Computer Architecture

Daniel Page

Department of Computer Science,
University Of Bristol,
Merchant Venturers Building,
Woodland Road,

Bristol, BS8 1UB. UK.
({csdsp@bristol.ac.uk)

September 5, 2025

Keep in mind there are fwo PDFs available (of which this is the latter):
1. a PDF of examinable material used as lecture slides, and
2. a PDF of non-examinable, extra material:

> the associated notes page may be pre-populated with extra, written explaination of
material covered in lecture(s), plus

> anything with a “grey’ed out” header/footer represents extra material which is
useful and/or interesting but out of scope (and hence not covered).

Notes:

Notes:

COMS10015 lecture: week #7

. Notes:
> Concept: consider
X - x
y =y
© Daniel Page (BIKE University of
Computer Architecture ME] BRISTOL git # b282dbb9 @ 2025-09-03
COMS10015 lecture: week #7
Notes:

> Concept: consider

= =

= xXy

Computer Ary

COMS10015 lecture: week #7

Notes:
> Concept: consider
¥ - x
b -y
f&y) =7 > r = xxy

where f
1. has an action on % and {/ compatible with that of X on x and y:
> accepts n-bit

o multiplier § (that “does the multiplying”), and
e multiplicand X (that “is multiplied”)

as input, and
> produces an (2 - n)-bit product 7 as output,
2. is a Boolean function:

£:4{0,1}" x {0,1}"" — {0,1}*"

© Daniel P:

Computer Architecture

COMS10015 lecture: week #7

git #b282dbb9 @ 2025-09-03

Notes:

> Agenda: produce a design(s) for f, which

1. functions correctly, and
2. satisfies pertinent quality metrics (e.g., is efficient in time and/or space).

COMS10015 lecture: week #7

Quote

I do not like x as a symbol for multiplication, as it is easily confounded with x; often I simply relate two quantities by an
interposed dot and indicate multiplication by ZC - LM.

— Leibniz (https://en.wikiquote.org/wiki/Gottfried_Leibniz)

© Daniel Page (

Computer A

COMS10015 lecture: week #7

git # b282dbb9 @ 2

© Daniel Page (

mputer

Notes:

Notes:

Part 1: multiplication in theory (1)

x = 623(10) 6 2 3
y = 567(10) 5 6 7 X
po=7-3-100 = 211) 2 1
p1=7-2-10' = 14049 — 1 4
p2=7-6-10%> = 42007 4 2
p3=6-3-10' = 180 1 8
pa=6-2-10>= 12000 — 1 2
ps=6-6-10° = 36000(1) > 3 6

Pe=5-3-10% = 1500) > 1 5
p7=5-2-10° = 10000(1) - 1 0

ps =5-6-10* = 30000000~ 3 0

r o= 35324149 3 5 3 2 4 1

© Daniel P (

mputer Architecture

Part 1: multiplication in theory (2)

Consider an example where where |x| = |y| = 3:

N T

Notice that

1. an outer-loop steps through digits of y, say y;,

2. an inner-loop steps through digits of x, say x;.

k¢ University of

=]
M BRISTOL

git #b282dbb9 @

Consider an example where where x| = [y| = 3:

[% [~
Y1-Xo
Yo - x2
n-x
Y2-Xo
n-x2
[(Flnlnlnlnln]

Notice that
1. an outer-loop steps through digits of r, say r,

2. two inner-loops step through matching digits of y and
x, say yj and x;.

Notes:

Notes:

Part 2: multiplication in practice: an algorithm (1)
Operand scanning

Algorithm (operand scanning)

Input: Two unsigned, base-b integers x and y
Output: An unsigned, base-b integer r = x - y

Le— x|, Iy [yl I, < L+ 1
r«20
forj =0 uptol, — 1 step +1 do
c—20
fori = 0 upto [, — 1 step +1 do
6 u-b+tv=tey-xi+ritc
7 rj+i<—v
8 ce—u
9 end
10 Titly < C
11 end
12 returnr

G W N

© Daniel Page (EA University of

mputer Architecture B} BRISTOL git #b282dbb9 @ 2025-09-03

Part 2: multiplication in practice: an algorithm (2)
Operand scanning

Consider a case where b = 10, x = 623(10) and y = 567(19):

j i r c Y X t=yi-xitrajtce r Il
(0,0,0,0,0,0)

0 0] ¢0,00000 0 7 3 21 (1,0,0,0,0,0) 2

0 1] (100000 2 7 2 16 (1,6,0,0,0,0) 1

0 2160000 1 7 6 43 (1,6,3,0,0,0) 4

0 (1,6,3,0,0,0) 4 (1,6,3,4,0,0)

1 0] (63,400 0 6 3 24 (1,4,3,4,0,0) 2

1 1] (,43400 2 6 2 17 (1,4,7,4,0,0) 1

1 2|(,47400 1 6 6 41 (1,4,7,1,0,0) 4

1 (1,4,7,1,0,0) 4 (1,4,7,1,4,0)

