
COMS10015 lecture: week #8 + #9

▶ Agenda: introduce the topic [4, Part 1] of

finite automata ≡ Finite State Machines (FSMs)

via

1. an “in theory”, i.e., concept-oriented perspective, and

2. an “in practice”, i.e., perspective, spanning

2.1 general application, and

2.2 specific implementation in sequential logic design.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: in theory (1)

Definition

Pp

An alphabet is a non-empty set of symbols.

Definition

Pp

A string X with respect to some alphabet Σ is a sequence, of finite length, whose elements are members of Σ, i.e.,

X = ⟨X0 ,X1 , . . . ,Xn−1⟩

for some n such that Xi ∈ Σ for 0 ≤ i < n; if n is zero, we term X the empty string and denote it 𝜖. It can be useful, and

is common to write elements in in human-readable form termed a string literal: this basically means writing them from

right-to-left without any associated notation (e.g., brackets or commas).

Definition

Pp

A language Λ is a set of strings.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: in theory (3)

▶ Concept: Finite State Machines (FSMs) are a model of computation.

▶ An FSM is an (idealised) computer C, which, at a given point in time, is in one of some finite

set of states.

▶ C accepts an input string with respect to some alphabet Σ, one symbol at a time; each symbol

induces a change in state.

▶ Once the input is exhausted, C halts: depending on the state it halts in, we say either

1. C accepts (or recognises) the input string

2. C rejects the input string

▶ For a language Λ of all possible input strings C could accept, we say

C accepts (or recognises) Λ ≡ Λ is the language of C

and use Λ to classify C ...

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: in theory (3)

▶ Concept: Finite State Machines (FSMs) are a model of computation.

▶ An FSM is an (idealised) computer C, which, at a given point in time, is in one of some finite

set of states.

▶ C accepts an input string with respect to some alphabet Σ, one symbol at a time; each symbol

induces a change in state.

▶ Once the input is exhausted, C halts: depending on the state it halts in, we say either

1. C accepts (or recognises) the input string

2. C rejects the input string

▶ For a language Λ of all possible input strings C could accept, we say

C accepts (or recognises) Λ ≡ Λ is the language of C

and use Λ to classify C ...

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: in theory (3)

▶ Concept: Finite State Machines (FSMs) are a model of computation.

▶ An FSM is an (idealised) computer C, which, at a given point in time, is in one of some finite

set of states.

▶ C accepts an input string with respect to some alphabet Σ, one symbol at a time; each symbol

induces a change in state.

▶ Once the input is exhausted, C halts: depending on the state it halts in, we say either

1. C accepts (or recognises) the input string

2. C rejects the input string

▶ For a language Λ of all possible input strings C could accept, we say

C accepts (or recognises) Λ ≡ Λ is the language of C

and use Λ to classify C ...

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: in theory (3)

▶ Concept: Finite State Machines (FSMs) are a model of computation.

▶ An FSM is an (idealised) computer C, which, at a given point in time, is in one of some finite

set of states.

▶ C accepts an input string with respect to some alphabet Σ, one symbol at a time; each symbol

induces a change in state.

▶ Once the input is exhausted, C halts: depending on the state it halts in, we say either

1. C accepts (or recognises) the input string

2. C rejects the input string

▶ For a language Λ of all possible input strings C could accept, we say

C accepts (or recognises) Λ ≡ Λ is the language of C

and use Λ to classify C ...

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: in theory (3)

▶ Concept: Finite State Machines (FSMs) are a model of computation.

▶ An FSM is an (idealised) computer C, which, at a given point in time, is in one of some finite

set of states.

▶ C accepts an input string with respect to some alphabet Σ, one symbol at a time; each symbol

induces a change in state.

▶ Once the input is exhausted, C halts: depending on the state it halts in, we say either

1. C accepts (or recognises) the input string

2. C rejects the input string

▶ For a language Λ of all possible input strings C could accept, we say

C accepts (or recognises) Λ ≡ Λ is the language of C

and use Λ to classify C ...

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: in theory (4)

Definition

Pp

less powerful more powerful

Machine

Memory

Language

Grammar

Chomsky-Schützenberger
hierarchy

Combinatorial
logic

Finite
automaton

Push-down
automaton

Linear-bounded
automaton

Turing
machine

0 stacks 1 stacks 2 stacks 2 stacks

regular context
free

context
sensitive

recursively
enumerable

regular
(X→ x or X→ xY)

context
free

(X→ γ)

context
sensitive

(αXβ→ αγβ)
unrestricted

(α→ β)

type-3 type-2 type-1 type-0

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: in theory (5)

Definition

Pp

A (deterministic) Finite State Machine (FSM) is a tuple

C = (S, s,A,Σ, Γ, 𝛿, 𝜔)

including

1. S, a finite set of states that includes a start state s ∈ S,

2. A ⊆ S, a finite set of accepting states,

3. an input alphabet Σ and an output alphabet Γ,

4. a transition function
𝛿 : S × Σ→ S

and

5. an output function
𝜔 : S→ Γ

in the case of a Moore FSM, or

𝜔 : S × Σ→ Γ

in the case of a Mealy FSM,

noting an empty input denoted 𝜖 allows a transition that can always occur.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: in theory (6)

▶ Problem: design an FSM that decides whether a binary sequence X has an odd

number of 1 elements in it.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 1: in theory (6)

▶ Solution:

Algorithm (tabular)

Pp

𝛿
Q Q′

Xi = 0 Xi = 1

Seven Seven Sodd
Sodd Sodd Seven

Algorithm (diagram)

Pp

Sevenstart Sodd

Xi = 0

Xi = 1

Xi = 0

Xi = 1

where, e.g.,

1. for the input string X = ⟨1, 0, 1, 1⟩ the transitions are

; Seven
X

0
=1

; Sodd
X

1
=0

; Sodd
X

2
=1

; Seven
X

3
=1

; Sodd

so the input is accepted (i.e., has an odd number of 1 elements).

