
Computer Architecture

Daniel Page

Department of Computer Science,
University Of Bristol,

Merchant Venturers Building,
Woodland Road,

Bristol, BS8 1UB. UK.
〈csdsp@bristol.ac.uk〉

September 5, 2025

Keep in mind there are two PDFs available (of which this is the latter):
1. a PDF of examinable material used as lecture slides, and
2. a PDF of non-examinable, extra material:
▶ the associated notes page may be pre-populated with extra, written explaination of

material covered in lecture(s), plus
▶ anything with a “grey’ed out” header/footer represents extra material which is

useful and/or interesting but out of scope (and hence not covered).

Notes:

Notes:

COMS10015 lecture: week #8 + #9

▶ Agenda: introduce the topic [4, Part 1] of

finite automata ≡ Finite State Machines (FSMs)

via
1. an “in theory”, i.e., concept-oriented perspective, and
2. an “in practice”, i.e., perspective, spanning

2.1 general application, and
2.2 specific implementation in sequential logic design.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: in theory (1)

Definition

An alphabet is a non-empty set of symbols.

Definition

A string X with respect to some alphabet Σ is a sequence, of finite length, whose elements are members of Σ, i.e.,

X = 〈X0 ,X1 , . . . ,Xn−1〉
for some n such that Xi ∈ Σ for 0 ≤ i < n; if n is zero, we term X the empty string and denote it &. It can be useful, and
is common to write elements in in human-readable form termed a string literal: this basically means writing them from
right-to-left without any associated notation (e.g., brackets or commas).

Definition

A language Λ is a set of strings.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: in theory (2)

Definition

A (formal) grammar is a tuple
G = (N, n, T, P)

including
1. N, a finite set of non-terminal symbols that includes a start symbol n ∈ N,

2. T, a finite set of terminal symbols (which is disjoint from N), and

3. P, a finite set of production rules each of the form

Pi : (N ∪ T)∗ → (N ∪ T)∗ .

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: in theory (3)

▶ Concept: Finite State Machines (FSMs) are a model of computation.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: in theory (3)

▶ Concept: Finite State Machines (FSMs) are a model of computation.
▶ An FSM is an (idealised) computer C, which, at a given point in time, is in one of some finite

set of states.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: in theory (3)

▶ Concept: Finite State Machines (FSMs) are a model of computation.
▶ An FSM is an (idealised) computer C, which, at a given point in time, is in one of some finite

set of states.
▶ C accepts an input string with respect to some alphabet Σ, one symbol at a time; each symbol

induces a change in state.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: in theory (3)

▶ Concept: Finite State Machines (FSMs) are a model of computation.
▶ An FSM is an (idealised) computer C, which, at a given point in time, is in one of some finite

set of states.
▶ C accepts an input string with respect to some alphabet Σ, one symbol at a time; each symbol

induces a change in state.
▶ Once the input is exhausted, C halts: depending on the state it halts in, we say either

1. C accepts (or recognises) the input string
2. C rejects the input string

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: in theory (3)

▶ Concept: Finite State Machines (FSMs) are a model of computation.
▶ An FSM is an (idealised) computer C, which, at a given point in time, is in one of some finite

set of states.
▶ C accepts an input string with respect to some alphabet Σ, one symbol at a time; each symbol

induces a change in state.
▶ Once the input is exhausted, C halts: depending on the state it halts in, we say either

1. C accepts (or recognises) the input string
2. C rejects the input string

▶ For a language Λ of all possible input strings C could accept, we say

C accepts (or recognises) Λ ≡ Λ is the language of C

and use Λ to classify C ...

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: in theory (4)

Definition
less powerful more powerful

Machine

Memory

Language

Grammar

Chomsky-Schützenberger
hierarchy

Combinatorial
logic

Finite
automaton

Push-down
automaton

Linear-bounded
automaton

Turing
machine

0 stacks 1 stacks 2 stacks 2 stacks

regular context
free

context
sensitive

recursively
enumerable

regular
(X→ x or X→ xY)

context
free

(X→ γ)

context
sensitive

(αXβ→ αγβ)
unrestricted

(α→ β)

type-3 type-2 type-1 type-0

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• In the description of grammars, the idea is (read from left-to-right) there are progressively less and less restrictions: X and Y both
represent non-terminal symbols, x represents a terminal symbol, and
, � and � are strings of either terminal or non-terminal symbols,
all with respec to some alphabet and grammar. So, the far right-hand case has rules that are totally unrestricted, for example, whereas
the far left-hand case has rules that must be of a particular form.

Part 1: in theory (5)

Definition

A (deterministic) Finite State Machine (FSM) is a tuple

C = (S, s,A,Σ, Γ, �, $)
including
1. S, a finite set of states that includes a start state s ∈ S,

2. A ⊆ S, a finite set of accepting states,

3. an input alphabet Σ and an output alphabet Γ,

4. a transition function
� : S × Σ→ S

and

5. an output function
$: S→ Γ

in the case of a Moore FSM, or
$: S × Σ→ Γ

in the case of a Mealy FSM,
noting an empty input denoted & allows a transition that can always occur.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• Even if the state space is huge, it is still finite: to cope, � can a partial function meaning it needn’t be defined for all inputs.

Part 1: in theory (6)

▶ Problem: design an FSM that decides whether a binary sequence X has an odd
number of 1 elements in it.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 1: in theory (6)

▶ Solution:

Algorithm (tabular)

�
Q Q′

Xi = 0 Xi = 1
Seven Seven Sodd
Sodd Sodd Seven

Algorithm (diagram)

Sevenstart Sodd

Xi = 0

Xi = 1

Xi = 0

Xi = 1

where, e.g.,
1. for the input string X = 〈1, 0, 1, 1〉 the transitions are

❀ Seven
X0=1
❀ Sodd

X1=0
❀ Sodd

X2=1
❀ Seven

X3=1
❀ Sodd

so the input is accepted (i.e., has an odd number of 1 elements).
2. for the input string X = 〈0, 1, 1, 0〉 the transitions are

❀ Seven
X0=0
❀ Seven

X1=1
❀ Sodd

X2=1
❀ Seven

X3=0
❀ Seven

so the input is rejected (i.e., has an even number of 1 elements).

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.1: in practice, application (1)
Example #1: regular expressions + grep❀ FSMs as recognisers

▶ Context:
▶ −ve perspective:

▶ +ve perspective: we could say that

arithmetic expression
evaluate
❀ number

regular expression
evaluate
❀ language

so a regular expression (or regex) can be used as
1. a pattern used to describe or generate a language, or
2. a pattern used to identify (i.e., match) members of a language.

https://xkcd.com/1171

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.1: in practice, application (2)
Example #1: regular expressions + grep❀ FSMs as recognisers

Definition

We say X is a regular expression if it is
1. a symbol in the alphabet, i.e., {x} for x ∈ Σ,

2. the union of regular expressions X and Y such that

X ∪ Y = {x | x ∈ X ∨ x ∈ Y},

3. the concatination of regular expressions X and Y such that

X ‖ Y = {〈x, y〉 | x ∈ X ∧ y ∈ Y},
or

4. the Kleene star of regular expression X such that

X∗ = {〈x0 , x1 , . . . , xn−1〉 | n ≥ 0, xi ∈ X}.

allowing for various short-hands, e.g.,
x ≡ {x}
xy ≡ {x} ‖ {y}
X+ ≡ X ‖ X∗

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.1: in practice, application (3)
Example #1: regular expressions + grep❀ FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {0, 1}, then

0∗10∗ ≡
{

s
s is a string containing

a single 1

}

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The example implementation in the grep example is a little simplistic, so the behaviour (and hence output) will differ versus use of grep
itself. The technical reason for this is that we have ignored (or disallowed) backtracking: if the FSM accepts a ‘t’ followed by something
other than ‘o’ then it fails, but obviously this ignores the possibility that there might be another ‘t’ later which is followed by ‘o’. So the
description might be better written as “s is a line read from stdin, where a) there is at least one ‘t’ character, and b) the first ‘t’ character
is followed by at least one ‘o’ character”. We could try to capture that using a more complex transition function, but then the example
becomes overly complex: although the details is important in a general sense, the underlying idea is more important at this point.
In even more detail, the difference here relates to a difference between so-called Deterministic Finite Automatons (DFAs) and
Non-deterministic Finite Automatons (NFAs): we are dealing with and assume the former, whereas grepmakes use of the latter (see,
e.g., [4, Section 1.2]).

Part 2.1: in practice, application (3)
Example #1: regular expressions + grep❀ FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {0, 1}, then

0∗10∗ ≡
{

s
s is a string containing

a single 1

}

which can be realised using

S0start S1 S2

0

1

0

1

0

1

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The example implementation in the grep example is a little simplistic, so the behaviour (and hence output) will differ versus use of grep
itself. The technical reason for this is that we have ignored (or disallowed) backtracking: if the FSM accepts a ‘t’ followed by something
other than ‘o’ then it fails, but obviously this ignores the possibility that there might be another ‘t’ later which is followed by ‘o’. So the
description might be better written as “s is a line read from stdin, where a) there is at least one ‘t’ character, and b) the first ‘t’ character
is followed by at least one ‘o’ character”. We could try to capture that using a more complex transition function, but then the example
becomes overly complex: although the details is important in a general sense, the underlying idea is more important at this point.
In even more detail, the difference here relates to a difference between so-called Deterministic Finite Automatons (DFAs) and
Non-deterministic Finite Automatons (NFAs): we are dealing with and assume the former, whereas grepmakes use of the latter (see,
e.g., [4, Section 1.2]).

Part 2.1: in practice, application (3)
Example #1: regular expressions + grep❀ FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {0, 1}, then

Σ∗001Σ∗ ≡
{

s
s is a string containing

001 as a sub-string

}

which can be realised using

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The example implementation in the grep example is a little simplistic, so the behaviour (and hence output) will differ versus use of grep
itself. The technical reason for this is that we have ignored (or disallowed) backtracking: if the FSM accepts a ‘t’ followed by something
other than ‘o’ then it fails, but obviously this ignores the possibility that there might be another ‘t’ later which is followed by ‘o’. So the
description might be better written as “s is a line read from stdin, where a) there is at least one ‘t’ character, and b) the first ‘t’ character
is followed by at least one ‘o’ character”. We could try to capture that using a more complex transition function, but then the example
becomes overly complex: although the details is important in a general sense, the underlying idea is more important at this point.
In even more detail, the difference here relates to a difference between so-called Deterministic Finite Automatons (DFAs) and
Non-deterministic Finite Automatons (NFAs): we are dealing with and assume the former, whereas grepmakes use of the latter (see,
e.g., [4, Section 1.2]).

