
Computer Architecture

Daniel Page

Department of Computer Science,
University Of Bristol,

Merchant Venturers Building,
Woodland Road,

Bristol, BS8 1UB. UK.
⟨csdsp@bristol.ac.uk⟩

September 5, 2025

Keep in mind there are two PDFs available (of which this is the latter):
1. a PDF of examinable material used as lecture slides, and
2. a PDF of non-examinable, extra material:
▶ the associated notes page may be pre-populated with extra, written explaination of

material covered in lecture(s), plus
▶ anything with a “grey’ed out” header/footer represents extra material which is

useful and/or interesting but out of scope (and hence not covered).

Notes:

Notes:

COMS10015 lecture: week #7

▶ Concept: consider
x̂ ↦→ x
ŷ ↦→ y

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

COMS10015 lecture: week #7

▶ Concept: consider
x̂ ↦→ x
ŷ ↦→ y

r = x × y

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

COMS10015 lecture: week #7

▶ Concept: consider
x̂ ↦→ x
ŷ ↦→ y

f (x̂, ŷ) = r̂ ↦→ r = x × y

where f
1. has an action on x̂ and ŷ compatible with that of × on x and y:
▶ accepts n-bit

• multiplier ŷ (that “does the multiplying”), and
• multiplicand x̂ (that “is multiplied”)

as input, and
▶ produces an (2 · n)-bit product r̂ as output,

2. is a Boolean function:
f : {0, 1}n × {0, 1}n → {0, 1}2·n

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

COMS10015 lecture: week #7

▶ Agenda: produce a design(s) for f , which
1. functions correctly, and
2. satisfies pertinent quality metrics (e.g., is efficient in time and/or space).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

COMS10015 lecture: week #7

Quote

I do not like × as a symbol for multiplication, as it is easily confounded with x; often I simply relate two quantities by an
interposed dot and indicate multiplication by ZC · LM.

– Leibniz (https://en.wikiquote.org/wiki/Gottfried_Leibniz)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

COMS10015 lecture: week #7

3-776 Vol. 2A MUL—Unsigned Multiply

INSTRUCTION SET REFERENCE, A-M

MUL�Unsigned Multiply

Instruction Operand Encoding

Description

Perform s an unsigned m ult iplicat ion of the first operand (dest inat ion operand) and

the second operand (source operand) and stores the result in the dest inat ion

operand. The dest inat ion operand is an implied operand located in register AL, AX or

EAX (depending on the size of the operand) ; the source operand is located in a

general-purpose register or a m em ory locat ion. The act ion of this inst ruct ion and the

locat ion of the result depends on the opcode and the operand size as shown in Table

3-61.

The result is stored in register AX, register pair DX: AX, or register pair EDX: EAX

(depending on the operand size) , with the high-order bits of the product contained in

register AH, DX, or EDX, respect ively. I f the high-order bits of the product are 0, the

CF and OF flags are cleared; otherwise, the flags are set .

I n 64-bit mode, the inst ruct ion’s default operat ion size is 32 bits. Use of the REX.R

prefix perm its access to addit ional registers (R8-R15) . Use of the REX.W prefix

promotes operat ion to 64 bits.

See the sum m ary chart at the beginning of this sect ion for encoding data and lim its.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F6 /4 MUL r/m8 A Valid Valid Unsigned multiply (AX ← AL

∗ r/m8).

REX + F6 /4 MUL r/m8* A Valid N.E. Unsigned multiply (AX ← AL

∗ r/m8).

F7 /4 MUL r/m16 A Valid Valid Unsigned multiply (DX:AX ←

AX ∗ r/m16).

F7 /4 MUL r/m32 A Valid Valid Unsigned multiply (EDX:EAX

← EAX ∗ r/m32).

REX.W + F7 /4 MUL r/m64 A Valid N.E. Unsigned multiply (RDX:RAX

← RAX ∗ r/m64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:r/m (r) NA NA NA

Vol. 2A 3-777

INSTRUCTION SET REFERENCE, A-M

MUL—Unsigned Multiply

Operation

IF (Byte operation)

THEN

AX ← AL ∗ SRC;

ELSE (* Word or doubleword operation *)

IF OperandSize = 16

THEN

DX:AX ← AX ∗ SRC;

ELSE IF OperandSize = 32

THEN EDX:EAX ← EAX ∗ SRC; FI;

ELSE (* OperandSize = 64 *)

RDX:RAX ← RAX ∗ SRC;

FI;

FI;

Flags Affected

The OF and CF flags are set to 0 if the upper half of the result is 0; otherwise, they

are set to 1. The SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

GP(0) I f a memory operand effect ive address is outside the CS, DS,

ES, FS, or GS segment lim it .