2. for the input string X = ⟨0, 1, 1, 0⟩ the transitions are

; Seven
X

0
=0

; Seven
X

1
=1

; Sodd
X

2
=1

; Seven
X

3
=0

; Seven

so the input is rejected (i.e., has an even number of 1 elements).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (1)

Example #1: regular expressions + grep; FSMs as recognisers

▶ Context:

▶ −ve perspective:

▶ +ve perspective: we could say that

arithmetic expression
evaluate

; number

regular expression
evaluate

; language

so a regular expression (or regex) can be used as

1. a pattern used to describe or generate a language, or
2. a pattern used to identify (i.e., match) members of a language.

https://xkcd.com/1171

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

https://xkcd.com/1171
mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (2)

Example #1: regular expressions + grep; FSMs as recognisers

Definition

Pp

We say X is a regular expression if it is

1. a symbol in the alphabet, i.e., {x} for x ∈ Σ,

2. the union of regular expressions X and Y such that

X ∪ Y = {x | x ∈ X ∨ x ∈ Y},

3. the concatination of regular expressions X and Y such that

X ∥ Y = {⟨x, y⟩ | x ∈ X ∧ y ∈ Y},

or

4. the Kleene star of regular expression X such that

X∗ = {⟨x0 , x1 , . . . , xn−1⟩ | n ≥ 0, xi ∈ X}.

allowing for various short-hands, e.g.,

x ≡ {x}
xy ≡ {x} ∥ {y}
X+ ≡ X ∥ X∗

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (3)

Example #1: regular expressions + grep; FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {0, 1}, then

0
∗
10
∗ ≡

{
s

s is a string containing

a single 1

}

which can be realised using

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (3)

Example #1: regular expressions + grep; FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {0, 1}, then

0
∗
10
∗ ≡

{
s

s is a string containing

a single 1

}
which can be realised using

S0start S1 S2

0

1

0

1

0

1

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (3)

Example #1: regular expressions + grep; FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {0, 1}, then

Σ∗001Σ∗ ≡
{

s
s is a string containing

001 as a sub-string

}
which can be realised using

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (3)

Example #1: regular expressions + grep; FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {0, 1}, then

Σ∗001Σ∗ ≡
{

s
s is a string containing

001 as a sub-string

}
which can be realised using

S0start S1 S2 S3

1

0
0

1

1

0 0

1

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (3)

Example #1: regular expressions + grep; FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {0, 1}, then

(ΣΣ)∗ ≡
{

s
s is a string

of even length

}

which can be realised using

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (3)

Example #1: regular expressions + grep; FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {0, 1}, then

(ΣΣ)∗ ≡
{

s
s is a string

of even length

}
which can be realised using

S0start S1
0
1

0

1

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (3)

Example #1: regular expressions + grep; FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {0, 1}, then

1
∗(01
+)∗ ≡

{
s

s is a string in which

every 0 is followed by at least one 1

}

which can be realised using

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (3)

Example #1: regular expressions + grep; FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {0, 1}, then

1
∗(01
+)∗ ≡

{
s

s is a string in which

every 0 is followed by at least one 1

}
which can be realised using

S0start S1 S2

1

0
0

1

0

1

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (3)

Example #1: regular expressions + grep; FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {‘a’, ‘b’, . . . , ‘z’}, then

grep -E '.*to+.*' ≡
{

s
s is a line read from stdin containing

a ‘t’ followed by at least one ‘o’ character

}

which can be realised using

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (3)

Example #1: regular expressions + grep; FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {‘a’, ‘b’, . . . , ‘z’}, then

grep -E '.*to+.*' ≡
{

s
s is a line read from stdin containing

a ‘t’ followed by at least one ‘o’ character

}
which can be realised using

S0start S1

S2

S3

∀ x, x ∈ {‘a’, ‘b’, . . . , ‘z’} − {‘t’}

‘t’

‘o’

∀ x, x ∈ {‘a’, ‘b’, . . . , ‘z’} − {‘o’}

∀ x, x ∈ {‘a’, ‘b’, . . . , ‘z’}

∀ x, x ∈ {‘a’, ‘b’, . . . , ‘z’}

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (3)

Example #1: regular expressions + grep; FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {‘a’, ‘b’, . . . , ‘z’}, then

grep -E '.*to+.*' ≡
{

s
s is a line read from stdin containing

a ‘t’ followed by at least one ‘o’ character

}
which can be realised using

1 forall lines X read from2 stdin do
3 Q← s
4 for i = 0 upto n − 1 do
5 Q← 𝛿(Q,Xi)
6 end
7 if Q ∈ A then
8 print line X to9 stdout

10 end
11 end

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (3)

Example #1: regular expressions + grep; FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {‘a’, ‘b’, . . . , ‘z’}, then

grep -E '.*to+.*' ≡
{

s
s is a line read from stdin containing

a ‘t’ followed by at least one ‘o’ character

}
which can be realised using

1 void grep() {
2 char X[1024];
3

4 while(NULL != fgets(X, 1024, stdin)) {
5 int n = strlen(X), Q = start;
6

7 if(X[n - 1] == '\n') {
8 X[n - 1] = '\0'; n--;
9 }

10

11 for(int i = 0; i < n; i++) {
12 Q = delta[Q][X[i]];
13 }
14

15 if(accept[Q]) {
16 fprintf(stdout, "%s\n", X);
17 }
18 }
19 }

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (4)