Part 2.1: in practice, application (3)
Example #1: regular expressions + grep❀ FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {0, 1}, then

Σ∗001Σ∗ ≡
{

s
s is a string containing

001 as a sub-string

}

which can be realised using

S0start S1 S2 S3

1

0
0

1

1

0 0

1

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The example implementation in the grep example is a little simplistic, so the behaviour (and hence output) will differ versus use of grep
itself. The technical reason for this is that we have ignored (or disallowed) backtracking: if the FSM accepts a ‘t’ followed by something
other than ‘o’ then it fails, but obviously this ignores the possibility that there might be another ‘t’ later which is followed by ‘o’. So the
description might be better written as “s is a line read from stdin, where a) there is at least one ‘t’ character, and b) the first ‘t’ character
is followed by at least one ‘o’ character”. We could try to capture that using a more complex transition function, but then the example
becomes overly complex: although the details is important in a general sense, the underlying idea is more important at this point.
In even more detail, the difference here relates to a difference between so-called Deterministic Finite Automatons (DFAs) and
Non-deterministic Finite Automatons (NFAs): we are dealing with and assume the former, whereas grepmakes use of the latter (see,
e.g., [4, Section 1.2]).

Part 2.1: in practice, application (3)
Example #1: regular expressions + grep❀ FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {0, 1}, then

(ΣΣ)∗ ≡
{

s
s is a string

of even length

}

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The example implementation in the grep example is a little simplistic, so the behaviour (and hence output) will differ versus use of grep
itself. The technical reason for this is that we have ignored (or disallowed) backtracking: if the FSM accepts a ‘t’ followed by something
other than ‘o’ then it fails, but obviously this ignores the possibility that there might be another ‘t’ later which is followed by ‘o’. So the
description might be better written as “s is a line read from stdin, where a) there is at least one ‘t’ character, and b) the first ‘t’ character
is followed by at least one ‘o’ character”. We could try to capture that using a more complex transition function, but then the example
becomes overly complex: although the details is important in a general sense, the underlying idea is more important at this point.
In even more detail, the difference here relates to a difference between so-called Deterministic Finite Automatons (DFAs) and
Non-deterministic Finite Automatons (NFAs): we are dealing with and assume the former, whereas grepmakes use of the latter (see,
e.g., [4, Section 1.2]).

Part 2.1: in practice, application (3)
Example #1: regular expressions + grep❀ FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {0, 1}, then

(ΣΣ)∗ ≡
{

s
s is a string

of even length

}

which can be realised using

S0start S1
0
1

0

1

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The example implementation in the grep example is a little simplistic, so the behaviour (and hence output) will differ versus use of grep
itself. The technical reason for this is that we have ignored (or disallowed) backtracking: if the FSM accepts a ‘t’ followed by something
other than ‘o’ then it fails, but obviously this ignores the possibility that there might be another ‘t’ later which is followed by ‘o’. So the
description might be better written as “s is a line read from stdin, where a) there is at least one ‘t’ character, and b) the first ‘t’ character
is followed by at least one ‘o’ character”. We could try to capture that using a more complex transition function, but then the example
becomes overly complex: although the details is important in a general sense, the underlying idea is more important at this point.
In even more detail, the difference here relates to a difference between so-called Deterministic Finite Automatons (DFAs) and
Non-deterministic Finite Automatons (NFAs): we are dealing with and assume the former, whereas grepmakes use of the latter (see,
e.g., [4, Section 1.2]).

Part 2.1: in practice, application (3)
Example #1: regular expressions + grep❀ FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {0, 1}, then

1∗(01+)∗ ≡
{

s
s is a string in which

every 0 is followed by at least one 1

}

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The example implementation in the grep example is a little simplistic, so the behaviour (and hence output) will differ versus use of grep
itself. The technical reason for this is that we have ignored (or disallowed) backtracking: if the FSM accepts a ‘t’ followed by something
other than ‘o’ then it fails, but obviously this ignores the possibility that there might be another ‘t’ later which is followed by ‘o’. So the
description might be better written as “s is a line read from stdin, where a) there is at least one ‘t’ character, and b) the first ‘t’ character
is followed by at least one ‘o’ character”. We could try to capture that using a more complex transition function, but then the example
becomes overly complex: although the details is important in a general sense, the underlying idea is more important at this point.
In even more detail, the difference here relates to a difference between so-called Deterministic Finite Automatons (DFAs) and
Non-deterministic Finite Automatons (NFAs): we are dealing with and assume the former, whereas grepmakes use of the latter (see,
e.g., [4, Section 1.2]).

Part 2.1: in practice, application (3)
Example #1: regular expressions + grep❀ FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {0, 1}, then

1∗(01+)∗ ≡
{

s
s is a string in which

every 0 is followed by at least one 1

}

which can be realised using

S0start S1 S2

1

0
0

1

0

1

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The example implementation in the grep example is a little simplistic, so the behaviour (and hence output) will differ versus use of grep
itself. The technical reason for this is that we have ignored (or disallowed) backtracking: if the FSM accepts a ‘t’ followed by something
other than ‘o’ then it fails, but obviously this ignores the possibility that there might be another ‘t’ later which is followed by ‘o’. So the
description might be better written as “s is a line read from stdin, where a) there is at least one ‘t’ character, and b) the first ‘t’ character
is followed by at least one ‘o’ character”. We could try to capture that using a more complex transition function, but then the example
becomes overly complex: although the details is important in a general sense, the underlying idea is more important at this point.
In even more detail, the difference here relates to a difference between so-called Deterministic Finite Automatons (DFAs) and
Non-deterministic Finite Automatons (NFAs): we are dealing with and assume the former, whereas grepmakes use of the latter (see,
e.g., [4, Section 1.2]).

Part 2.1: in practice, application (3)
Example #1: regular expressions + grep❀ FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {‘a’, ‘b’, . . . , ‘z’}, then

grep -E '.*to+.*' ≡
{

s
s is a line read from stdin containing

a ‘t’ followed by at least one ‘o’ character

}

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The example implementation in the grep example is a little simplistic, so the behaviour (and hence output) will differ versus use of grep
itself. The technical reason for this is that we have ignored (or disallowed) backtracking: if the FSM accepts a ‘t’ followed by something
other than ‘o’ then it fails, but obviously this ignores the possibility that there might be another ‘t’ later which is followed by ‘o’. So the
description might be better written as “s is a line read from stdin, where a) there is at least one ‘t’ character, and b) the first ‘t’ character
is followed by at least one ‘o’ character”. We could try to capture that using a more complex transition function, but then the example
becomes overly complex: although the details is important in a general sense, the underlying idea is more important at this point.
In even more detail, the difference here relates to a difference between so-called Deterministic Finite Automatons (DFAs) and
Non-deterministic Finite Automatons (NFAs): we are dealing with and assume the former, whereas grepmakes use of the latter (see,
e.g., [4, Section 1.2]).

Part 2.1: in practice, application (3)
Example #1: regular expressions + grep❀ FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {‘a’, ‘b’, . . . , ‘z’}, then

grep -E '.*to+.*' ≡
{

s
s is a line read from stdin containing

a ‘t’ followed by at least one ‘o’ character

}

which can be realised using

S0start S1

S2

S3

∀ x, x ∈ {‘a’, ‘b’, . . . , ‘z’} − {‘t’}

‘t’

‘o’

∀ x, x ∈ {‘a’, ‘b’, . . . , ‘z’} − {‘o’}

∀ x, x ∈ {‘a’, ‘b’, . . . , ‘z’}

∀ x, x ∈ {‘a’, ‘b’, . . . , ‘z’}

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The example implementation in the grep example is a little simplistic, so the behaviour (and hence output) will differ versus use of grep
itself. The technical reason for this is that we have ignored (or disallowed) backtracking: if the FSM accepts a ‘t’ followed by something
other than ‘o’ then it fails, but obviously this ignores the possibility that there might be another ‘t’ later which is followed by ‘o’. So the
description might be better written as “s is a line read from stdin, where a) there is at least one ‘t’ character, and b) the first ‘t’ character
is followed by at least one ‘o’ character”. We could try to capture that using a more complex transition function, but then the example
becomes overly complex: although the details is important in a general sense, the underlying idea is more important at this point.
In even more detail, the difference here relates to a difference between so-called Deterministic Finite Automatons (DFAs) and
Non-deterministic Finite Automatons (NFAs): we are dealing with and assume the former, whereas grepmakes use of the latter (see,
e.g., [4, Section 1.2]).

Part 2.1: in practice, application (3)
Example #1: regular expressions + grep❀ FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {‘a’, ‘b’, . . . , ‘z’}, then

grep -E '.*to+.*' ≡
{

s
s is a line read from stdin containing

a ‘t’ followed by at least one ‘o’ character

}

which can be realised using

1 forall lines X read from2 stdin do
3 Q← s
4 for i = 0 upto n − 1 do
5 Q← �(Q,Xi)
6 end
7 if Q ∈ A then
8 print line X to9 stdout

10 end
11 end

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The example implementation in the grep example is a little simplistic, so the behaviour (and hence output) will differ versus use of grep
itself. The technical reason for this is that we have ignored (or disallowed) backtracking: if the FSM accepts a ‘t’ followed by something
other than ‘o’ then it fails, but obviously this ignores the possibility that there might be another ‘t’ later which is followed by ‘o’. So the
description might be better written as “s is a line read from stdin, where a) there is at least one ‘t’ character, and b) the first ‘t’ character
is followed by at least one ‘o’ character”. We could try to capture that using a more complex transition function, but then the example
becomes overly complex: although the details is important in a general sense, the underlying idea is more important at this point.
In even more detail, the difference here relates to a difference between so-called Deterministic Finite Automatons (DFAs) and
Non-deterministic Finite Automatons (NFAs): we are dealing with and assume the former, whereas grepmakes use of the latter (see,
e.g., [4, Section 1.2]).

Part 2.1: in practice, application (3)
Example #1: regular expressions + grep❀ FSMs as recognisers

▶ Example [4, Example 1.53]: if Σ = {‘a’, ‘b’, . . . , ‘z’}, then

grep -E '.*to+.*' ≡
{

s
s is a line read from stdin containing

a ‘t’ followed by at least one ‘o’ character

}

which can be realised using

1 void grep() {
2 char X[1024];
3
4 while(NULL != fgets(X, 1024, stdin)) {
5 int n = strlen(X), Q = start;
6
7 if(X[n - 1] == '\n') {
8 X[n - 1] = '\0'; n--;
9 }

10
11 for(int i = 0; i < n; i++) {
12 Q = delta[Q][X[i]];
13 }
14
15 if(accept[Q]) {
16 fprintf(stdout, "%s\n", X);
17 }
18 }
19 }

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The example implementation in the grep example is a little simplistic, so the behaviour (and hence output) will differ versus use of grep
itself. The technical reason for this is that we have ignored (or disallowed) backtracking: if the FSM accepts a ‘t’ followed by something
other than ‘o’ then it fails, but obviously this ignores the possibility that there might be another ‘t’ later which is followed by ‘o’. So the
description might be better written as “s is a line read from stdin, where a) there is at least one ‘t’ character, and b) the first ‘t’ character
is followed by at least one ‘o’ character”. We could try to capture that using a more complex transition function, but then the example
becomes overly complex: although the details is important in a general sense, the underlying idea is more important at this point.
In even more detail, the difference here relates to a difference between so-called Deterministic Finite Automatons (DFAs) and
Non-deterministic Finite Automatons (NFAs): we are dealing with and assume the former, whereas grepmakes use of the latter (see,
e.g., [4, Section 1.2]).

