarrow c_2 + c
11
               end
12
            end
13
        end
14
       r_k \leftarrow c_0, c_0 \leftarrow c_1, c_1 \leftarrow c_2, c_2 \leftarrow 0
15 end
16 r_{l_x+l_y-1} \leftarrow c_0
```

```
© Daniel Page ( dapphristol.ac.u.)
Computer Architecture

Structure
University of
BRISTOL git # b282dbb9 @ 2025-09-03
```

Part 2: multiplication in practice: an algorithm (4) Product scanning

xam	ple	e (pi	rodi	uct scanning)									
nside	er a c	case 1	wher	e $b = 10$, $x = 623_{(1)}$	₀₎ and	y = 5	567(10)	:						
Γ	k	j	i	r	C2	<i>c</i> ₁	<i>C</i> 0	y_i	x_j	$t = y_i \cdot x_i$	r'	c_2'	c'_1	c_0'
Γ				(0,0,0,0,0,0)	0	0	0							
	0	0	0	(0,0,0,0,0,0)	0	0	0	7	3	21	(0,0,0,0,0,0)	0	2	1
	0			(0,0,0,0,0,0)	0	2	1				$\langle 1, 0, 0, 0, 0, 0 \rangle$	0	0	2
	1	0	1	$\langle 1, 0, 0, 0, 0, 0, 0 \rangle$	0	0	2	7	2	14	$\langle 1, 0, 0, 0, 0, 0 \rangle$	0	1	6
	1	1	0	$\langle 1, 0, 0, 0, 0, 0 \rangle$	0	1	6	6	3	18	$\langle 1, 0, 0, 0, 0, 0 \rangle$	0	3	4
	1			$\langle 1, 0, 0, 0, 0, 0 \rangle$	0	3	4				$\langle 1, 4, 0, 0, 0, 0 \rangle$	0	0	3
	2	0	2	$\langle 1, 4, 0, 0, 0, 0, 0 \rangle$	0	0	3	7	6	42	$\langle 1, 4, 0, 0, 0, 0 \rangle$	0	4	5
	2	1	1	$\langle 1, 4, 0, 0, 0, 0, 0 \rangle$	0	4	5	6	2	12	$\langle 1, 4, 0, 0, 0, 0 \rangle$	0	5	7
	2	2	0	$\langle 1, 4, 0, 0, 0, 0 \rangle$	0	4	7	5	3	15	$\langle 1, 4, 0, 0, 0, 0 \rangle$	0	7	2
	2			$\langle 1, 4, 0, 0, 0, 0 \rangle$	0	7	2				$\langle 1, 4, 2, 0, 0, 0 \rangle$	0	0	7
	3	1	2	$\langle 1, 4, 2, 0, 0, 0 \rangle$	0	0	7	6	6	36	$\langle 1, 4, 2, 0, 0, 0 \rangle$	0	4	3
	3	2	1	$\langle 1, 4, 2, 0, 0, 0 \rangle$	0	4	3	5	2	10	$\langle 1, 4, 2, 0, 0, 0 \rangle$	0	5	3
	3			$\langle 1, 4, 2, 0, 0, 0 \rangle$	0	5	3				$\langle 1, 4, 2, 3, 0, 0 \rangle$	0	0	5
	4	2	2	$\langle 1, 4, 2, 3, 0, 0 \rangle$	0	0	5	5	6	30	(1,4,2,3,0,0)	0	3	5
	4			$\langle 1, 4, 2, 3, 0, 0 \rangle$	0	3	5				(1,4,2,3,5,0)	0	0	3
				$\langle 1, 4, 2, 3, 5, 0 \rangle$	0	0	3				(1,4,2,3,5,3)	0	0	3
				(1,4,2,3,5,3)							` , , , , , , , , , , , , , , , , , ,			

Notes:	

Notes:			

Part 2: multiplication in practice: an algorithm (5) Repeated addition

► Idea:

multiplication means repeated addition, i.e.,

$$y \times x = \underbrace{x + x + \dots + x}_{y \text{ terms}},$$

so if $y = 14_{(10)}$ we have

 \triangleright expressing *y* in base-2, we can rewrite this as

$$y \times x = (\sum_{i=0}^{n-1} y_i \cdot 2^i) \times x$$

$$= (y_0 \cdot 2^0 + y_1 \cdot 2^1 + \dots + y_{n-1} \cdot 2^{n-1}) \times x$$

$$= (y_0 \cdot 2^0 \cdot x) + (y_1 \cdot 2^1 \cdot x) + \dots + (y_{n-1} \cdot 2^{n-1} \cdot x)$$

$$= (y_0 \cdot x \cdot 2^0) + (y_1 \cdot x \cdot 2^1) + \dots + (y_{n-1} \cdot x \cdot 2^{n-1})$$

```
© Daniel Page (codepidristol.ac.uk)