Example #2: networked communication via TCP ; FSMs as controllers

▶ Context:

TCP

IPv4
802.11

C

www.cs.bris.ac.uk

TCP

IPv4
802.3

S

IPv4
802.11 802.3

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (5)

Example #2: networked communication via TCP ; FSMs as controllers

▶ Example:

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSING

TIMED_WAIT

FIN_WAIT_1

FIN_WAIT_2

CLOSE_WAIT

LAST_ACK

LISTEN/- CLOSE/-

SYN/SYN+ACK

CLOSE/-

CONNECT/SYN

SYN/SYN+ACK

RST/- SEND/SYN

SYN+ACK/ACKACK/-

CLOSE/FIN FIN/ACK

ACK/- CLOSE/FIN

CLOSE/FIN

ACK/-

FIN/ACK

FIN+ACK/ACK

FIN/ACK

timeout/- ACK/-

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (6)

Example #3: typical video game “loop” ; FSMs as systems

▶ Context:

Algorithm

Pp

1 reset the game state

2 while ¬ game over do
3 read control pad (e.g., check if button pressed)

4 update game state (e.g., move player)

5 produce graphics and/or sound

6 end

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (6)

Example #3: typical video game “loop” ; FSMs as systems

▶ Context:

Algorithm

Pp

1 Q← s
2 while Q ∉ A do
3 Xi ← control pad

4 Q← 𝛿(Q,Xi)
5 {graphics, sound} ← 𝜔(Q)
6 end

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (7)

Example #3: typical video game “loop” ; FSMs as systems

▶ Example:

iterations of game loop ; game tree

≃ state space

i.e.,

Si+1,j−1 Si+2,j−1

Si,j Si+1,j Si+2,j

Si+1,j+1 Si+2,j+1

iteration i iteration i + 1 iteration i + 2
Q← δ(Q,Xi) Q← δ(Q,Xi+1) Q← δ(Q,Xi+2)

which is most obvious with respect to turn-based games (e.g., chess).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (1)

Design framework

▶ Recall:

Concept

Definition

Pp

A (deterministic) Finite State Machine (FSM) is a tuple

C = (S, s,A,Σ, Γ, 𝛿, 𝜔)

including

1. S, a finite set of states that includes a start state s ∈ S,

2. A ⊆ S, a finite set of accepting states,

3. an input alphabet Σ and an output alphabet Γ,

4. a transition function
𝛿 : S × Σ→ S

and

5. an output function
𝜔 : S→ Γ

in the case of a Moore FSM, or

𝜔 : S × Σ→ Γ

in the case of a Mealy FSM,

noting an empty input denoted 𝜖 allows a transition that can always occur.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (2)

Design framework

▶ Concept:

Algorithm (latch version)

Pp

Latch based
register(s)

δ

ω

Latch based
register(s)

Input

Output

Φ1

Φ2

Q

Q

Q′

Q′

▶ Note that

1. the state is retained in a register (i.e., a group

of latches, resp. flip-flops),

2. 𝛿 and 𝜔 are simply combinatorial logic,

3. within the current clock cycle

• 𝜔 computes the output from the current state

and input, and

• 𝛿 computes the next state from the current state

and input,

4. the next state is latched by an appropriate

feature (i.e., level, resp. edge) in the clock

i.e., it’s a computer we can build!

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (3)

Design framework

▶ Concept:

Algorithm (flip-flop version)

Pp

Flip-flop based
register(s)

δ

ω

Input

Output

Clock

Q

Q

Q′

▶ Note that

1. the state is retained in a register (i.e., a group

of latches, resp. flip-flops),

2. 𝛿 and 𝜔 are simply combinatorial logic,

3. within the current clock cycle

• 𝜔 computes the output from the current state

and input, and

• 𝛿 computes the next state from the current state

and input,

4. the next state is latched by an appropriate

feature (i.e., level, resp. edge) in the clock

i.e., it’s a computer we can build!

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (4)

Design framework

▶ Concept:

Example (latch version: input X = ⟨X0 ,X1
, . . .⟩, output Y = ⟨Y0 ,Y1

, . . .⟩)

Pp

Φ1

Φ2

input latches
reset

Q to start state

input latches
store

Q← Q′

input latches
store

Q← Q′ · · ·

compute
Q′ = δ(Q,X0)
Y0 = ω(Q,X0)

compute
Q′ = δ(Q,X1)
Y1 = ω(Q,X1)

· · ·

output latches
store

Q′

output latches
store

Q′

· · ·

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (5)

Design framework

▶ Concept:

Example (flip-flop version: input X = ⟨X0 ,X1
, . . .⟩, output Y = ⟨Y0 ,Y1

, . . .⟩)

Pp

compute
Q′ = δ(Q,X0)
Y0 = ω(Q,X0)

compute
Q′ = δ(Q,X1)
Y1 = ω(Q,X1) · · ·

flip-flops
reset

Q to start state

flip-flops
store

Q← Q′

flip-flops
store

Q← Q′

· · ·

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (6)

Design framework

▶ Concept: this should sound familar, because from

Circuit (latch version)

Pp

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

0

Φ1

Φ2

1 0 0 0

r 0 r 1

r n
−

1

rst

it now becomes clear that

▶ 2
n

states, labelled S0 through S
2

n−1
; state Si represented as (unsigned) n-bit integer i,

▶ the start state is s = S0 and there are no accepting states (so A = ∅),

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (6)