Part 2.1: in practice, application (4)
Example #2: networked communication via TCP ❀ FSMs as controllers

▶ Context:

TCP

IPv4
802.11

C

www.cs.bris.ac.uk

TCP

IPv4
802.3

S

IPv4
802.11 802.3

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.1: in practice, application (5)
Example #2: networked communication via TCP ❀ FSMs as controllers

▶ Example:

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSING

TIMED_WAIT

FIN_WAIT_1

FIN_WAIT_2

CLOSE_WAIT

LAST_ACK

LISTEN/- CLOSE/-

SYN/SYN+ACK

CLOSE/-

CONNECT/SYN

SYN/SYN+ACK

RST/- SEND/SYN

SYN+ACK/ACKACK/-

CLOSE/FIN FIN/ACK

ACK/- CLOSE/FIN

CLOSE/FIN

ACK/-

FIN/ACK

FIN+ACK/ACK

FIN/ACK

timeout/- ACK/-

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.1: in practice, application (6)
Example #3: typical video game “loop” ❀ FSMs as systems

▶ Context:

Algorithm

1 reset the game state
2 while ¬ game over do
3 read control pad (e.g., check if button pressed)
4 update game state (e.g., move player)
5 produce graphics and/or sound
6 end

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.1: in practice, application (6)
Example #3: typical video game “loop” ❀ FSMs as systems

▶ Context:

Algorithm

1 Q← s
2 while Q ∉ A do
3 Xi ← control pad
4 Q← �(Q,Xi)
5 {graphics, sound} ← $(Q)
6 end

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.1: in practice, application (7)
Example #3: typical video game “loop” ❀ FSMs as systems

▶ Example:
iterations of game loop ❀ game tree

' state space
i.e.,

Si+1,j−1 Si+2,j−1

Si,j Si+1,j Si+2,j

Si+1,j+1 Si+2,j+1

iteration i iteration i + 1 iteration i + 2
Q← δ(Q,Xi) Q← δ(Q,Xi+1) Q← δ(Q,Xi+2)

which is most obvious with respect to turn-based games (e.g., chess).

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (1)
Design framework

▶ Recall:

Definition

A (deterministic) Finite State Machine (FSM) is a tuple

C = (S, s,A,Σ, Γ, �, $)
including
1. S, a finite set of states that includes a start state s ∈ S,

2. A ⊆ S, a finite set of accepting states,

3. an input alphabet Σ and an output alphabet Γ,

4. a transition function
� : S × Σ→ S

and

5. an output function
$: S→ Γ

in the case of a Moore FSM, or
$: S × Σ→ Γ

in the case of a Mealy FSM,

noting an empty input denoted & allows a transition that can always occur.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (2)
Design framework

▶ Concept:

Algorithm (latch version)

Latch based
register(s)

δ

ω

Latch based
register(s)

Input

Output

Φ1

Φ2

Q

Q

Q′

Q′

▶ Note that
1. the state is retained in a register (i.e., a group

of latches, resp. flip-flops),
2. � and $ are simply combinatorial logic,
3. within the current clock cycle

• $ computes the output from the current state
and input, and

• � computes the next state from the current state
and input,

4. the next state is latched by an appropriate
feature (i.e., level, resp. edge) in the clock

i.e., it’s a computer we can build!

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (3)
Design framework

▶ Concept:

Algorithm (flip-flop version)

Flip-flop based
register(s)

δ

ω

Input

Output

Clock

Q

Q

Q′

▶ Note that
1. the state is retained in a register (i.e., a group

of latches, resp. flip-flops),
2. � and $ are simply combinatorial logic,
3. within the current clock cycle

• $ computes the output from the current state
and input, and

• � computes the next state from the current state
and input,

4. the next state is latched by an appropriate
feature (i.e., level, resp. edge) in the clock

i.e., it’s a computer we can build!

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (4)
Design framework

▶ Concept:

Example (latch version: input X = 〈X0 ,X1 , . . .〉, output Y = 〈Y0 ,Y1 , . . .〉)

Φ1

Φ2

input latches
reset

Q to start state

input latches
store

Q← Q′

input latches
store

Q← Q′ · · ·

compute
Q′ = δ(Q,X0)
Y0 = ω(Q,X0)

compute
Q′ = δ(Q,X1)
Y1 = ω(Q,X1)

· · ·

output latches
store

Q′

output latches
store

Q′

· · ·

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (5)
Design framework

▶ Concept:

Example (flip-flop version: input X = 〈X0 ,X1 , . . .〉, output Y = 〈Y0 ,Y1 , . . .〉)

compute
Q′ = δ(Q,X0)
Y0 = ω(Q,X0)

compute
Q′ = δ(Q,X1)
Y1 = ω(Q,X1) · · ·

flip-flops
reset

Q to start state

flip-flops
store

Q← Q′

flip-flops
store

Q← Q′

· · ·

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (6)
Design framework

▶ Concept: this should sound familar, because from

Circuit (latch version)

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

0

Φ1

Φ2

1 0 0 0

r 0 r 1

r n
−1

rst

it now becomes clear that
▶ 2n states, labelled S0 through S2n−1; state Si represented as (unsigned) n-bit integer i,
▶ the start state is s = S0 and there are no accepting states (so A = ∅),

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (6)
Design framework

▶ Concept: this should sound familar, because from

Circuit (latch version)

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

0

Φ1

Φ2

1 0 0 0

r 0 r 1

r n
−1

rst

it now becomes clear that
▶ the � function is

Q′← �(Q, rst) =
{

Q + 1 (mod 2n) if rst = 0
0 if rst = 1

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (6)
Design framework

▶ Concept: this should sound familar, because from

Circuit (latch version)

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

0

Φ1

Φ2

1 0 0 0

r 0 r 1

r n
−1

rst

it now becomes clear that
▶ the $ function is r← $(Q) = Q.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (7)
Design framework

▶ Concept: this should sound familar, because from

Circuit (flip-flop version)

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

0

clk

1 0 0 0

r 0 r 1

r n
−1

rst

it now becomes clear that
▶ 2n states, labelled S0 through S2n−1; state Si represented as (unsigned) n-bit integer i,
▶ the start state is s = S0 and there are no accepting states (so A = ∅),

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (7)
Design framework

▶ Concept: this should sound familar, because from

Circuit (flip-flop version)

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

0

clk

1 0 0 0

r 0 r 1

r n
−1

rst

it now becomes clear that
▶ the � function is

Q′← �(Q, rst) =
{

Q + 1 (mod 2n) if rst = 0
0 if rst = 1

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (7)
Design framework

▶ Concept: this should sound familar, because from

Circuit (flip-flop version)

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

co

s

ci
x
y

en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q
en

D Q

¬Q

0

clk

1 0 0 0

r 0 r 1

r n
−1

rst

it now becomes clear that
▶ the $ function is r← $(Q) = Q.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (8)
Design process

▶ Concept to solve a concrete problem, we follow a (fairly) standard sequence of steps

Algorithm

1. Count the number of states required, and give each state an abstract label.

2. Describe the state transition and output functions using a tabular or diagrammatic approach.

3. Perform state assignment, i.e., decide how concrete values will represent the abstract labels, allocating appropriate register(s)
to hold the state.

4. Express the functions � and $ as (optimised) Boolean expressions, i.e., combinatorial logic.

5. Place the registers and combinatorial logic into the framework.

noting that it’s common to
▶ include a reset input that (re)initialises the FSM into the start state,
▶ replace the accepting state(s) with an idle or error state since “halting” doesn’t make sense in

hardware, and
▶ use the FSM to control an associated data-path using the outputs, rather than (necessarily)

solve some problem outright.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (9)
Design process

▶ Concept: we can optimise the state representation based on use of it, e.g.,
1. a binary encoding represents the i-th of n states as a (dlog2(n)e)-bit unsigned integer i, e.g.,

S0 ↦→ 〈0, 0, 0〉
S1 ↦→ 〈1, 0, 0〉
S2 ↦→ 〈0, 1, 0〉
S3 ↦→ 〈1, 1, 0〉
S4 ↦→ 〈0, 0, 1〉
S5 ↦→ 〈1, 0, 1〉

2. a one-hot encoding represents the i-th of n states as a sequence X such that Xi = 1 and Xj = 0
for j ≠ i, e.g.,

S0 ↦→ 〈1, 0, 0, 0, 0, 0〉
S1 ↦→ 〈0, 1, 0, 0, 0, 0〉
S2 ↦→ 〈0, 0, 1, 0, 0, 0〉
S3 ↦→ 〈0, 0, 0, 1, 0, 0〉
S4 ↦→ 〈0, 0, 0, 0, 1, 0〉
S5 ↦→ 〈0, 0, 0, 0, 0, 1〉

noting that we have a larger state (i.e., n bits instead of dlog2(n)e), but
▶ transition between states is easier, and
▶ switching behaviour (and hence power consumption) is reduced.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (10)
Example #1: a modulo 6 ascending counter

▶ Problem: design an FSM that acts as a cyclic counter modulo n = 6 (versus 2n).

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• If n = 6 for example, then we want a component whose output r steps through values

0, 1, 2, 3, 4, 5, 0, 1, . . . ,

with the modular reduction representing control behaviour (versus the uncontrolled counter that was cyclic by default).

Part 2.2: in practice, implementation (10)
Example #1: a modulo 6 ascending counter

▶ Solution:

Algorithm (tabular)

� $
Q Q′ r
S0 S1 0
S1 S2 1
S2 S3 2
S3 S4 3
S4 S5 4
S5 S0 5

Algorithm (diagram)

S0

startstart

S1

S2

S3

S4

S5

ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• If n = 6 for example, then we want a component whose output r steps through values

0, 1, 2, 3, 4, 5, 0, 1, . . . ,

with the modular reduction representing control behaviour (versus the uncontrolled counter that was cyclic by default).

Part 2.2: in practice, implementation (10)
Example #1: a modulo 6 ascending counter

▶ Solution:
▶ there are 6 abstract labels

S0 ↦→ 0
S1 ↦→ 1
S2 ↦→ 2
S3 ↦→ 3
S4 ↦→ 4
S5 ↦→ 5

we can represent using 6 concrete values, e.g.,

S0 ↦→ 〈0, 0, 0〉 ≡ 000(2)
S1 ↦→ 〈1, 0, 0〉 ≡ 001(2)
S2 ↦→ 〈0, 1, 0〉 ≡ 010(2)
S3 ↦→ 〈1, 1, 0〉 ≡ 011(2)
S4 ↦→ 〈0, 0, 1〉 ≡ 100(2)
S5 ↦→ 〈1, 0, 1〉 ≡ 101(2)

▶ since 23 = 8 > 6, we can capture each of
1. Q = 〈Q0 ,Q1 ,Q2〉 ≡ the current state
2. Q′ = 〈Q′0 ,Q′1 ,Q′2〉 ≡ the next state

in a 3-bit register (i.e., via 3 latches or flip-flops).

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• If n = 6 for example, then we want a component whose output r steps through values

0, 1, 2, 3, 4, 5, 0, 1, . . . ,

with the modular reduction representing control behaviour (versus the uncontrolled counter that was cyclic by default).