I f the DS, ES, FS, or GS register contains a NULL segment

selector.

SS(0) I f a memory operand effect ive address is outside the SS

segment lim it .

PF(fault-code) I f a page fault occurs.

AC(0) I f alignm ent checking is enabled and an unaligned m em ory

reference is made while the current pr ivilege level is 3.

UD I f the LOCK prefix is used.

Table 3-61. MUL Results

Operand Size Source 1 Source 2 Destination

Byte AL r/m8 AX

Word AX r/m16 DX:AX

Doubleword EAX r/m32 EDX:EAX

Quadword RAX r/m64 RDX:RAX

3-778 Vol. 2A MUL—Unsigned Multiply

INSTRUCTION SET REFERENCE, A-M

Real-Address Mode Exceptions

GP I f a m em ory operand effect ive address is outside the CS, DS,

ES, FS, or GS segm ent lim it .

SS I f a m em ory operand effect ive address is outside the SS

segment lim it .

UD I f the LOCK prefix is used.

Virtual-8086 Mode Exceptions

GP(0) I f a m em ory operand effect ive address is outside the CS, DS,

ES, FS, or GS segm ent lim it .

SS(0) I f a m em ory operand effect ive address is outside the SS

segment lim it .

PF(fault-code) I f a page fault occurs.

AC(0) I f alignment checking is enabled and an unaligned memory

reference is made.

UD I f the LOCK prefix is used.

Compatibility Mode Exceptions

Sam e except ions as in protected m ode.

64-Bit Mode Exceptions

SS(0) I f a m em ory address referencing the SS segm ent is in a non-

canonical form .

GP(0) I f the m em ory address is in a non-canonical form .

PF(fault-code) I f a page fault occurs.

AC(0) I f alignment checking is enabled and an unaligned memory

reference is made while the current pr ivilege level is 3.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: multiplication in theory (1)

Example

x = 623(10) ↦→ 6 2 3
y = 567(10) ↦→ 5 6 7 ×
p0 = 7 · 3 · 100 = 21(10) ↦→ 2 1
p1 = 7 · 2 · 101 = 140(10) ↦→ 1 4
p2 = 7 · 6 · 102 = 4200(10) ↦→ 4 2
p3 = 6 · 3 · 101 = 180(10) ↦→ 1 8
p4 = 6 · 2 · 102 = 1200(10) ↦→ 1 2
p5 = 6 · 6 · 103 = 36000(10) ↦→ 3 6
p6 = 5 · 3 · 102 = 1500(10) ↦→ 1 5
p7 = 5 · 2 · 103 = 10000(10) ↦→ 1 0
p8 = 5 · 6 · 104 = 300000(10) ↦→ 3 0
r = 353241(10) ↦→ 3 5 3 2 4 1

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: multiplication in theory (2)

Example (operand scanning)

Consider an example where where |x| = |y| = 3:

x0x1x2

y0y1y2

y0 · x0
y0 · x1

y0 · x2
y1 · x0

y1 · x1
y1 · x2

y2 · x0
y2 · x1

y2 · x2

r5 r4 r3 r2 r1 r0

×

Notice that
1. an outer-loop steps through digits of y, say yj ,

2. an inner-loop steps through digits of x, say xi .

Example (product scanning)

Consider an example where where |x| = |y| = 3:

x0x1x2

y0y1y2

y0 · x0
y0 · x1
y1 · x0

y0 · x2
y1 · x1
y2 · x0

y1 · x2
y2 · x1

y2 · x2

r5 r4 r3 r2 r1 r0

×

Notice that
1. an outer-loop steps through digits of r, say rk ,

2. two inner-loops step through matching digits of y and
x, say yj and xi .