Design framework

▶ Concept: this should sound familar, because from

Circuit (latch version)

Pp

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

0

Φ1

Φ2

1 0 0 0

r 0 r 1

r n
−

1

rst

it now becomes clear that

▶ the 𝛿 function is

Q′← 𝛿(Q, rst) =
{

Q + 1 (mod 2
n) if rst = 0

0 if rst = 1

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (6)

Design framework

▶ Concept: this should sound familar, because from

Circuit (latch version)

Pp

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

0

Φ1

Φ2

1 0 0 0

r 0 r 1

r n
−

1

rst

it now becomes clear that

▶ the 𝜔 function is r← 𝜔(Q) = Q.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (7)

Design framework

▶ Concept: this should sound familar, because from

Circuit (flip-flop version)

Pp

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

0

clk

1 0 0 0

r 0 r 1

r n
−

1

rst

it now becomes clear that

▶ 2
n

states, labelled S0 through S
2

n−1
; state Si represented as (unsigned) n-bit integer i,

▶ the start state is s = S0 and there are no accepting states (so A = ∅),

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (7)

Design framework

▶ Concept: this should sound familar, because from

Circuit (flip-flop version)

Pp

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

0

clk

1 0 0 0

r 0 r 1

r n
−

1

rst

it now becomes clear that

▶ the 𝛿 function is

Q′← 𝛿(Q, rst) =
{

Q + 1 (mod 2
n) if rst = 0

0 if rst = 1

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (7)

Design framework

▶ Concept: this should sound familar, because from

Circuit (flip-flop version)

Pp

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

0

clk

1 0 0 0

r 0 r 1

r n
−

1

rst

it now becomes clear that

▶ the 𝜔 function is r← 𝜔(Q) = Q.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (8)

Design process

▶ Concept to solve a concrete problem, we follow a (fairly) standard sequence of steps

Algorithm

Pp

1. Count the number of states required, and give each state an abstract label.

2. Describe the state transition and output functions using a tabular or diagrammatic approach.

3. Perform state assignment, i.e., decide how concrete values will represent the abstract labels, allocating appropriate register(s)

to hold the state.

4. Express the functions 𝛿 and 𝜔 as (optimised) Boolean expressions, i.e., combinatorial logic.

5. Place the registers and combinatorial logic into the framework.

noting that it’s common to

▶ include a reset input that (re)initialises the FSM into the start state,

▶ replace the accepting state(s) with an idle or error state since “halting” doesn’t make sense in

hardware, and

▶ use the FSM to control an associated data-path using the outputs, rather than (necessarily)

solve some problem outright.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (9)

Design process

▶ Concept: we can optimise the state representation based on use of it, e.g.,

1. a binary encoding represents the i-th of n states as a (⌈log
2
(n)⌉)-bit unsigned integer i, e.g.,

S0 ↦→ ⟨0, 0, 0⟩
S1 ↦→ ⟨1, 0, 0⟩
S2 ↦→ ⟨0, 1, 0⟩
S3 ↦→ ⟨1, 1, 0⟩
S4 ↦→ ⟨0, 0, 1⟩
S5 ↦→ ⟨1, 0, 1⟩

2. a one-hot encoding represents the i-th of n states as a sequence X such that Xi = 1 and Xj = 0

for j ≠ i, e.g.,

S0 ↦→ ⟨1, 0, 0, 0, 0, 0⟩
S1 ↦→ ⟨0, 1, 0, 0, 0, 0⟩
S2 ↦→ ⟨0, 0, 1, 0, 0, 0⟩
S3 ↦→ ⟨0, 0, 0, 1, 0, 0⟩
S4 ↦→ ⟨0, 0, 0, 0, 1, 0⟩
S5 ↦→ ⟨0, 0, 0, 0, 0, 1⟩

noting that we have a larger state (i.e., n bits instead of ⌈log
2
(n)⌉), but

▶ transition between states is easier, and
▶ switching behaviour (and hence power consumption) is reduced.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (11)

Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Problem: design an FSM that

1. acts as a cyclic counter modulo n = 6 (versus 2
n
),

2. has an input d which selects between increment and decrement, and

3. has an output f which signals when a cycle occurs.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (11)

Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Solution:

Concept

Algorithm (tabular)

Pp

𝛿 𝜔
Q Q′ r f

d = 0 d = 1 d = 0 d = 1

S0 S1 S5 0 0 1

S1 S2 S0 1 0 0

S2 S3 S1 2 0 0

S3 S4 S2 3 0 0

S4 S5 S3 4 0 0

S5 S0 S4 5 1 0

Algorithm (diagram)

Pp

S0

startstart

S1

S2

S3

S4

S5

d = 0

d = 1

d = 0

d = 1

d = 0

d = 1

d = 0

d = 1

d = 0

d = 1

d = 0

d = 1

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (11)

Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Solution:

Concept

▶ there are 6 abstract labels

S0 ↦→ 0

S1 ↦→ 1

S2 ↦→ 2

S3 ↦→ 3

S4 ↦→ 4

S5 ↦→ 5

we can represent using 6 concrete values, e.g.,

S0 ↦→ ⟨0, 0, 0⟩ ≡ 000(2)
S1 ↦→ ⟨1, 0, 0⟩ ≡ 001(2)
S2 ↦→ ⟨0, 1, 0⟩ ≡ 010(2)
S3 ↦→ ⟨1, 1, 0⟩ ≡ 011(2)
S4 ↦→ ⟨0, 0, 1⟩ ≡ 100(2)
S5 ↦→ ⟨1, 0, 1⟩ ≡ 101(2)