Part 2.2: in practice, implementation (10)
Example #1: a modulo 6 ascending counter

▶ Solution:
▶ rewriting the abstract labels yields the following concrete truth table

� $
Q2 Q1 Q0 Q′2 Q′1 Q′0 r2 r1 r0
0 0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 1
0 1 0 0 1 1 0 1 0
0 1 1 1 0 0 0 1 1
1 0 0 1 0 1 1 0 0
1 0 1 0 0 0 1 0 1
1 1 0 ? ? ? ? ? ?
1 1 1 ? ? ? ? ? ?

▶ note that our state assignment means r = Q, such that

r = $(Q) = Q

is basically just the identity function (so we’ll ignore it).

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• If n = 6 for example, then we want a component whose output r steps through values

0, 1, 2, 3, 4, 5, 0, 1, . . . ,

with the modular reduction representing control behaviour (versus the uncontrolled counter that was cyclic by default).

Part 2.2: in practice, implementation (10)
Example #1: a modulo 6 ascending counter

▶ Solution:
▶ the truth table can be translated into

00 01 11 10

0

1

Q′2

Q1

Q2

Q0

0
0

0
1

1
2

0
3

0
4

1
5

?
6

?
7

00 01 11 10

0

1

Q′1

Q1

Q2

Q0

0
0

1
1

0
2

0
3

1
4

0
5

?
6

?
7

00 01 11 10

0

1

Q′0

Q1

Q2

Q0

1
0

0
1

1
2

0
3

1
4

0
5

?
6

?
7

▶ doing so yields the following Boolean expressions for �:

Q′2 = (Q1 ∧ Q0) ∨
(Q2 ∧ ¬Q0)

Q′1 = (¬Q2 ∧ ¬Q1 ∧ Q0) ∨
(Q1 ∧ ¬Q0)

Q′0 = (¬Q0)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• If n = 6 for example, then we want a component whose output r steps through values

0, 1, 2, 3, 4, 5, 0, 1, . . . ,

with the modular reduction representing control behaviour (versus the uncontrolled counter that was cyclic by default).

Part 2.2: in practice, implementation (10)
Example #1: a modulo 6 ascending counter

▶ Solution:

Latch based
register(s)

�

$

Latch based
register(s)

input

output

Φ1

Φ2

Q

Q

Q′

Q′

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• If n = 6 for example, then we want a component whose output r steps through values

0, 1, 2, 3, 4, 5, 0, 1, . . . ,

with the modular reduction representing control behaviour (versus the uncontrolled counter that was cyclic by default).

Part 2.2: in practice, implementation (10)
Example #1: a modulo 6 ascending counter

▶ Solution:

Latch based
register(s)

�

$

Latch based
register(s)

input

output

Φ1

Φ2

Q

Q

Q′

Q′
Q′

2 = (Q1 ∧ Q0) ∨
(Q2 ∧ ¬Q0)

Q′
1 = (¬Q2 ∧ ¬Q1 ∧ Q0) ∨

(Q1 ∧ ¬Q0)

Q′
0 = (¬Q0)

en
D Q

¬Q
en
D Q

¬Q
en
D Q

¬Q

Φ1

en
D Q

¬Q
en
D Q

¬Q
en
D Q

¬Q

Φ2

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• If n = 6 for example, then we want a component whose output r steps through values

0, 1, 2, 3, 4, 5, 0, 1, . . . ,

with the modular reduction representing control behaviour (versus the uncontrolled counter that was cyclic by default).

Part 2.2: in practice, implementation (10)
Example #1: a modulo 6 ascending counter

▶ Solution:

Flip-flop based
register(s)

�

$

input

output

clk

Q

Q
Q′

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• If n = 6 for example, then we want a component whose output r steps through values

0, 1, 2, 3, 4, 5, 0, 1, . . . ,

with the modular reduction representing control behaviour (versus the uncontrolled counter that was cyclic by default).

Part 2.2: in practice, implementation (10)
Example #1: a modulo 6 ascending counter

▶ Solution:

Flip-flop based
register(s)

�

$

input

output

clk

Q

Q
Q′

Q′
2 = (Q1 ∧ Q0) ∨

(Q2 ∧ ¬Q0)

Q′
1 = (¬Q2 ∧ ¬Q1 ∧ Q0) ∨

(Q1 ∧ ¬Q0)

Q′
0 = (¬Q0)

en
D Q

¬Q
en
D Q

¬Q
en
D Q

¬Q

clk

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• If n = 6 for example, then we want a component whose output r steps through values

0, 1, 2, 3, 4, 5, 0, 1, . . . ,

with the modular reduction representing control behaviour (versus the uncontrolled counter that was cyclic by default).

Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Problem: design an FSM that
1. acts as a cyclic counter modulo n = 6 (versus 2n),
2. has an input d which selects between increment and decrement, and
3. has an output f which signals when a cycle occurs.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• If n = 6, for example, then
– if d = 0

▶ the output r steps through values 0, 1, 2, 3, 4, 5, 0, 1, . . .
▶ the output f = 1 iff. r = 5

– if d = 1
▶ the output r steps through values 0, 5, 4, 3, 2, 1, 0, 5, . . .
▶ the output f = 1 iff. r = 0.

Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Solution:

Algorithm (tabular)

� $
Q Q′ r f

d = 0 d = 1 d = 0 d = 1
S0 S1 S5 0 0 1
S1 S2 S0 1 0 0
S2 S3 S1 2 0 0
S3 S4 S2 3 0 0
S4 S5 S3 4 0 0
S5 S0 S4 5 1 0

Algorithm (diagram)

S0

startstart

S1

S2

S3

S4

S5

d = 0

d = 1

d = 0

d = 1

d = 0

d = 1

d = 0

d = 1

d = 0

d = 1

d = 0

d = 1

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• If n = 6, for example, then
– if d = 0

▶ the output r steps through values 0, 1, 2, 3, 4, 5, 0, 1, . . .
▶ the output f = 1 iff. r = 5

– if d = 1
▶ the output r steps through values 0, 5, 4, 3, 2, 1, 0, 5, . . .
▶ the output f = 1 iff. r = 0.

Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Solution:
▶ there are 6 abstract labels

S0 ↦→ 0
S1 ↦→ 1
S2 ↦→ 2
S3 ↦→ 3
S4 ↦→ 4
S5 ↦→ 5

we can represent using 6 concrete values, e.g.,

S0 ↦→ 〈0, 0, 0〉 ≡ 000(2)
S1 ↦→ 〈1, 0, 0〉 ≡ 001(2)
S2 ↦→ 〈0, 1, 0〉 ≡ 010(2)
S3 ↦→ 〈1, 1, 0〉 ≡ 011(2)
S4 ↦→ 〈0, 0, 1〉 ≡ 100(2)
S5 ↦→ 〈1, 0, 1〉 ≡ 101(2)

▶ since 23 = 8 > 6, we can capture each of
1. Q = 〈Q0 ,Q1 ,Q2〉 ≡ the current state
2. Q′ = 〈Q′0 ,Q′1 ,Q′2〉 ≡ the next state

in a 3-bit register (i.e., via 3 latches or flip-flops).

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• If n = 6, for example, then
– if d = 0

▶ the output r steps through values 0, 1, 2, 3, 4, 5, 0, 1, . . .
▶ the output f = 1 iff. r = 5

– if d = 1
▶ the output r steps through values 0, 5, 4, 3, 2, 1, 0, 5, . . .
▶ the output f = 1 iff. r = 0.

Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Solution:
▶ rewriting the abstract labels yields the following concrete truth table

� $
d Q2 Q1 Q0 Q′2 Q′1 Q′0 r2 r1 r0 f
0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0 1 0
0 0 1 0 0 1 1 0 1 0 0
0 0 1 1 1 0 0 0 1 1 0
0 1 0 0 1 0 1 1 0 0 0
0 1 0 1 0 0 0 1 0 1 1
0 1 1 0 ? ? ? ? ? ? ?
0 1 1 1 ? ? ? ? ? ? ?
1 0 0 0 1 0 1 0 0 0 1
1 0 0 1 0 0 0 0 0 1 0
1 0 1 0 0 0 1 0 1 0 0
1 0 1 1 0 1 0 0 1 1 0
1 1 0 0 0 1 1 1 0 0 0
1 1 0 1 1 0 0 1 0 1 0
1 1 1 0 ? ? ? ? ? ? ?
1 1 1 1 ? ? ? ? ? ? ?

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• If n = 6, for example, then
– if d = 0

▶ the output r steps through values 0, 1, 2, 3, 4, 5, 0, 1, . . .
▶ the output f = 1 iff. r = 5

– if d = 1
▶ the output r steps through values 0, 5, 4, 3, 2, 1, 0, 5, . . .
▶ the output f = 1 iff. r = 0.

Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Solution:
▶ the truth table can be translated into

00 01 11 10

00

01

11

10

Q′2

d

Q1

Q2

Q0

0
0

0
1

1
2

0
3

0
4

1
5

?
6

?
7

1
8

0
9

0
10

1
11

0
12

0
13

?
14

?
15

00 01 11 10

00

01

11

10

Q′1

d

Q1

Q2

Q0

0
0

1
1

0
2

0
3

1
4

0
5

?
6

?
7

0
8

0
9

1
10

0
11

0
12

1
13

?
14

?
15

00 01 11 10

00

01

11

10

Q′0

d

Q1

Q2

Q0

1
0

0
1

1
2

0
3

1
4

0
5

?
6

?
7

1
8

0
9

1
10

0
11

1
12

0
13

?
14

?
15

▶ doing so yields the following Boolean expressions for �:

Q′2 = (¬d ∧ Q1 ∧ Q0) ∨
(¬d ∧ Q2 ∧ ¬Q0) ∨
(d ∧ Q2 ∧ Q0) ∨
(d ∧ ¬Q2 ∧ ¬Q1 ∧ ¬Q0)

Q′1 = (¬d ∧ ¬Q2 ∧ ¬Q1 ∧ Q0) ∨
(¬d ∧ Q1 ∧ ¬Q0) ∨
(d ∧ Q2 ∧ ¬Q0) ∨
(d ∧ Q1 ∧ Q0)

Q′0 = (¬Q0)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• If n = 6, for example, then
– if d = 0

▶ the output r steps through values 0, 1, 2, 3, 4, 5, 0, 1, . . .
▶ the output f = 1 iff. r = 5

– if d = 1
▶ the output r steps through values 0, 5, 4, 3, 2, 1, 0, 5, . . .
▶ the output f = 1 iff. r = 0.

Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Solution:
▶ the truth table can be translated into

00 01 11 10

00

01

11

10

f

d

Q1

Q2

Q0

0
0

0
1

0
2

1
3

0
4

0
5

?
6

?
7

1
8

0
9

0
10

0
11

0
12

0
13

?
14

?
15

▶ doing so yields the following Boolean expressions for $:

f = (¬d ∧ Q2 ∧ Q0) ∨
(d ∧ ¬Q2 ∧ ¬Q1 ∧ ¬Q0)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• If n = 6, for example, then
– if d = 0

▶ the output r steps through values 0, 1, 2, 3, 4, 5, 0, 1, . . .
▶ the output f = 1 iff. r = 5

– if d = 1
▶ the output r steps through values 0, 5, 4, 3, 2, 1, 0, 5, . . .
▶ the output f = 1 iff. r = 0.

Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Solution:

Latch based
register(s)

�

$

Latch based
register(s)

input

output

Φ1

Φ2

Q

Q

Q′

Q′

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• If n = 6, for example, then
– if d = 0

▶ the output r steps through values 0, 1, 2, 3, 4, 5, 0, 1, . . .
▶ the output f = 1 iff. r = 5

– if d = 1
▶ the output r steps through values 0, 5, 4, 3, 2, 1, 0, 5, . . .
▶ the output f = 1 iff. r = 0.

Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Solution:

Latch based
register(s)

�

$

Latch based
register(s)

input

output

Φ1

Φ2

Q

Q

Q′

Q′

Q′
2 = (¬d ∧ Q1 ∧ Q0) ∨

(¬d ∧ Q2 ∧ ¬Q0) ∨
(d ∧ Q2 ∧ Q0) ∨
(d ∧ ¬Q2 ∧ ¬Q1 ∧ ¬Q0)

Q′
1 = (¬d ∧ ¬Q2 ∧ ¬Q1 ∧ Q0) ∨

(¬d ∧ Q1 ∧ ¬Q0) ∨
(d ∧ Q2 ∧ ¬Q0) ∨
(d ∧ Q1 ∧ Q0)

Q′
0 = (¬Q0)

f = (¬d ∧ Q2 ∧ Q0) ∨
(d ∧ ¬Q2 ∧ ¬Q1 ∧ ¬Q0)

en
D Q

¬Q
en
D Q

¬Q
en
D Q

¬Q

Φ1

en
D Q

¬Q
en
D Q

¬Q
en
D Q

¬Q

Φ2

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• If n = 6, for example, then
– if d = 0

▶ the output r steps through values 0, 1, 2, 3, 4, 5, 0, 1, . . .
▶ the output f = 1 iff. r = 5

– if d = 1
▶ the output r steps through values 0, 5, 4, 3, 2, 1, 0, 5, . . .
▶ the output f = 1 iff. r = 0.

Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Solution:

Flip-flop based
register(s)

�

$

input

output

clk

Q

Q
Q′

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• If n = 6, for example, then
– if d = 0

▶ the output r steps through values 0, 1, 2, 3, 4, 5, 0, 1, . . .
▶ the output f = 1 iff. r = 5

– if d = 1
▶ the output r steps through values 0, 5, 4, 3, 2, 1, 0, 5, . . .
▶ the output f = 1 iff. r = 0.

Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

▶ Solution:

Flip-flop based
register(s)

�

$

input

output

clk

Q

Q
Q′

Q′
2 = (¬d ∧ Q1 ∧ Q0) ∨

(¬d ∧ Q2 ∧ ¬Q0) ∨
(d ∧ Q2 ∧ Q0) ∨
(d ∧ ¬Q2 ∧ ¬Q1 ∧ ¬Q0)

Q′
1 = (¬d ∧ ¬Q2 ∧ ¬Q1 ∧ Q0) ∨

(¬d ∧ Q1 ∧ ¬Q0) ∨
(d ∧ Q2 ∧ ¬Q0) ∨
(d ∧ Q1 ∧ Q0)

Q′
0 = (¬Q0)

f = (¬d ∧ Q2 ∧ Q0) ∨
(d ∧ ¬Q2 ∧ ¬Q1 ∧ ¬Q0)

en
D Q

¬Q
en
D Q

¬Q
en
D Q

¬Q

clk

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• If n = 6, for example, then
– if d = 0

▶ the output r steps through values 0, 1, 2, 3, 4, 5, 0, 1, . . .
▶ the output f = 1 iff. r = 5

– if d = 1
▶ the output r steps through values 0, 5, 4, 3, 2, 1, 0, 5, . . .
▶ the output f = 1 iff. r = 0.

Part 2.2: in practice, implementation (12)
Example #3: a loop counter

▶ Problem: design an FSM that
1. replicates the behaviour of a controlled loop counter, e.g., iwithin a C-style for loop such as

for(int i = m; i < n; i++) {
...

}

2. has an interface that allows signalling for

the start of iteration ≡ so i = m
the end of iteration ≡ when i = n

focused wlog. on 4-bit values of i, m, and n.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (13)
Example #3: a loop counter

▶ Design:
▶ given a user C1 of some component C2, how does
▶ C2 know when to start computation (e.g., when any input x is available), and
▶ C1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which
1. uses a shared clock signal to synchronise events,
2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,
3. ...

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• A shared clock might seem the ideal option, but there are (at least) two scenarios where it doesn’t work out so well:
1. When C2 and C1 are physically separate: distribution of a synchronised clock will be significantly hard(er). and
2. When the number of steps C2 takes is variable: even if C2 and C1 are synchronised, the latter still needs some way to tell when the former has

completed a given computation.

• The diagrammatic example can be explained as follows:
– Initially, req = 0 and ack = 0.
– At some point, C1 wants to start a computation. It proceeds by 1) driving values onto any inputs (e.g., x) then 2) changing req from 0 to 1.
– C2 notices the change to (e.g., positive edge on) req and concludes that the inputs are available.
– C2 computes the outputs from the inputs (e.g., r = f (x)).
– At some point, C2 finishes the computation. It proceeds by 1) driving values onto any outputs (e.g., r) then 2) changing ack from 0 to 1.
– C1 notices the change to (e.g., positive edge on) ack and concludes that the outputs are available. It proceeds by 1) storing any outputs ready for

subsequent use, then 2) changing req from 1 to 0.
– C2 notices the change to (e.g., negative edge on) req and concludes that the interaction is finished. It proceeds by changing ack from 1 to 0.
– C1 notices the change to (e.g., negative edge on) ack and concludes that the interaction is finished.
– Since both req and ack are 0 again, the module and user are ready to engage in successive interactions if/when need be.

Part 2.2: in practice, implementation (13)
Example #3: a loop counter

▶ Design:
▶ given a user C1 of some component C2, how does
▶ C2 know when to start computation (e.g., when any input x is available), and
▶ C1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which
1. uses a shared clock signal to synchronise events,
2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,
3. ...

▶ Example:

Algorithm

C1 C2

req = 0

ack = 0

⊥
⊥

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• A shared clock might seem the ideal option, but there are (at least) two scenarios where it doesn’t work out so well:
1. When C2 and C1 are physically separate: distribution of a synchronised clock will be significantly hard(er). and
2. When the number of steps C2 takes is variable: even if C2 and C1 are synchronised, the latter still needs some way to tell when the former has

completed a given computation.

• The diagrammatic example can be explained as follows:
– Initially, req = 0 and ack = 0.
– At some point, C1 wants to start a computation. It proceeds by 1) driving values onto any inputs (e.g., x) then 2) changing req from 0 to 1.
– C2 notices the change to (e.g., positive edge on) req and concludes that the inputs are available.
– C2 computes the outputs from the inputs (e.g., r = f (x)).
– At some point, C2 finishes the computation. It proceeds by 1) driving values onto any outputs (e.g., r) then 2) changing ack from 0 to 1.
– C1 notices the change to (e.g., positive edge on) ack and concludes that the outputs are available. It proceeds by 1) storing any outputs ready for

subsequent use, then 2) changing req from 1 to 0.
– C2 notices the change to (e.g., negative edge on) req and concludes that the interaction is finished. It proceeds by changing ack from 1 to 0.
– C1 notices the change to (e.g., negative edge on) ack and concludes that the interaction is finished.
– Since both req and ack are 0 again, the module and user are ready to engage in successive interactions if/when need be.

Part 2.2: in practice, implementation (13)
Example #3: a loop counter

▶ Design:
▶ given a user C1 of some component C2, how does
▶ C2 know when to start computation (e.g., when any input x is available), and
▶ C1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which
1. uses a shared clock signal to synchronise events,
2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,
3. ...

▶ Example:

Algorithm

C1 C2

req = 0

ack = 0

x

⊥

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• A shared clock might seem the ideal option, but there are (at least) two scenarios where it doesn’t work out so well:
1. When C2 and C1 are physically separate: distribution of a synchronised clock will be significantly hard(er). and
2. When the number of steps C2 takes is variable: even if C2 and C1 are synchronised, the latter still needs some way to tell when the former has

completed a given computation.

• The diagrammatic example can be explained as follows:
– Initially, req = 0 and ack = 0.
– At some point, C1 wants to start a computation. It proceeds by 1) driving values onto any inputs (e.g., x) then 2) changing req from 0 to 1.
– C2 notices the change to (e.g., positive edge on) req and concludes that the inputs are available.
– C2 computes the outputs from the inputs (e.g., r = f (x)).
– At some point, C2 finishes the computation. It proceeds by 1) driving values onto any outputs (e.g., r) then 2) changing ack from 0 to 1.
– C1 notices the change to (e.g., positive edge on) ack and concludes that the outputs are available. It proceeds by 1) storing any outputs ready for

subsequent use, then 2) changing req from 1 to 0.
– C2 notices the change to (e.g., negative edge on) req and concludes that the interaction is finished. It proceeds by changing ack from 1 to 0.
– C1 notices the change to (e.g., negative edge on) ack and concludes that the interaction is finished.
– Since both req and ack are 0 again, the module and user are ready to engage in successive interactions if/when need be.

Part 2.2: in practice, implementation (13)
Example #3: a loop counter

▶ Design:
▶ given a user C1 of some component C2, how does
▶ C2 know when to start computation (e.g., when any input x is available), and
▶ C1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which
1. uses a shared clock signal to synchronise events,
2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,
3. ...

▶ Example:

Algorithm

C1 C2

req = 1

ack = 0

x

⊥

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• A shared clock might seem the ideal option, but there are (at least) two scenarios where it doesn’t work out so well:
1. When C2 and C1 are physically separate: distribution of a synchronised clock will be significantly hard(er). and
2. When the number of steps C2 takes is variable: even if C2 and C1 are synchronised, the latter still needs some way to tell when the former has

completed a given computation.

• The diagrammatic example can be explained as follows:
– Initially, req = 0 and ack = 0.
– At some point, C1 wants to start a computation. It proceeds by 1) driving values onto any inputs (e.g., x) then 2) changing req from 0 to 1.
– C2 notices the change to (e.g., positive edge on) req and concludes that the inputs are available.
– C2 computes the outputs from the inputs (e.g., r = f (x)).
– At some point, C2 finishes the computation. It proceeds by 1) driving values onto any outputs (e.g., r) then 2) changing ack from 0 to 1.
– C1 notices the change to (e.g., positive edge on) ack and concludes that the outputs are available. It proceeds by 1) storing any outputs ready for

subsequent use, then 2) changing req from 1 to 0.
– C2 notices the change to (e.g., negative edge on) req and concludes that the interaction is finished. It proceeds by changing ack from 1 to 0.
– C1 notices the change to (e.g., negative edge on) ack and concludes that the interaction is finished.
– Since both req and ack are 0 again, the module and user are ready to engage in successive interactions if/when need be.