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: multiplication in practice: an algorithm (1)
Operand scanning

Algorithm (operand scanning)

Input: Two unsigned, base-b integers x and y
Output: An unsigned, base-b integer r = x · y

1 lx ← |x|, ly ← |y|, lr ← lx + ly
2 r← 0
3 for j = 0 upto ly − 1 step +1 do
4 c← 0
5 for i = 0 upto lx − 1 step +1 do
6 u · b + v = t← yj · xi + rj+i + c
7 rj+i ← v
8 c← u
9 end

10 rj+lx ← c
11 end
12 return r

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: multiplication in practice: an algorithm (2)
Operand scanning

Example (operand scanning)

Consider a case where b = 10, x = 623(10) and y = 567(10) :

j i r c yi xj t = yi · xi + ri+j + c r′ c′
⟨0, 0, 0, 0, 0, 0⟩

0 0 ⟨0, 0, 0, 0, 0, 0⟩ 0 7 3 21 ⟨1, 0, 0, 0, 0, 0⟩ 2
0 1 ⟨1, 0, 0, 0, 0, 0⟩ 2 7 2 16 ⟨1, 6, 0, 0, 0, 0⟩ 1
0 2 ⟨1, 6, 0, 0, 0, 0⟩ 1 7 6 43 ⟨1, 6, 3, 0, 0, 0⟩ 4
0 ⟨1, 6, 3, 0, 0, 0⟩ 4 ⟨1, 6, 3, 4, 0, 0⟩
1 0 ⟨1, 6, 3, 4, 0, 0⟩ 0 6 3 24 ⟨1, 4, 3, 4, 0, 0⟩ 2
1 1 ⟨1, 4, 3, 4, 0, 0⟩ 2 6 2 17 ⟨1, 4, 7, 4, 0, 0⟩ 1
1 2 ⟨1, 4, 7, 4, 0, 0⟩ 1 6 6 41 ⟨1, 4, 7, 1, 0, 0⟩ 4
1 ⟨1, 4, 7, 1, 0, 0⟩ 4 ⟨1, 4, 7, 1, 4, 0⟩
2 0 ⟨1, 4, 7, 1, 4, 0⟩ 0 5 3 22 ⟨1, 4, 2, 1, 4, 0⟩ 2
2 1 ⟨1, 4, 2, 1, 4, 0⟩ 2 5 2 13 ⟨1, 4, 2, 3, 4, 0⟩ 1
2 2 ⟨1, 4, 2, 3, 5, 0⟩ 1 5 6 35 ⟨1, 4, 2, 3, 5, 0⟩ 3
2 ⟨1, 4, 2, 3, 5, 0⟩ 3 ⟨1, 4, 2, 3, 5, 3⟩ 3

⟨1, 4, 2, 3, 5, 3⟩

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: multiplication in practice: an algorithm (3)
Product scanning

Algorithm (product scanning)

Input: Two unsigned, base-b integers x and y
Output: An unsigned, base-b integer r = x · y

1 lx ← |x|, ly ← |y|, lr ← lx + ly
2 r← 0, c0 ← 0, c1 ← 0, c2 ← 0
3 for k = 0 upto lx + ly − 1 step +1 do
4 for j = 0 upto ly − 1 step +1 do
5 for i = 0 upto lx − 1 step +1 do
6 if (j + i) = k then
7 u · b + v = t← yj · xi
8 c · b + c0 = t← c0 + v
9 c · b + c1 = t← c1 + u + c

10 c2 ← c2 + c
11 end
12 end
13 end
14 rk ← c0, c0 ← c1, c1 ← c2, c2 ← 0
15 end
16 rlx+ly−1 ← c0

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: multiplication in practice: an algorithm (4)
Product scanning

Example (product scanning)

Consider a case where b = 10, x = 623(10) and y = 567(10) :