▶ since 2
3 = 8 > 6, we can capture each of

1. Q = ⟨Q0 ,Q1 ,Q2⟩ ≡ the current state

2. Q′ = ⟨Q′
0
,Q′

1
,Q′

2
⟩ ≡ the next state

in a 3-bit register (i.e., via 3 latches or flip-flops).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (11)

Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Solution:

Concept

▶ rewriting the abstract labels yields the following concrete truth table

𝛿 𝜔
d Q2 Q1 Q0 Q′

2
Q′

1
Q′

0
r2 r1 r0 f

0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 1 0

0 0 1 0 0 1 1 0 1 0 0

0 0 1 1 1 0 0 0 1 1 0

0 1 0 0 1 0 1 1 0 0 0

0 1 0 1 0 0 0 1 0 1 1

0 1 1 0 ? ? ? ? ? ? ?
0 1 1 1 ? ? ? ? ? ? ?
1 0 0 0 1 0 1 0 0 0 1

1 0 0 1 0 0 0 0 0 1 0

1 0 1 0 0 0 1 0 1 0 0

1 0 1 1 0 1 0 0 1 1 0

1 1 0 0 0 1 1 1 0 0 0

1 1 0 1 1 0 0 1 0 1 0

1 1 1 0 ? ? ? ? ? ? ?
1 1 1 1 ? ? ? ? ? ? ?

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (11)

Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Solution:

Concept

▶ the truth table can be translated into

00 01 11 10

00

01

11

10

Q′2

d

Q1

Q2

Q0

0
0

0
1

1
2

0
3

0
4

1
5

?
6

?
7

1
8

0
9

0
10

1
11

0
12

0
13

?
14

?
15

00 01 11 10

00

01

11

10

Q′1

d

Q1

Q2

Q0

0
0

1
1

0
2

0
3

1
4

0
5

?
6

?
7

0
8

0
9

1
10

0
11

0
12

1
13

?
14

?
15

00 01 11 10

00

01

11

10

Q′0

d

Q1

Q2

Q0

1
0

0
1

1
2

0
3

1
4

0
5

?
6

?
7

1
8

0
9

1
10

0
11

1
12

0
13

?
14

?
15

▶ doing so yields the following Boolean expressions for 𝛿:

Q′
2
= (¬d ∧ Q1 ∧ Q0) ∨
(¬d ∧ Q2 ∧ ¬Q0) ∨
(d ∧ Q2 ∧ Q0) ∨
(d ∧ ¬Q2 ∧ ¬Q1 ∧ ¬Q0)

Q′
1
= (¬d ∧ ¬Q2 ∧ ¬Q1 ∧ Q0) ∨
(¬d ∧ Q1 ∧ ¬Q0) ∨
(d ∧ Q2 ∧ ¬Q0) ∨
(d ∧ Q1 ∧ Q0)

Q′
0
= (¬Q0)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (11)

Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Solution:

Concept

▶ the truth table can be translated into

00 01 11 10

00

01

11

10

f

d

Q1

Q2

Q0

0
0

0
1

0
2

1
3

0
4

0
5

?
6

?
7

1
8

0
9

0
10

0
11

0
12

0
13

?
14

?
15

▶ doing so yields the following Boolean expressions for 𝜔:

f = (¬d ∧ Q2 ∧ Q0) ∨
(d ∧ ¬Q2 ∧ ¬Q1 ∧ ¬Q0)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (11)

Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Solution:

Concept

Latch based
register(s)

𝛿

𝜔

Latch based
register(s)

input

output

Φ1

Φ2

Q

Q

Q′

Q′

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (11)

Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Solution:

Concept

Latch based
register(s)

𝛿

𝜔

Latch based
register(s)

input

output

Φ1

Φ2

Q

Q

Q′

Q′

Q′
2 = (¬d ∧ Q1 ∧ Q0) ∨

(¬d ∧ Q2 ∧ ¬Q0) ∨
(d ∧ Q2 ∧ Q0) ∨
(d ∧ ¬Q2 ∧ ¬Q1 ∧ ¬Q0)

Q′
1 = (¬d ∧ ¬Q2 ∧ ¬Q1 ∧ Q0) ∨

(¬d ∧ Q1 ∧ ¬Q0) ∨
(d ∧ Q2 ∧ ¬Q0) ∨
(d ∧ Q1 ∧ Q0)

Q′
0 = (¬Q0)

f = (¬d ∧ Q2 ∧ Q0) ∨
(d ∧ ¬Q2 ∧ ¬Q1 ∧ ¬Q0)

en
D Q

¬Q
en
D Q

¬Q
en
D Q

¬Q

Φ1

en
D Q

¬Q
en
D Q

¬Q
en
D Q

¬Q

Φ2

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (11)

Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Solution:

Concept

Flip-flop based
register(s)

𝛿

𝜔

input

output

clk

Q

Q
Q′

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (11)

Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Solution:

Concept

Flip-flop based
register(s)

𝛿

𝜔

input

output

clk

Q

Q
Q′

Q′
2 = (¬d ∧ Q1 ∧ Q0) ∨

(¬d ∧ Q2 ∧ ¬Q0) ∨
(d ∧ Q2 ∧ Q0) ∨
(d ∧ ¬Q2 ∧ ¬Q1 ∧ ¬Q0)

Q′
1 = (¬d ∧ ¬Q2 ∧ ¬Q1 ∧ Q0) ∨

(¬d ∧ Q1 ∧ ¬Q0) ∨
(d ∧ Q2 ∧ ¬Q0) ∨
(d ∧ Q1 ∧ Q0)

Q′
0 = (¬Q0)

f = (¬d ∧ Q2 ∧ Q0) ∨
(d ∧ ¬Q2 ∧ ¬Q1 ∧ ¬Q0)

en
D Q

¬Q
en
D Q

¬Q
en
D Q

¬Q

clk

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (12)

Example #3: a loop counter

▶ Problem: design an FSM that

1. replicates the behaviour of a controlled loop counter, e.g., iwithin a C-style for loop such as

for(int i = m; i < n; i++) {
...