Computer Architecture

© W University of BRISTOL
```

Part 2: multiplication in practice: an algorithm (5) Repeated addition

- ► Idea:
 - given $y = 14_{(10)} = 1110_{(2)}$ we can see that

• given $y = 14_{(10)} = 1110_{(2)}$ we can see that

$$y \times x = y_0 \cdot x + 2 \cdot (y_1 \cdot x + 2 \cdot (y_2 \cdot x + 2 \cdot (y_3 \cdot x + 2 \cdot (0))))$$

$$= 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (0))))$$

$$= 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 0)))$$

$$= 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 0)))$$

$$= 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot x + 0))$$

$$= 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot x + 0))$$

$$= 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (3 \cdot x + 0))$$

$$= 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (3 \cdot x + 0))$$

$$= 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (3 \cdot x + 0))$$

$$= 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (3 \cdot x + 0))$$

$$= 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (3 \cdot x + 0))$$

$$= 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (3 \cdot x + 0))$$

$$= 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (3 \cdot x + 0))$$

via application of Horner's rule.

Part 3: multiplication in practice: a circuit (1) A combinatorial, bit-parallel design

▶ Idea: for b = 2 we now know

$$r = y \times x = \left(\sum_{i=0}^{n-1} y_i \cdot 2^i\right) \times x = \sum_{i=0}^{n-1} y_i \cdot x \cdot 2^i,$$

plus

ightharpoonup for any t,

$$y_i \cdot t = \begin{cases} 0 & \text{if } y_i = 0 \\ t & \text{if } y_i = 1 \end{cases}$$

ightharpoonup for any t,

$$t \cdot 2^i \equiv t \ll i,$$

so we can compute *r* via

- 1. some AND gates to generate partial products (i.e., $y_i \cdot x$),
- 2. some left-shift components to scale the partial products correctly (i.e., $y_i \cdot x \cdot 2^i$), and
- 3. some adder components to sum the scaled partial products.

© Daniel Page (csdsp@bristol.ac.uk)

Computer Architecture

University of BRISTOL

git # b282dbb9 @ 2025-09-03

Part 3: multiplication in practice: a circuit (2) A combinatorial, bit-parallel design

Design:

	liiation

- -ve: requires a larger data-path
- +ve: requires a smaller control-path (i.e., none at all)
- +ve: requires less steps (i.e., 1)
- -ve: has a longer critical path (meaning each step is longer)

(csdsp@bristol.ac.uk)	B K-
uter Architecture	<u>į k</u>

	Notes:

Part 3: multiplication in practice: a circuit (3) An iterative, bit-serial design

▶ Idea: for b = 2 we now know

$$r = y \times x = \left(\sum_{i=0}^{n-1} y_i \cdot 2^i\right) \times x = \sum_{i=0}^{n-1} y_i \cdot x \cdot 2^i,$$

so we can compute r by evaluating the Horner expansion: we

start with the general step

$$r' \leftarrow y_i \cdot x + 2 \cdot r$$
,

specialise it to read

$$r' \leftarrow \left\{ \begin{array}{ccc} 2 \cdot r & \equiv & (r \ll 1) & \text{if } y_i = 0 \\ x + 2 \cdot r & \equiv & x + (r \ll 1) & \text{if } y_i = 1 \end{array} \right.$$

using it to accumuate the result step-by-step.

© Daniel Page (csdsp@bristol.ac.uk)
Computer Architecture

Part 3: multiplication in practice: a circuit (3)

An iterative, bit-serial design

► Idea:

Algorithm

Input: Two unsigned, *n*-bit, base-2 integers *x*

Output: An unsigned, 2*n*-bit, base-2 integer $r = y \cdot x$

$$1 r \leftarrow 0$$

2 for
$$i = n - 1$$
 downto 0 step -1 do

$$\begin{vmatrix}
r \leftarrow 2 \cdot r \\
\text{if } y_i = 1 \text{ then} \\
\text{for } r \leftarrow r + x
\end{vmatrix}$$

end

7 end 8 return r

Example

Consider a case where $y = 14_{(10)} \mapsto 1110_{(2)}$:

ı	r	y_i	r	
	0			
3	0	1	x	$r' \leftarrow 2 \cdot r + x$
2	x	1	3 · x	$r' \leftarrow 2 \cdot r + x$
1	3 · x	1	7 · x	$r' \leftarrow 2 \cdot r + x$
0	7 · x	0	14 · x	$r' \leftarrow 2 \cdot r$
	$14 \cdot x$			

Notes:		

Notes:			

Part 3: multiplication in practice: a circuit (4) An iterative, bit-serial design

Design:

Evaluation:

- +ve: requires a smaller data-path
- -ve: requires a larger control-path (i.e., an entire FSM),
- -ve: requires more steps (i.e., n)
- +ve: has a shorter critical path (meaning each step is shorter)

Conclusions

► Take away points:

- 1. Computer arithmetic is a broad, interesting (sub-)field:
 - it's a broad topic with a rich history,
 - there's usually a large design space of potential approaches,
 they're often easy to understand at an intuitive, high level,

 - correctness and efficiency of resulting low-level solutions is vital and challenging.
- 2. The strategy we've employed is important and (fairly) general-purpose:

 - explore and understand an approach in theory,
 translate, formalise, and generalise the approach into an algorithm,
 - translate the algorithm, e.g., into circuit,
 - refine (or select) the circuit to satisfy any design constraints.

Notes:	
Notes:	

Additional Reading

- Wikipedia: Computer Arithmetic. url: https://en.wikipedia.org/wiki/Category:Computer_arithmetic.
- D. Page. "Chapter 7: Arithmetic and logic". In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.
- B. Parhami. "Part 3: Multiplication". In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford University Press, 2000.
- W. Stallings. "Chapter 10: Computer arithmetic". In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.
- A.S. Tanenbaum and T. Austin. "Section 3.2.2: Arithmetic circuits". In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012

© Daniel Page (csdsp@bristol.ac	
Computer Architecture	

git # b282dbb9 @ 2025-09-03

References

- [1] Wikipedia: Computer Arithmetic. url: https://en.wikipedia.org/wiki/Category:Computer_arithmetic (see p. 45).
- [2] D. Page. "Chapter 7: Arithmetic and logic". In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009 (see
- [3] B. Parhami. "Part 3: Multiplication". In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford University Press, 2000 (see p. 45).
- [4] W. Stallings. "Chapter 10: Computer arithmetic". In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013 (see p. 45).
- [5] A.S. Tanenbaum and T. Austin. "Section 3.2.2: Arithmetic circuits". In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012 (see p. 45).

Notes:		
Noton		
Notes:		