k j i r c2 c1 c0 yi xj t = yi · xi r′ c′2 c′1 c′0
⟨0, 0, 0, 0, 0, 0⟩ 0 0 0

0 0 0 ⟨0, 0, 0, 0, 0, 0⟩ 0 0 0 7 3 21 ⟨0, 0, 0, 0, 0, 0⟩ 0 2 1
0 ⟨0, 0, 0, 0, 0, 0⟩ 0 2 1 ⟨1, 0, 0, 0, 0, 0⟩ 0 0 2
1 0 1 ⟨1, 0, 0, 0, 0, 0⟩ 0 0 2 7 2 14 ⟨1, 0, 0, 0, 0, 0⟩ 0 1 6
1 1 0 ⟨1, 0, 0, 0, 0, 0⟩ 0 1 6 6 3 18 ⟨1, 0, 0, 0, 0, 0⟩ 0 3 4
1 ⟨1, 0, 0, 0, 0, 0⟩ 0 3 4 ⟨1, 4, 0, 0, 0, 0⟩ 0 0 3
2 0 2 ⟨1, 4, 0, 0, 0, 0⟩ 0 0 3 7 6 42 ⟨1, 4, 0, 0, 0, 0⟩ 0 4 5
2 1 1 ⟨1, 4, 0, 0, 0, 0⟩ 0 4 5 6 2 12 ⟨1, 4, 0, 0, 0, 0⟩ 0 5 7
2 2 0 ⟨1, 4, 0, 0, 0, 0⟩ 0 4 7 5 3 15 ⟨1, 4, 0, 0, 0, 0⟩ 0 7 2
2 ⟨1, 4, 0, 0, 0, 0⟩ 0 7 2 ⟨1, 4, 2, 0, 0, 0⟩ 0 0 7
3 1 2 ⟨1, 4, 2, 0, 0, 0⟩ 0 0 7 6 6 36 ⟨1, 4, 2, 0, 0, 0⟩ 0 4 3
3 2 1 ⟨1, 4, 2, 0, 0, 0⟩ 0 4 3 5 2 10 ⟨1, 4, 2, 0, 0, 0⟩ 0 5 3
3 ⟨1, 4, 2, 0, 0, 0⟩ 0 5 3 ⟨1, 4, 2, 3, 0, 0⟩ 0 0 5
4 2 2 ⟨1, 4, 2, 3, 0, 0⟩ 0 0 5 5 6 30 ⟨1, 4, 2, 3, 0, 0⟩ 0 3 5
4 ⟨1, 4, 2, 3, 0, 0⟩ 0 3 5 ⟨1, 4, 2, 3, 5, 0⟩ 0 0 3

⟨1, 4, 2, 3, 5, 0⟩ 0 0 3 ⟨1, 4, 2, 3, 5, 3⟩ 0 0 3
⟨1, 4, 2, 3, 5, 3⟩

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: multiplication in practice: an algorithm (5)
Repeated addition

▶ Idea:
▶ multiplication means repeated addition, i.e.,

y × x = x + x + · · · + x︸ ︷︷ ︸
y terms

,

so if y = 14(10) we have

y × x = x + x + x + x + x + x + x + x + x + x + x + x + x + x.
▶ expressing y in base-2, we can rewrite this as

y × x = (∑n−1
i=0 yi · 2i) × x

= (y0 · 20 + y1 · 21 + · · · + yn−1 · 2n−1) × x

= (y0 · 20 · x) + (y1 · 21 · x) + · · · + (yn−1 · 2n−1 · x)

= (y0 · x · 20) + (y1 · x · 21) + · · · + (yn−1 · x · 2n−1)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2: multiplication in practice: an algorithm (5)
Repeated addition

▶ Idea:
▶ given y = 14(10) = 1110(2) we can see that

y × x = y0 · x · 20 + y1 · x · 21 + y2 · x · 22 + y3 · x · 23

= 0 · x · 20 + 1 · x · 21 + 1 · x · 22 + 1 · x · 23

= 0 · x + 2 · x + 4 · x + 8 · x
= 14 · x

▶ given y = 14(10) = 1110(2) we can see that

y × x = y0 · x + 2 · (y1 · x + 2 · (y2 · x + 2 · (y3 · x + 2 · (0))))
= 0 · x + 2 · (1 · x + 2 · (1 · x + 2 · (1 · x + 2 · (0))))
= 0 · x + 2 · (1 · x + 2 · (1 · x + 2 · (1 · x + 0)))
= 0 · x + 2 · (1 · x + 2 · (1 · x + 2 · (1 · x)))
= 0 · x + 2 · (1 · x + 2 · (1 · x + 2 · x))
= 0 · x + 2 · (1 · x + 2 · (3 · x))
= 0 · x + 2 · (1 · x + 6 · x)
= 0 · x + 2 · (7 · x)
= 0 · x + 14 · x
= 14 · x

via application of Horner’s rule.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: multiplication in practice: a circuit (1)
A combinatorial, bit-parallel design

▶ Idea: for b = 2 we now know

r = y × x =

(n−1∑
i=0

yi · 2i
)
× x =

n−1∑
i=0

yi · x · 2i ,

plus
▶ for any t,

yi · t =
{

0 if yi = 0
t if yi = 1

▶ for any t,
t · 2i ≡ t ≪ i,

so we can compute r via
1. some AND gates to generate partial products (i.e., yi · x),
2. some left-shift components to scale the partial products correctly (i.e., yi · x · 2i), and
3. some adder components to sum the scaled partial products.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: multiplication in practice: a circuit (2)
A combinatorial, bit-parallel design