}

2. has an interface that allows signalling for

the start of iteration ≡ so i = m
the end of iteration ≡ when i = n

focused wlog. on 4-bit values of i, m, and n.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (13)

Example #3: a loop counter

▶ Design:

Concept

▶ given a user 𝒞1 of some component 𝒞2, how does

▶ 𝒞2 know when to start computation (e.g., when any input x is available), and

▶ 𝒞1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which

1. uses a shared clock signal to synchronise events,

2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,

3. ...

▶ Example:

Concept

Algorithm

Pp

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (13)

Example #3: a loop counter

▶ Design:

Concept

▶ given a user 𝒞1 of some component 𝒞2, how does

▶ 𝒞2 know when to start computation (e.g., when any input x is available), and

▶ 𝒞1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which

1. uses a shared clock signal to synchronise events,

2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,

3. ...

▶ Example:

Concept

Algorithm

Pp

C1 C2

req = 0

ack = 0

⊥

⊥

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (13)

Example #3: a loop counter

▶ Design:

Concept

▶ given a user 𝒞1 of some component 𝒞2, how does

▶ 𝒞2 know when to start computation (e.g., when any input x is available), and

▶ 𝒞1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which

1. uses a shared clock signal to synchronise events,

2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,

3. ...

▶ Example:

Concept

Algorithm

Pp

C1 C2

req = 0

ack = 0

x

⊥

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (13)

Example #3: a loop counter

▶ Design:

Concept

▶ given a user 𝒞1 of some component 𝒞2, how does

▶ 𝒞2 know when to start computation (e.g., when any input x is available), and

▶ 𝒞1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which

1. uses a shared clock signal to synchronise events,

2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,

3. ...

▶ Example:

Concept

Algorithm

Pp

C1 C2

req = 1

ack = 0

x

⊥

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (13)

Example #3: a loop counter

▶ Design:

Concept

▶ given a user 𝒞1 of some component 𝒞2, how does

▶ 𝒞2 know when to start computation (e.g., when any input x is available), and

▶ 𝒞1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which

1. uses a shared clock signal to synchronise events,

2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,

3. ...

▶ Example:

Concept

Algorithm

Pp

C1 C2

req = 1

ack = 0

x

⊥

!

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (13)

Example #3: a loop counter

▶ Design:

Concept

▶ given a user 𝒞1 of some component 𝒞2, how does

▶ 𝒞2 know when to start computation (e.g., when any input x is available), and

▶ 𝒞1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which

1. uses a shared clock signal to synchronise events,

2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,

3. ...

▶ Example:

Concept

Algorithm

Pp

C1 C2

req = 1

ack = 0

x

⊥

x

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (13)

Example #3: a loop counter

▶ Design:

Concept

▶ given a user 𝒞1 of some component 𝒞2, how does

▶ 𝒞2 know when to start computation (e.g., when any input x is available), and

▶ 𝒞1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which

1. uses a shared clock signal to synchronise events,

2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,

3. ...

▶ Example:

Concept

Algorithm

Pp

C1 C2

req = 1

ack = 0

x
f (x)

x

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (13)

Example #3: a loop counter

▶ Design:

Concept

▶ given a user 𝒞1 of some component 𝒞2, how does

▶ 𝒞2 know when to start computation (e.g., when any input x is available), and

▶ 𝒞1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which

1. uses a shared clock signal to synchronise events,

2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,

3. ...

▶ Example:

Concept

Algorithm

Pp

C1 C2

req = 1

ack = 1

x
f (x)

x

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (13)

Example #3: a loop counter

▶ Design:

Concept

▶ given a user 𝒞1 of some component 𝒞2, how does

▶ 𝒞2 know when to start computation (e.g., when any input x is available), and

▶ 𝒞1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which

1. uses a shared clock signal to synchronise events,

2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,

3. ...

▶ Example:

Concept

Algorithm

Pp

C1 C2

req = 1

ack = 1

x
f (x)

!
x

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (13)

Example #3: a loop counter

▶ Design:

Concept

▶ given a user 𝒞1 of some component 𝒞2, how does

▶ 𝒞2 know when to start computation (e.g., when any input x is available), and

▶ 𝒞1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which

1. uses a shared clock signal to synchronise events,

2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,

3. ...

▶ Example:

Concept

Algorithm

Pp

C1 C2

req = 1

ack = 1

x
f (x)

x
r = f (x)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (13)

Example #3: a loop counter

▶ Design:

Concept

▶ given a user 𝒞1 of some component 𝒞2, how does

▶ 𝒞2 know when to start computation (e.g., when any input x is available), and

▶ 𝒞1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which

1. uses a shared clock signal to synchronise events,

2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,

3. ...

▶ Example:

Concept

Algorithm

Pp

C1 C2

req = 1

ack = 1

⊥

f (x)
x

r = f (x)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (13)

Example #3: a loop counter

▶ Design:

Concept

▶ given a user 𝒞1 of some component 𝒞2, how does

▶ 𝒞2 know when to start computation (e.g., when any input x is available), and

▶ 𝒞1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which

1. uses a shared clock signal to synchronise events,

2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,

3. ...