2 0(1,47,1,400 0 5 3 2 (1,4,2,1,4,0) 2

2 11,421,400 2 5 2 13 (1,4,2,3,4,00 1

2 2 |(1,423,50 1 5 6 35 (1,4,2,3,5,0) 3

2 (1,4,2,3,5,00 3 (1,4,2,3,5,3) 3
(1,4,2,3,5,3)

Notes:

Notes:

Part 2: multiplication in practice: an algorithm (3)
Product scanning

Algorithm (product scanning)

Input: Two unsigned, base-b integers x and y

Output: An unsigned, base-b integer r = x - y
1y |x|/ly —yl I — 1L +ly

r«—0,c0—0,c0 < 0,00

fork = O upto Iy + 1, — 1 step +1 do

2

+ | forj=0uptol, — 1step +1 do

5 fori = 0 upto [, — 1 step +1 do
6 if (j + i) = k then

7 u-b+v:t<—yj~xi

8 c-b+cg=te—co+v

9 c-b+ci=te—c+u+c
10 Cp ¢« +cC

11 end

12 end

13 end

14 Tk € Co,Co «—C1,C1 < C2,c2 <0
15 end

16 Tix4ly-1 <= €0

© Daniiel Page (B University of
ME BRIS

mputer Architecture BRISTOL git # b282dbb9 @ 2025-09-03

Part 2: multiplication in practice: an algorithm (4)
Product scanning

Consider a case where b = 10, x = 623(10) and y = 56719):
ko j i r Qo ca c Y X t=yi-x r o ¢ q
(0,0,0,0,0,00 0 O 0
o 0 0/ ,00000 0 ©0 0o 7 3 21 (0,0,0,0,0,00 0 2 1
0 (0,0,0,0,0,00 0 2 1 (1,0,0,0,0,00 0 0 2
1 0 1] 00000 0 0 2 7 2 14 (1,0,0,0,0,0) 0 1 6
1 1 0] ,00000 0 1 6 6 3 18 (1,0,0,0,0,00 0 3 4
1 (1,0,0,0,0,00 0 3 4 (1,4,0,0,000 0 0 3
2 0 2| (,40000 0 0 3 7 6 42 (1,4,0,0,000 0 4 5
2 1 11| (,40000 0 4 5 6 2 12 (1,4,0,0,000 0 5 7
2 2 0140000 0 4 7 5 3 15 (1,4,0,0,0,00 0 7 2
2 (1,4,0,0,0,0) 0 7 2 (1,4,2,0,0,0) 0 0 7
3 1 21|1,42000 0 0 7 6 6 36 (1,4,2,0,0,00 0 4 3
3 2 11|((,42000 0 4 3 5 2 10 (1,4,2,0,0,00 0 5 3
3 (1,4,2,0,0,00 0 5 3 (1,4,2,3,0,00 0 0 5
4 2 21(1,42300 0 0 5 5 6 30 (1,4,2,3,0,00 0 3 5
4 (1,4,2,3,0,00 0 3 5 (1,4,2,3,500 0 0 3
(1,4,2,3,500 0 0 3 (1,4,2,3,53) 0 0 3
(1,4,2,3,5,3)

Notes:

Notes:

Part 2: multiplication in practice: an algorithm (5)
Repeated addition

Notes:
> Idea:

> multiplication means repeated addition, i.e.,

YXX=x+x+--+x,
N—————

y terms
so if y = 14(p) we have
YXX=X+X+X+X+X+X+X+X+X+X+x+x+x+2x

> expressing y in base-2, we can rewrite this as

(X yi- 2 xx

yxx
= (o 20+y; -2+ Hyumg 2" xx
= o2)+ -2t)+ (Yo 2)

= o x- 20+ -x-2N) 4+ (g - x- 2"

© Daniel Page (BIKE University of

Computer Architecture ME] BRISTOL git #b282dbb9 @ 2025-09-03

Part 2: multiplication in practice: an algorithm (5)
Repeated addition

Notes:
> Idea:

> given y = 14(19) = 1110(7) we can see that

yXxXx = yo-x-20 + y1~x~21 + yz-x-22 + y3-x-23
= 0-x-2° + 1.x-2' 4+ 1.x-22 + 1.x-28
= 0-x + 2-x + 4-x + 8-x
= 14 - x

> giveny = 14(19) = 1110(y) we can see that

yxx = yo-x+2-(y1-x+2-(y2-x+2-(y3-x+2-(0))))
= 0-x+2-(1-x+2-(1-x+2-(1-x+2-(0))))
= 0 x+2-(1-x+2-(1-x+2-(1-x+ 0)))
= 0 x+2-(1-x+2-(1-x+2-(1-x)))
= 0-x+2-(1-x+2-(1-x+ 2-x))
= 0-x+2-(1-x+2-(3-x))
= 0-x4+2-(1-x+ 6-x)
= 0-x+2-(7-x)
= 0-x+ 14 -x
= 14-x

via application of Horner’s rule.