▶ Design:

Circuit

y 0x 0 y 0x 1 y 0x n
−1

y 1x 0 y 1x 1 y 1x n
−1

y n
−1

x 0 y n
−1

x 1 y n
−1

x n
−1

≪ 0 ≪ 1 ≪ n − 1

+ +

+

r

▶ Evaluation:
−ve: requires a larger data-path
+ve: requires a smaller control-path (i.e., none at all)
+ve: requires less steps (i.e., 1)
−ve: has a longer critical path (meaning each step is longer)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: multiplication in practice: a circuit (3)
An iterative, bit-serial design

▶ Idea: for b = 2 we now know

r = y × x =

(n−1∑
i=0

yi · 2i
)
× x =

n−1∑
i=0

yi · x · 2i ,

so we can compute r by evaluating the Horner expansion: we
▶ start with the general step

r′← yi · x + 2 · r,
▶ specialise it to read

r′←
{

2 · r ≡ (r ≪ 1) if yi = 0
x + 2 · r ≡ x + (r ≪ 1) if yi = 1

▶ using it to accumuate the result step-by-step.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: multiplication in practice: a circuit (3)
An iterative, bit-serial design

▶ Idea:

Algorithm

Input: Two unsigned, n-bit, base-2 integers x
and y

Output: An unsigned, 2n-bit, base-2 integer
r = y · x

1 r← 0
2 for i = n − 1 downto 0 step −1 do
3 r← 2 · r
4 if yi = 1 then
5 r← r + x
6 end
7 end
8 return r

Example

Consider a case where y = 14(10) ↦→ 1110(2) :

i r yi r′
0

3 0 1 x r′ ← 2 · r + x
2 x 1 3 · x r′ ← 2 · r + x
1 3 · x 1 7 · x r′ ← 2 · r + x
0 7 · x 0 14 · x r′ ← 2 · r

14 · x

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 3: multiplication in practice: a circuit (4)
An iterative, bit-serial design

▶ Design:

Circuit

≪ 1

+

r

c

x

y
r r′

x

yi

▶ Evaluation:
+ve: requires a smaller data-path
−ve: requires a larger control-path (i.e., an entire FSM),
−ve: requires more steps (i.e., n)
+ve: has a shorter critical path (meaning each step is shorter)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Conclusions

▶ Take away points:
1. Computer arithmetic is a broad, interesting (sub-)field:
▶ it’s a broad topic with a rich history,
▶ there’s usually a large design space of potential approaches,
▶ they’re often easy to understand at an intuitive, high level,
▶ correctness and efficiency of resulting low-level solutions is vital and challenging.

2. The strategy we’ve employed is important and (fairly) general-purpose:
▶ explore and understand an approach in theory,
▶ translate, formalise, and generalise the approach into an algorithm,
▶ translate the algorithm, e.g., into circuit,
▶ refine (or select) the circuit to satisfy any design constraints.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Additional Reading

▶ Wikipedia: Computer Arithmetic. url: https://en.wikipedia.org/wiki/Category:Computer_arithmetic.
▶ D. Page. “Chapter 7: Arithmetic and logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.
▶ B. Parhami. “Part 3: Multiplication”. In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford University Press,

2000.
▶ W. Stallings. “Chapter 10: Computer arithmetic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.
▶ A.S. Tanenbaum and T. Austin. “Section 3.2.2: Arithmetic circuits”. In: Structured Computer Organisation. 6th ed. Prentice Hall,

2012.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

References

[1] Wikipedia: Computer Arithmetic. url: https://en.wikipedia.org/wiki/Category:Computer_arithmetic (see p. 45).

[2] D. Page. “Chapter 7: Arithmetic and logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009 (see
p. 45).

[3] B. Parhami. “Part 3: Multiplication”. In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford University Press,
2000 (see p. 45).

[4] W. Stallings. “Chapter 10: Computer arithmetic”. In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013 (see
p. 45).

[5] A.S. Tanenbaum and T. Austin. “Section 3.2.2: Arithmetic circuits”. In: Structured Computer Organisation. 6th ed. Prentice Hall,
2012 (see p. 45).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