▶ Example:

Concept

Algorithm

Pp

C1 C2

req = 0

ack = 1

⊥

f (x)
x

r = f (x)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (13)

Example #3: a loop counter

▶ Design:

Concept

▶ given a user 𝒞1 of some component 𝒞2, how does

▶ 𝒞2 know when to start computation (e.g., when any input x is available), and

▶ 𝒞1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which

1. uses a shared clock signal to synchronise events,

2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,

3. ...

▶ Example:

Concept

Algorithm

Pp

C1 C2

req = 0

ack = 1

⊥

f (x)

!

x
r = f (x)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (13)

Example #3: a loop counter

▶ Design:

Concept

▶ given a user 𝒞1 of some component 𝒞2, how does

▶ 𝒞2 know when to start computation (e.g., when any input x is available), and

▶ 𝒞1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which

1. uses a shared clock signal to synchronise events,

2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,

3. ...

▶ Example:

Concept

Algorithm

Pp

C1 C2

req = 0

ack = 1

⊥

f (x)
r = f (x)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (13)

Example #3: a loop counter

▶ Design:

Concept

▶ given a user 𝒞1 of some component 𝒞2, how does

▶ 𝒞2 know when to start computation (e.g., when any input x is available), and

▶ 𝒞1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which

1. uses a shared clock signal to synchronise events,

2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,

3. ...

▶ Example:

Concept

Algorithm

Pp

C1 C2

req = 0

ack = 1

⊥

⊥r = f (x)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (13)

Example #3: a loop counter

▶ Design:

Concept

▶ given a user 𝒞1 of some component 𝒞2, how does

▶ 𝒞2 know when to start computation (e.g., when any input x is available), and

▶ 𝒞1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which

1. uses a shared clock signal to synchronise events,

2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,

3. ...

▶ Example:

Concept

Algorithm

Pp

C1 C2

req = 0

ack = 0

⊥

⊥r = f (x)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (13)

Example #3: a loop counter

▶ Design:

Concept

▶ given a user 𝒞1 of some component 𝒞2, how does

▶ 𝒞2 know when to start computation (e.g., when any input x is available), and

▶ 𝒞1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which

1. uses a shared clock signal to synchronise events,

2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,

3. ...

▶ Example:

Concept

Algorithm

Pp

C1 C2

req = 0

ack = 0

⊥

⊥

!

r = f (x)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (13)

Example #3: a loop counter

▶ Design:

Concept

▶ given a user 𝒞1 of some component 𝒞2, how does

▶ 𝒞2 know when to start computation (e.g., when any input x is available), and

▶ 𝒞1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which

1. uses a shared clock signal to synchronise events,

2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,

3. ...

▶ Example:

Concept

Algorithm

Pp

C1 C2

req = 0

ack = 0

⊥

⊥r = f (x)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (14)

Example #3: a loop counter

▶ Design:

Concept

Circuit (latch version)

Pp

loop counter
control-path

loop counter
data-path

Φ1 Φ2 Φ1 Φ2

cmp

Q

m

n

i

req

ack

i.e., the design is itself the combination of

▶ a data-path, of computational and/or storage components, and

▶ a control-path, that tells components in the data-path what to do and when to do it,

with the latter more overtly realised using an FSM.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (14)

Example #3: a loop counter

▶ Design:

Concept

Circuit (flip-flop version)

Pp

loop counter
control-path

loop counter
data-path

clk clk

cmp

Q

m

n

i

req

ack

i.e., the design is itself the combination of

▶ a data-path, of computational and/or storage components, and

▶ a control-path, that tells components in the data-path what to do and when to do it,

with the latter more overtly realised using an FSM.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (15)

Example #3: a loop counter

▶ Solution: the data-path.

Circuit (latch version)

Pp

i

′

i′

w x y z

r
+

<

Φ1

Φ2

0
m

1

n cmp

i

Q0
Q1

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (15)

Example #3: a loop counter

▶ Solution: the data-path.

Circuit (flip-flop version)

Pp

i

w x y z

r
+

<

clk

0
m

1

n cmp

i

Q0
Q1

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (16)

Example #3: a loop counter

▶ Solution: the control-path.

Algorithm (tabular)

Pp

𝛿 𝜔
Q Q′ ack

cmp = 0 cmp = 1 cmp = 0 cmp = 1

req = 0


Swait Swait Swait 0 0

Sinit Swait Swait 0 0

Sstep Swait Swait 0 0

Sdone Swait Swait 1 1

req = 1


Swait Sinit Sinit 0 0

Sinit Sstep Sstep 0 0

Sstep Sdone Sstep 0 0

Sdone Sdone Sdone 1 1

Algorithm (diagram)

Pp

Swait

startstart

Sinit

Sstep

Sdone

req = 1

req = 0

ϵ
req = 0

cmp = 0

cmp = 1
req = 0

req = 1
req = 0

i.e.,

▶ in Swait it waits for req = 1,

▶ in Sinit it uses any input to initialise itself (e.g., setting the initial loop counter value),

▶ in Sstep it performs an iteration of the loop, and

▶ in Sdone it waits for req = 0 while setting ack = 1.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (16)

Example #3: a loop counter

▶ Solution: the control-path.