Part 2.2: in practice, implementation (13)
Example #3: a loop counter

▶ Design:
▶ given a user C1 of some component C2, how does
▶ C2 know when to start computation (e.g., when any input x is available), and
▶ C1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which
1. uses a shared clock signal to synchronise events,
2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,
3. ...

▶ Example:

Algorithm

C1 C2

req = 1

ack = 0

x

⊥

!

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• A shared clock might seem the ideal option, but there are (at least) two scenarios where it doesn’t work out so well:
1. When C2 and C1 are physically separate: distribution of a synchronised clock will be significantly hard(er). and
2. When the number of steps C2 takes is variable: even if C2 and C1 are synchronised, the latter still needs some way to tell when the former has

completed a given computation.

• The diagrammatic example can be explained as follows:
– Initially, req = 0 and ack = 0.
– At some point, C1 wants to start a computation. It proceeds by 1) driving values onto any inputs (e.g., x) then 2) changing req from 0 to 1.
– C2 notices the change to (e.g., positive edge on) req and concludes that the inputs are available.
– C2 computes the outputs from the inputs (e.g., r = f (x)).
– At some point, C2 finishes the computation. It proceeds by 1) driving values onto any outputs (e.g., r) then 2) changing ack from 0 to 1.
– C1 notices the change to (e.g., positive edge on) ack and concludes that the outputs are available. It proceeds by 1) storing any outputs ready for

subsequent use, then 2) changing req from 1 to 0.
– C2 notices the change to (e.g., negative edge on) req and concludes that the interaction is finished. It proceeds by changing ack from 1 to 0.
– C1 notices the change to (e.g., negative edge on) ack and concludes that the interaction is finished.
– Since both req and ack are 0 again, the module and user are ready to engage in successive interactions if/when need be.

Part 2.2: in practice, implementation (13)
Example #3: a loop counter

▶ Design:
▶ given a user C1 of some component C2, how does
▶ C2 know when to start computation (e.g., when any input x is available), and
▶ C1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which
1. uses a shared clock signal to synchronise events,
2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,
3. ...

▶ Example:

Algorithm

C1 C2

req = 1

ack = 0

x

⊥
x

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• A shared clock might seem the ideal option, but there are (at least) two scenarios where it doesn’t work out so well:
1. When C2 and C1 are physically separate: distribution of a synchronised clock will be significantly hard(er). and
2. When the number of steps C2 takes is variable: even if C2 and C1 are synchronised, the latter still needs some way to tell when the former has

completed a given computation.

• The diagrammatic example can be explained as follows:
– Initially, req = 0 and ack = 0.
– At some point, C1 wants to start a computation. It proceeds by 1) driving values onto any inputs (e.g., x) then 2) changing req from 0 to 1.
– C2 notices the change to (e.g., positive edge on) req and concludes that the inputs are available.
– C2 computes the outputs from the inputs (e.g., r = f (x)).
– At some point, C2 finishes the computation. It proceeds by 1) driving values onto any outputs (e.g., r) then 2) changing ack from 0 to 1.
– C1 notices the change to (e.g., positive edge on) ack and concludes that the outputs are available. It proceeds by 1) storing any outputs ready for

subsequent use, then 2) changing req from 1 to 0.
– C2 notices the change to (e.g., negative edge on) req and concludes that the interaction is finished. It proceeds by changing ack from 1 to 0.
– C1 notices the change to (e.g., negative edge on) ack and concludes that the interaction is finished.
– Since both req and ack are 0 again, the module and user are ready to engage in successive interactions if/when need be.

Part 2.2: in practice, implementation (13)
Example #3: a loop counter

▶ Design:
▶ given a user C1 of some component C2, how does
▶ C2 know when to start computation (e.g., when any input x is available), and
▶ C1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which
1. uses a shared clock signal to synchronise events,
2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,
3. ...

▶ Example:

Algorithm

C1 C2

req = 1

ack = 0

x
f (x)

x

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• A shared clock might seem the ideal option, but there are (at least) two scenarios where it doesn’t work out so well:
1. When C2 and C1 are physically separate: distribution of a synchronised clock will be significantly hard(er). and
2. When the number of steps C2 takes is variable: even if C2 and C1 are synchronised, the latter still needs some way to tell when the former has

completed a given computation.

• The diagrammatic example can be explained as follows:
– Initially, req = 0 and ack = 0.
– At some point, C1 wants to start a computation. It proceeds by 1) driving values onto any inputs (e.g., x) then 2) changing req from 0 to 1.
– C2 notices the change to (e.g., positive edge on) req and concludes that the inputs are available.
– C2 computes the outputs from the inputs (e.g., r = f (x)).
– At some point, C2 finishes the computation. It proceeds by 1) driving values onto any outputs (e.g., r) then 2) changing ack from 0 to 1.
– C1 notices the change to (e.g., positive edge on) ack and concludes that the outputs are available. It proceeds by 1) storing any outputs ready for

subsequent use, then 2) changing req from 1 to 0.
– C2 notices the change to (e.g., negative edge on) req and concludes that the interaction is finished. It proceeds by changing ack from 1 to 0.
– C1 notices the change to (e.g., negative edge on) ack and concludes that the interaction is finished.
– Since both req and ack are 0 again, the module and user are ready to engage in successive interactions if/when need be.

Part 2.2: in practice, implementation (13)
Example #3: a loop counter

▶ Design:
▶ given a user C1 of some component C2, how does
▶ C2 know when to start computation (e.g., when any input x is available), and
▶ C1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which
1. uses a shared clock signal to synchronise events,
2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,
3. ...

▶ Example:

Algorithm

C1 C2

req = 1

ack = 1

x
f (x)

x

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• A shared clock might seem the ideal option, but there are (at least) two scenarios where it doesn’t work out so well:
1. When C2 and C1 are physically separate: distribution of a synchronised clock will be significantly hard(er). and
2. When the number of steps C2 takes is variable: even if C2 and C1 are synchronised, the latter still needs some way to tell when the former has

completed a given computation.

• The diagrammatic example can be explained as follows:
– Initially, req = 0 and ack = 0.
– At some point, C1 wants to start a computation. It proceeds by 1) driving values onto any inputs (e.g., x) then 2) changing req from 0 to 1.
– C2 notices the change to (e.g., positive edge on) req and concludes that the inputs are available.
– C2 computes the outputs from the inputs (e.g., r = f (x)).
– At some point, C2 finishes the computation. It proceeds by 1) driving values onto any outputs (e.g., r) then 2) changing ack from 0 to 1.
– C1 notices the change to (e.g., positive edge on) ack and concludes that the outputs are available. It proceeds by 1) storing any outputs ready for

subsequent use, then 2) changing req from 1 to 0.
– C2 notices the change to (e.g., negative edge on) req and concludes that the interaction is finished. It proceeds by changing ack from 1 to 0.
– C1 notices the change to (e.g., negative edge on) ack and concludes that the interaction is finished.
– Since both req and ack are 0 again, the module and user are ready to engage in successive interactions if/when need be.

Part 2.2: in practice, implementation (13)
Example #3: a loop counter

▶ Design:
▶ given a user C1 of some component C2, how does
▶ C2 know when to start computation (e.g., when any input x is available), and
▶ C1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which
1. uses a shared clock signal to synchronise events,
2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,
3. ...

▶ Example:

Algorithm

C1 C2

req = 1

ack = 1

x
f (x)

!
x

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• A shared clock might seem the ideal option, but there are (at least) two scenarios where it doesn’t work out so well:
1. When C2 and C1 are physically separate: distribution of a synchronised clock will be significantly hard(er). and
2. When the number of steps C2 takes is variable: even if C2 and C1 are synchronised, the latter still needs some way to tell when the former has

completed a given computation.

• The diagrammatic example can be explained as follows:
– Initially, req = 0 and ack = 0.
– At some point, C1 wants to start a computation. It proceeds by 1) driving values onto any inputs (e.g., x) then 2) changing req from 0 to 1.
– C2 notices the change to (e.g., positive edge on) req and concludes that the inputs are available.
– C2 computes the outputs from the inputs (e.g., r = f (x)).
– At some point, C2 finishes the computation. It proceeds by 1) driving values onto any outputs (e.g., r) then 2) changing ack from 0 to 1.
– C1 notices the change to (e.g., positive edge on) ack and concludes that the outputs are available. It proceeds by 1) storing any outputs ready for

subsequent use, then 2) changing req from 1 to 0.
– C2 notices the change to (e.g., negative edge on) req and concludes that the interaction is finished. It proceeds by changing ack from 1 to 0.
– C1 notices the change to (e.g., negative edge on) ack and concludes that the interaction is finished.
– Since both req and ack are 0 again, the module and user are ready to engage in successive interactions if/when need be.

Part 2.2: in practice, implementation (13)
Example #3: a loop counter

▶ Design:
▶ given a user C1 of some component C2, how does
▶ C2 know when to start computation (e.g., when any input x is available), and
▶ C1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which
1. uses a shared clock signal to synchronise events,
2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,
3. ...

▶ Example:

Algorithm

C1 C2

req = 1

ack = 1

x
f (x)

x
r = f (x)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• A shared clock might seem the ideal option, but there are (at least) two scenarios where it doesn’t work out so well:
1. When C2 and C1 are physically separate: distribution of a synchronised clock will be significantly hard(er). and
2. When the number of steps C2 takes is variable: even if C2 and C1 are synchronised, the latter still needs some way to tell when the former has

completed a given computation.

• The diagrammatic example can be explained as follows:
– Initially, req = 0 and ack = 0.
– At some point, C1 wants to start a computation. It proceeds by 1) driving values onto any inputs (e.g., x) then 2) changing req from 0 to 1.
– C2 notices the change to (e.g., positive edge on) req and concludes that the inputs are available.
– C2 computes the outputs from the inputs (e.g., r = f (x)).
– At some point, C2 finishes the computation. It proceeds by 1) driving values onto any outputs (e.g., r) then 2) changing ack from 0 to 1.
– C1 notices the change to (e.g., positive edge on) ack and concludes that the outputs are available. It proceeds by 1) storing any outputs ready for

subsequent use, then 2) changing req from 1 to 0.
– C2 notices the change to (e.g., negative edge on) req and concludes that the interaction is finished. It proceeds by changing ack from 1 to 0.
– C1 notices the change to (e.g., negative edge on) ack and concludes that the interaction is finished.
– Since both req and ack are 0 again, the module and user are ready to engage in successive interactions if/when need be.

Part 2.2: in practice, implementation (13)
Example #3: a loop counter

▶ Design:
▶ given a user C1 of some component C2, how does
▶ C2 know when to start computation (e.g., when any input x is available), and
▶ C1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which
1. uses a shared clock signal to synchronise events,
2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,
3. ...

▶ Example:

Algorithm

C1 C2

req = 1

ack = 1

⊥
f (x)

x
r = f (x)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• A shared clock might seem the ideal option, but there are (at least) two scenarios where it doesn’t work out so well:
1. When C2 and C1 are physically separate: distribution of a synchronised clock will be significantly hard(er). and
2. When the number of steps C2 takes is variable: even if C2 and C1 are synchronised, the latter still needs some way to tell when the former has

completed a given computation.