Part 3: multiplication in practice: a circuit (1)

A combinatorial, bit-parallel design
Notes:
> Idea: for b = 2 we now know
n-1 n-1
ro= yxx = Zyi-f Xx = Zyi-x-Zl,
i=0 i=0
plus
> for any t,
0 ify;=0
ot o= 1Y
Yi { t o ify; =1
> forany t,
t-20 = t<i,

S0 we can compute r via

1. some AND gates to generate partial products (i.e., y; - x),

2. some left-shift components to scale the partial products correctly (i.e., y; - x - 2), and

3. some adder components to sum the scaled partial products.

© Daniel Page (
Computer Architecture git # b282dbb9 @ 2025-09-03
Part 3: multiplication in practice: a circuit (2)
A combinatorial, bit-parallel design
. Notes:

> Design:

Circuit

» Evaluation:
—ve: requires a larger data-path
+ve: requires a smaller control-path (i.e., none at all)
+ve: requires less steps (i.e., 1)
—ve: has a longer critical path (meaning each step is longer)

Part 3: multiplication in practice: a circuit (3)
An iterative, bit-serial design

» Idea: for b = 2 we now know

n-1] n-1 '
ro= yxx = Zyi-f Xx = Zyi-x-Zl,
i=0 i=0

so we can compute r by evaluating the Horner expansion: we
> start with the general step
Ve—yi-x+2-r,
> specialise it to read
Ve 2-r = (r<i) @fyi=0
x+2-r = x+(r<l) ify;=1

> using it to accumuate the result step-by-step.

© Daniiel Page (EA University of
ME BRIS

mputer Architecture BRISTOL git # b282dbb9 @ 2025-09-03

Part 3: multiplication in practice: a circuit (3)
An iterative, bit-serial design

» Idea:

Input: Two unsigned, n-bit, base-2 integers x Consider a case where y = 14(1) + 1110¢):
and y .)) i T Vi r
Output: An unsigned, 2n-bit, base-2 integer 0
r=y-x 3 0 1 x ¥e—2-r+x

1 re0 2 x 1 3-x | Fe2-r+x
> fori=n—1downto 0 step —1 do 1 3-x 1| 7-x | re2rtx
3 re2-r 0| 7.x 0| 14-x|1re2r
+ | ify; = 1 then 14-x
5 | re=r+x
6 end

end
s returnr

~

Notes:

Notes:

Part 3: multiplication in practice: a circuit (4)
An iterative, bit-serial design

> Design:

Circuit

<1

> Evaluation:
+ve: requires a smaller data-path
—ve: requires a larger control-path (i.e., an entire FSM),
—ve: requires more steps (i.e., 1)
+ve: has a shorter critical path (meaning each step is shorter)

© Daniel Page (

Computer git #b282dbb9 @ 2025-09-03

Conclusions

> Take away points:
1. Computer arithmetic is a broad, interesting (sub-)field:
> it’s a broad topic with a rich history,
> there’s usually a large design space of potential approaches,
> they're often easy to understand at an intuitive, high level,
> correctness and efficiency of resulting low-level solutions is vital and challenging.

2. The strategy we’ve employed is important and (fairly) general-purpose:
explore and understand an approach in theory,

translate, formalise, and generalise the approach into an algorithm,

translate the algorithm, e.g., into circuit,

refine (or select) the circuit to satisfy any design constraints.

Yyvyy

Notes:

Notes:

Additional Reading

Notes:

Wikipedia: Computer Arithmetic. URL: https://en.wikipedia.org/wiki/Category:Computer_arithmetic.
D. Page. “Chapter 7: Arithmetic and logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.

B. Parhami. “Part 3: Multiplication”. In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford University Press,
2000.

> W. Stallings. “Chapter 10: Computer arithmetic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.

> AS. Tanenbaum and T. Austin. “Section 3.2.2: Arithmetic circuits”. In: Structured Computer Organisation. 6th ed. Prentice Hall,
2012.

© Daniel Page

Computer Architecture ait# b282dbb9 @ 2

References

Notes:

[1] Wikipedia: Computer Arithmetic. urL: https://en.wikipedia.org/wiki/Category:Computer_arithmetic (see p. 45).

2] D. Page. “Chapter 7: Arithmetic and logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009 (see
p- 45).

[3] B. Parhami. “Part 3: Multiplication”. In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford University Press,
2000 (see p. 45).

[4] W. Stallings. “Chapter 10: Computer arithmetic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013 (see
p. 45).

[5] A.S. Tanenbaum and T. Austin. “Section 3.2.2: Arithmetic circuits”. In: Structured Computer Organisation. 6th ed. Prentice Hall,
2012 (see p. 45).