▶ there are 4 abstract labels

Swait ↦→ 0

Sinit ↦→ 1

Sstep ↦→ 2

Sdone ↦→ 3

we can represent using 4 concrete values, e.g.,

Swait ↦→ ⟨0, 0⟩ ≡ 00(2)
Sinit ↦→ ⟨1, 0⟩ ≡ 01(2)
Sstep ↦→ ⟨0, 1⟩ ≡ 10(2)
Sdone ↦→ ⟨1, 1⟩ ≡ 11(2)

▶ since 2
2 = 4, we can capture each of

1. Q = ⟨Q0 ,Q1⟩ ≡ the current state

2. Q′ = ⟨Q′
0
,Q′

1
⟩ ≡ the next state

in a 2-bit register (i.e., via 2 latches or flip-flops).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (16)

Example #3: a loop counter

▶ Solution: the control-path.

▶ rewriting the abstract labels yields the following concrete truth table

𝛿 𝜔
req cmp Q1 Q0 Q′

1
Q′

0
ack

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 1 1 0 0 1

0 1 0 0 0 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 1 1 0 0 1

1 0 0 0 0 1 0

1 0 0 1 1 0 0

1 0 1 0 1 1 0

1 0 1 1 1 1 1

1 1 0 0 0 1 0

1 1 0 1 1 0 0

1 1 1 0 1 0 0

1 1 1 1 1 1 1

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (16)

Example #3: a loop counter

▶ Solution: the control-path.

▶ the truth table can be translated into

00 01 11 10

00

01

11

10

Q′1

req

Q1

cmp

Q0

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

1
9

0
10

1
11

1
12

1
13

1
14

1
15

00 01 11 10

00

01

11

10

Q′0

req

Q1

cmp

Q0

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

1
8

0
9

1
10

0
11

1
12

1
13

0
14

1
15

▶ doing so yields the following Boolean expressions for 𝛿:

Q′
1
= (req ∧ Q0) ∨
(req ∧ Q1)

Q′
0
= (req ∧ ¬Q1 ∧ ¬Q0) ∨
(req ∧ Q1 ∧ Q0) ∨
(req ∧ ¬cmp ∧ Q1)

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (16)

Example #3: a loop counter

▶ Solution: the control-path.

▶ the truth table can be translated into

00 01 11 10

00

01

11

10

ack

req

Q1

cmp

Q0

0
0

0
1

0
2

0
3

0
4

1
5

0
6

1
7

0
8

0
9

0
10

0
11

0
12

1
13

0
14

1
15

▶ doing so yields the following Boolean expressions for 𝜔:

ack = Q1 ∧Q0

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (17)

Example #3: a loop counter

▶ Use-case:

Concept

▶ we want(ed) to implement a bit-serial multiplier, i.e.,

Algorithm

Pp

Input: Two unsigned, n-bit, base-2 integers x
and y

Output: An unsigned, 2n-bit, base-2 integer

r = y · x
1 r← 0

2 for i = n − 1 downto 0 step −1 do
3 r← 2 · r
4 if yi = 1 then
5 r← r + x
6 end
7 end
8 return r

Circuit

Pp

� 1

+

r

c

x

y
r r′

x

yi

▶ we did have the data-path,

▶ we didn’t have the control-path.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (18)

Example #3: a loop counter

▶ Use-case:

Concept

▶ we now have the loop counter implemented, i.e.

Circuit (latch version)

Pp

loop counter
control-path

loop counter
data-path

multiplier
data-path

Φ1 Φ2 Φ1 Φ2

cmp

Q

m

n

i

req

ack

▶ the remaining challenge is integration, e.g., specifying

▶ any additional data-path components required, and

▶ how loop counter (the control-path) controls them

so we end up with a bit-serial multiplier.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (18)

Example #3: a loop counter

▶ Use-case:

Concept

▶ we now have the loop counter implemented, i.e.

Circuit (flip-flop version)

Pp

loop counter
control-path

loop counter
data-path

multiplier
data-path

clk clk

cmp

Q

m

n

i

req

ack

▶ the remaining challenge is integration, e.g., specifying

▶ any additional data-path components required, and

▶ how loop counter (the control-path) controls them

so we end up with a bit-serial multiplier.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Conclusions

▶ Take away points:

1. FSMs are abstract computational models, but we can used them to solve concrete problems,

e.g.,

▶ recognisers,

▶ controllers,

▶ ...

▶ specifications: like an algorithm, but more easily able to cater for asynchronous events.

2. The “killer application” of FSMs for us is as a general-purpose way to realise controlled

step-by-step forms of computation.

3. Clearly more complex problem⇒more complex solution, but
▶ same framework and process (both conceptual, and practical),

▶ same components (e.g., interface, implementation; data-path, control-path),

so difference is (arguably) creativity re. design.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

mailto:csdsp@bristol.ac.uk

Additional Reading

▶ Wikipedia: Finite State Machine (FSM). url: https://en.wikipedia.org/wiki/Finite-state_machine.

▶ D. Page. “Chapter 2: Basics of digital logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.

▶ M. Sipster. “Chapter 1: Regular languages”. In: Introduction to the Theory of Computation. 2nd ed. Thomson Course Technology,

2006.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

https://en.wikipedia.org/wiki/Finite-state_machine
mailto:csdsp@bristol.ac.uk

References

[1] Wikipedia: Finite State Machine (FSM). url: https://en.wikipedia.org/wiki/Finite-state_machine (see p. 86).

[2] D. Page. “Chapter 2: Basics of digital logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009 (see

p. 86).

[3] M. Sipster. “Chapter 1: Regular languages”. In: Introduction to the Theory of Computation. 2nd ed. Thomson Course Technology,

2006 (see p. 86).

[4] M. Sipster. Introduction to the Theory of Computation. 2nd ed. Thomson Course Technology, 2006 (see pp. 1, 14–25).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

https://en.wikipedia.org/wiki/Finite-state_machine
mailto:csdsp@bristol.ac.uk