• The diagrammatic example can be explained as follows:
– Initially, req = 0 and ack = 0.
– At some point, C1 wants to start a computation. It proceeds by 1) driving values onto any inputs (e.g., x) then 2) changing req from 0 to 1.
– C2 notices the change to (e.g., positive edge on) req and concludes that the inputs are available.
– C2 computes the outputs from the inputs (e.g., r = f (x)).
– At some point, C2 finishes the computation. It proceeds by 1) driving values onto any outputs (e.g., r) then 2) changing ack from 0 to 1.
– C1 notices the change to (e.g., positive edge on) ack and concludes that the outputs are available. It proceeds by 1) storing any outputs ready for

subsequent use, then 2) changing req from 1 to 0.
– C2 notices the change to (e.g., negative edge on) req and concludes that the interaction is finished. It proceeds by changing ack from 1 to 0.
– C1 notices the change to (e.g., negative edge on) ack and concludes that the interaction is finished.
– Since both req and ack are 0 again, the module and user are ready to engage in successive interactions if/when need be.

Part 2.2: in practice, implementation (13)
Example #3: a loop counter

▶ Design:
▶ given a user C1 of some component C2, how does
▶ C2 know when to start computation (e.g., when any input x is available), and
▶ C1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which
1. uses a shared clock signal to synchronise events,
2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,
3. ...

▶ Example:

Algorithm

C1 C2

req = 0

ack = 1

⊥
f (x)

x
r = f (x)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• A shared clock might seem the ideal option, but there are (at least) two scenarios where it doesn’t work out so well:
1. When C2 and C1 are physically separate: distribution of a synchronised clock will be significantly hard(er). and
2. When the number of steps C2 takes is variable: even if C2 and C1 are synchronised, the latter still needs some way to tell when the former has

completed a given computation.

• The diagrammatic example can be explained as follows:
– Initially, req = 0 and ack = 0.
– At some point, C1 wants to start a computation. It proceeds by 1) driving values onto any inputs (e.g., x) then 2) changing req from 0 to 1.
– C2 notices the change to (e.g., positive edge on) req and concludes that the inputs are available.
– C2 computes the outputs from the inputs (e.g., r = f (x)).
– At some point, C2 finishes the computation. It proceeds by 1) driving values onto any outputs (e.g., r) then 2) changing ack from 0 to 1.
– C1 notices the change to (e.g., positive edge on) ack and concludes that the outputs are available. It proceeds by 1) storing any outputs ready for

subsequent use, then 2) changing req from 1 to 0.
– C2 notices the change to (e.g., negative edge on) req and concludes that the interaction is finished. It proceeds by changing ack from 1 to 0.
– C1 notices the change to (e.g., negative edge on) ack and concludes that the interaction is finished.
– Since both req and ack are 0 again, the module and user are ready to engage in successive interactions if/when need be.

Part 2.2: in practice, implementation (13)
Example #3: a loop counter

▶ Design:
▶ given a user C1 of some component C2, how does
▶ C2 know when to start computation (e.g., when any input x is available), and
▶ C1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which
1. uses a shared clock signal to synchronise events,
2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,
3. ...

▶ Example:

Algorithm

C1 C2

req = 0

ack = 1

⊥
f (x)

!

x
r = f (x)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• A shared clock might seem the ideal option, but there are (at least) two scenarios where it doesn’t work out so well:
1. When C2 and C1 are physically separate: distribution of a synchronised clock will be significantly hard(er). and
2. When the number of steps C2 takes is variable: even if C2 and C1 are synchronised, the latter still needs some way to tell when the former has

completed a given computation.

• The diagrammatic example can be explained as follows:
– Initially, req = 0 and ack = 0.
– At some point, C1 wants to start a computation. It proceeds by 1) driving values onto any inputs (e.g., x) then 2) changing req from 0 to 1.
– C2 notices the change to (e.g., positive edge on) req and concludes that the inputs are available.
– C2 computes the outputs from the inputs (e.g., r = f (x)).
– At some point, C2 finishes the computation. It proceeds by 1) driving values onto any outputs (e.g., r) then 2) changing ack from 0 to 1.
– C1 notices the change to (e.g., positive edge on) ack and concludes that the outputs are available. It proceeds by 1) storing any outputs ready for

subsequent use, then 2) changing req from 1 to 0.
– C2 notices the change to (e.g., negative edge on) req and concludes that the interaction is finished. It proceeds by changing ack from 1 to 0.
– C1 notices the change to (e.g., negative edge on) ack and concludes that the interaction is finished.
– Since both req and ack are 0 again, the module and user are ready to engage in successive interactions if/when need be.

Part 2.2: in practice, implementation (13)
Example #3: a loop counter

▶ Design:
▶ given a user C1 of some component C2, how does
▶ C2 know when to start computation (e.g., when any input x is available), and
▶ C1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which
1. uses a shared clock signal to synchronise events,
2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,
3. ...

▶ Example:

Algorithm

C1 C2

req = 0

ack = 1

⊥
f (x)

r = f (x)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• A shared clock might seem the ideal option, but there are (at least) two scenarios where it doesn’t work out so well:
1. When C2 and C1 are physically separate: distribution of a synchronised clock will be significantly hard(er). and
2. When the number of steps C2 takes is variable: even if C2 and C1 are synchronised, the latter still needs some way to tell when the former has

completed a given computation.

• The diagrammatic example can be explained as follows:
– Initially, req = 0 and ack = 0.
– At some point, C1 wants to start a computation. It proceeds by 1) driving values onto any inputs (e.g., x) then 2) changing req from 0 to 1.
– C2 notices the change to (e.g., positive edge on) req and concludes that the inputs are available.
– C2 computes the outputs from the inputs (e.g., r = f (x)).
– At some point, C2 finishes the computation. It proceeds by 1) driving values onto any outputs (e.g., r) then 2) changing ack from 0 to 1.
– C1 notices the change to (e.g., positive edge on) ack and concludes that the outputs are available. It proceeds by 1) storing any outputs ready for

subsequent use, then 2) changing req from 1 to 0.
– C2 notices the change to (e.g., negative edge on) req and concludes that the interaction is finished. It proceeds by changing ack from 1 to 0.
– C1 notices the change to (e.g., negative edge on) ack and concludes that the interaction is finished.
– Since both req and ack are 0 again, the module and user are ready to engage in successive interactions if/when need be.

Part 2.2: in practice, implementation (13)
Example #3: a loop counter

▶ Design:
▶ given a user C1 of some component C2, how does
▶ C2 know when to start computation (e.g., when any input x is available), and
▶ C1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which
1. uses a shared clock signal to synchronise events,
2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,
3. ...

▶ Example:

Algorithm

C1 C2

req = 0

ack = 1

⊥
⊥r = f (x)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• A shared clock might seem the ideal option, but there are (at least) two scenarios where it doesn’t work out so well:
1. When C2 and C1 are physically separate: distribution of a synchronised clock will be significantly hard(er). and
2. When the number of steps C2 takes is variable: even if C2 and C1 are synchronised, the latter still needs some way to tell when the former has

completed a given computation.

• The diagrammatic example can be explained as follows:
– Initially, req = 0 and ack = 0.
– At some point, C1 wants to start a computation. It proceeds by 1) driving values onto any inputs (e.g., x) then 2) changing req from 0 to 1.
– C2 notices the change to (e.g., positive edge on) req and concludes that the inputs are available.
– C2 computes the outputs from the inputs (e.g., r = f (x)).
– At some point, C2 finishes the computation. It proceeds by 1) driving values onto any outputs (e.g., r) then 2) changing ack from 0 to 1.
– C1 notices the change to (e.g., positive edge on) ack and concludes that the outputs are available. It proceeds by 1) storing any outputs ready for

subsequent use, then 2) changing req from 1 to 0.
– C2 notices the change to (e.g., negative edge on) req and concludes that the interaction is finished. It proceeds by changing ack from 1 to 0.
– C1 notices the change to (e.g., negative edge on) ack and concludes that the interaction is finished.
– Since both req and ack are 0 again, the module and user are ready to engage in successive interactions if/when need be.

Part 2.2: in practice, implementation (13)
Example #3: a loop counter

▶ Design:
▶ given a user C1 of some component C2, how does
▶ C2 know when to start computation (e.g., when any input x is available), and
▶ C1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which
1. uses a shared clock signal to synchronise events,
2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,
3. ...

▶ Example:

Algorithm

C1 C2

req = 0

ack = 0

⊥
⊥r = f (x)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• A shared clock might seem the ideal option, but there are (at least) two scenarios where it doesn’t work out so well:
1. When C2 and C1 are physically separate: distribution of a synchronised clock will be significantly hard(er). and
2. When the number of steps C2 takes is variable: even if C2 and C1 are synchronised, the latter still needs some way to tell when the former has

completed a given computation.

• The diagrammatic example can be explained as follows:
– Initially, req = 0 and ack = 0.
– At some point, C1 wants to start a computation. It proceeds by 1) driving values onto any inputs (e.g., x) then 2) changing req from 0 to 1.
– C2 notices the change to (e.g., positive edge on) req and concludes that the inputs are available.
– C2 computes the outputs from the inputs (e.g., r = f (x)).
– At some point, C2 finishes the computation. It proceeds by 1) driving values onto any outputs (e.g., r) then 2) changing ack from 0 to 1.
– C1 notices the change to (e.g., positive edge on) ack and concludes that the outputs are available. It proceeds by 1) storing any outputs ready for

subsequent use, then 2) changing req from 1 to 0.
– C2 notices the change to (e.g., negative edge on) req and concludes that the interaction is finished. It proceeds by changing ack from 1 to 0.
– C1 notices the change to (e.g., negative edge on) ack and concludes that the interaction is finished.
– Since both req and ack are 0 again, the module and user are ready to engage in successive interactions if/when need be.

Part 2.2: in practice, implementation (13)
Example #3: a loop counter

▶ Design:
▶ given a user C1 of some component C2, how does
▶ C2 know when to start computation (e.g., when any input x is available), and
▶ C1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which
1. uses a shared clock signal to synchronise events,
2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,
3. ...

▶ Example:

Algorithm

C1 C2

req = 0

ack = 0

⊥
⊥

!

r = f (x)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• A shared clock might seem the ideal option, but there are (at least) two scenarios where it doesn’t work out so well:
1. When C2 and C1 are physically separate: distribution of a synchronised clock will be significantly hard(er). and
2. When the number of steps C2 takes is variable: even if C2 and C1 are synchronised, the latter still needs some way to tell when the former has

completed a given computation.

• The diagrammatic example can be explained as follows:
– Initially, req = 0 and ack = 0.
– At some point, C1 wants to start a computation. It proceeds by 1) driving values onto any inputs (e.g., x) then 2) changing req from 0 to 1.
– C2 notices the change to (e.g., positive edge on) req and concludes that the inputs are available.
– C2 computes the outputs from the inputs (e.g., r = f (x)).
– At some point, C2 finishes the computation. It proceeds by 1) driving values onto any outputs (e.g., r) then 2) changing ack from 0 to 1.
– C1 notices the change to (e.g., positive edge on) ack and concludes that the outputs are available. It proceeds by 1) storing any outputs ready for

subsequent use, then 2) changing req from 1 to 0.
– C2 notices the change to (e.g., negative edge on) req and concludes that the interaction is finished. It proceeds by changing ack from 1 to 0.
– C1 notices the change to (e.g., negative edge on) ack and concludes that the interaction is finished.
– Since both req and ack are 0 again, the module and user are ready to engage in successive interactions if/when need be.

Part 2.2: in practice, implementation (13)
Example #3: a loop counter

▶ Design:
▶ given a user C1 of some component C2, how does
▶ C2 know when to start computation (e.g., when any input x is available), and
▶ C1 know when computation has finished (e.g., when any output r = f (x) is available).

▶ we could implement an the interface which
1. uses a shared clock signal to synchronise events,
2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,
3. ...

▶ Example:

Algorithm

C1 C2

req = 0

ack = 0

⊥
⊥r = f (x)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• A shared clock might seem the ideal option, but there are (at least) two scenarios where it doesn’t work out so well:
1. When C2 and C1 are physically separate: distribution of a synchronised clock will be significantly hard(er). and
2. When the number of steps C2 takes is variable: even if C2 and C1 are synchronised, the latter still needs some way to tell when the former has

completed a given computation.

• The diagrammatic example can be explained as follows:
– Initially, req = 0 and ack = 0.
– At some point, C1 wants to start a computation. It proceeds by 1) driving values onto any inputs (e.g., x) then 2) changing req from 0 to 1.
– C2 notices the change to (e.g., positive edge on) req and concludes that the inputs are available.
– C2 computes the outputs from the inputs (e.g., r = f (x)).
– At some point, C2 finishes the computation. It proceeds by 1) driving values onto any outputs (e.g., r) then 2) changing ack from 0 to 1.
– C1 notices the change to (e.g., positive edge on) ack and concludes that the outputs are available. It proceeds by 1) storing any outputs ready for

subsequent use, then 2) changing req from 1 to 0.
– C2 notices the change to (e.g., negative edge on) req and concludes that the interaction is finished. It proceeds by changing ack from 1 to 0.
– C1 notices the change to (e.g., negative edge on) ack and concludes that the interaction is finished.
– Since both req and ack are 0 again, the module and user are ready to engage in successive interactions if/when need be.

Part 2.2: in practice, implementation (14)
Example #3: a loop counter

▶ Design:

Circuit (latch version)

loop counter
control-path

loop counter
data-path

Φ1 Φ2 Φ1 Φ2

cmp

Q

m

n

i

req

ack

i.e., the design is itself the combination of
▶ a data-path, of computational and/or storage components, and
▶ a control-path, that tells components in the data-path what to do and when to do it,
with the latter more overtly realised using an FSM.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (14)
Example #3: a loop counter

▶ Design:

Circuit (flip-flop version)

loop counter
control-path

loop counter
data-path

clk clk

cmp

Q

m

n

i

req

ack

i.e., the design is itself the combination of
▶ a data-path, of computational and/or storage components, and
▶ a control-path, that tells components in the data-path what to do and when to do it,
with the latter more overtly realised using an FSM.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (15)
Example #3: a loop counter

▶ Solution: the data-path.

Circuit (latch version)

i

i′

w x y z

r

+

<

Φ1

Φ2

0
m

1

n cmp

i

Q0
Q1

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The general structure here is the same as the previous, uncontrolled counter example: for example there is 1) there is still a register to
store the current counter state, 2) there is still have an adder, but 3) there is also now a multiplexer to decide between several options for
the next state.

• Some of the inputs (e.g., Q) and outputs (e.g., cmp) shown need to be considered in combination with the control-path. For example, it
should now be clear that
1. if Q = 〈0, 0〉 ↦→ Swait , then the multiplexer updates the output register with 0,
2. if Q = 〈1, 0〉 ↦→ Sinit then the multiplexer updates the output register with m, i.e., the initial counter value,
3. if Q = 〈0, 1〉 ↦→ Sstep then the multiplexer updates the output register with i + 1, i.e., the incremented counter value produced by the adder,
4. if Q = 〈1, 1〉 ↦→ Sdone then the multiplexer updates the output register with i, i.e., the current counter value.

Likewise, it should be clear that

cmp =
{

0 if i < n
1 if i ≥ n

which controls the transition from Sstep into Sdone .

Part 2.2: in practice, implementation (15)
Example #3: a loop counter

▶ Solution: the data-path.

Circuit (flip-flop version)

i

w x y z

r

+

<

clk

0
m

1

n cmp

i

Q0
Q1

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The general structure here is the same as the previous, uncontrolled counter example: for example there is 1) there is still a register to
store the current counter state, 2) there is still have an adder, but 3) there is also now a multiplexer to decide between several options for
the next state.

• Some of the inputs (e.g., Q) and outputs (e.g., cmp) shown need to be considered in combination with the control-path. For example, it
should now be clear that
1. if Q = 〈0, 0〉 ↦→ Swait , then the multiplexer updates the output register with 0,
2. if Q = 〈1, 0〉 ↦→ Sinit then the multiplexer updates the output register with m, i.e., the initial counter value,
3. if Q = 〈0, 1〉 ↦→ Sstep then the multiplexer updates the output register with i + 1, i.e., the incremented counter value produced by the adder,
4. if Q = 〈1, 1〉 ↦→ Sdone then the multiplexer updates the output register with i, i.e., the current counter value.

Likewise, it should be clear that

cmp =
{

0 if i < n
1 if i ≥ n

which controls the transition from Sstep into Sdone .

Part 2.2: in practice, implementation (16)
Example #3: a loop counter

▶ Solution: the control-path.

Algorithm (tabular)

� $
Q Q′ ack

cmp = 0 cmp = 1 cmp = 0 cmp = 1

req = 0




Swait Swait Swait 0 0
Sinit Swait Swait 0 0
Sstep Swait Swait 0 0
Sdone Swait Swait 1 1

req = 1




Swait Sinit Sinit 0 0
Sinit Sstep Sstep 0 0
Sstep Sdone Sstep 0 0
Sdone Sdone Sdone 1 1

Algorithm (diagram)

Swait

startstart

Sinit

Sstep

Sdone

req = 1

req = 0

ϵ
req = 0

cmp = 0

cmp = 1
req = 0

req = 1
req = 0

i.e.,
▶ in Swait it waits for req = 1,
▶ in Sinit it uses any input to initialise itself (e.g., setting the initial loop counter value),
▶ in Sstep it performs an iteration of the loop, and
▶ in Sdone it waits for req = 0 while setting ack = 1.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (16)
Example #3: a loop counter

▶ Solution: the control-path.
▶ there are 4 abstract labels

Swait ↦→ 0
Sinit ↦→ 1
Sstep ↦→ 2
Sdone ↦→ 3

we can represent using 4 concrete values, e.g.,

Swait ↦→ 〈0, 0〉 ≡ 00(2)
Sinit ↦→ 〈1, 0〉 ≡ 01(2)
Sstep ↦→ 〈0, 1〉 ≡ 10(2)
Sdone ↦→ 〈1, 1〉 ≡ 11(2)

▶ since 22 = 4, we can capture each of
1. Q = 〈Q0 ,Q1〉 ≡ the current state
2. Q′ = 〈Q′0 ,Q′1〉 ≡ the next state

in a 2-bit register (i.e., via 2 latches or flip-flops).

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (16)
Example #3: a loop counter

▶ Solution: the control-path.
▶ rewriting the abstract labels yields the following concrete truth table

� $
req cmp Q1 Q0 Q′1 Q′0 ack
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 0 1
0 1 0 0 0 0 0
0 1 0 1 0 0 0
0 1 1 0 0 0 0
0 1 1 1 0 0 1
1 0 0 0 0 1 0
1 0 0 1 1 0 0
1 0 1 0 1 1 0
1 0 1 1 1 1 1
1 1 0 0 0 1 0
1 1 0 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 1 1 1

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (16)
Example #3: a loop counter

▶ Solution: the control-path.
▶ the truth table can be translated into

00 01 11 10

00

01

11

10

Q′1

req

Q1

cmp

Q0

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

1
9

0
10

1
11

1
12

1
13

1
14

1
15

00 01 11 10

00

01

11

10

Q′0

req

Q1

cmp

Q0

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

1
8

0
9

1
10

0
11

1
12

1
13

0
14

1
15

▶ doing so yields the following Boolean expressions for �:

Q′1 = (req ∧ Q0) ∨
(req ∧ Q1)

Q′0 = (req ∧ ¬Q1 ∧ ¬Q0) ∨
(req ∧ Q1 ∧ Q0) ∨
(req ∧ ¬cmp ∧ Q1)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (16)
Example #3: a loop counter

▶ Solution: the control-path.
▶ the truth table can be translated into

00 01 11 10

00

01

11

10

ack

req

Q1

cmp

Q0

0
0

0
1

0
2

0
3

0
4

1
5

0
6

1
7

0
8

0
9

0
10

0
11

0
12

1
13

0
14

1
15

▶ doing so yields the following Boolean expressions for $:

ack = Q1 ∧Q0

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (17)
Example #3: a loop counter

▶ Use-case:
▶ we want(ed) to implement a bit-serial multiplier, i.e.,

Algorithm

Input: Two unsigned, n-bit, base-2 integers x
and y

Output: An unsigned, 2n-bit, base-2 integer
r = y · x

1 r← 0
2 for i = n − 1 downto 0 step −1 do
3 r← 2 · r
4 if yi = 1 then
5 r← r + x
6 end
7 end
8 return r

Circuit

≪ 1

+

r

c

x

y
r r′

x

yi

▶ we did have the data-path,
▶ we didn’t have the control-path.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (18)
Example #3: a loop counter

▶ Use-case:
▶ we now have the loop counter implemented, i.e.

Circuit (latch version)

loop counter
control-path

loop counter
data-path

multiplier
data-path

Φ1 Φ2 Φ1 Φ2

cmp

Q

m

n

i

req

ack

▶ the remaining challenge is integration, e.g., specifying
▶ any additional data-path components required, and
▶ how loop counter (the control-path) controls them
so we end up with a bit-serial multiplier.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (18)
Example #3: a loop counter

▶ Use-case:
▶ we now have the loop counter implemented, i.e.

Circuit (flip-flop version)

loop counter
control-path

loop counter
data-path

multiplier
data-path

clk clk

cmp

Q

m

n

i

req

ack

▶ the remaining challenge is integration, e.g., specifying
▶ any additional data-path components required, and
▶ how loop counter (the control-path) controls them
so we end up with a bit-serial multiplier.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (19)
Example #4: a traffic light controller

▶ Problem: design an FSM that controls two sets of UK-style traffic lights:
▶ the traffic lights are at the intersection is between a main road and an access road,
▶ they should stop cars crashing into each other, displaying
▶ green on main road and red on access road, then
▶ amber on main road and red on access road, then
▶ red on main road and amber on access road, then
▶ red on main road and green on access road, then
▶ red on main road and amber on access road, then
▶ amber on main road and red on access road,
and then cycle, and

▶ they should allow use of an emergency stop button, which
▶ forces red on both main and access roads while pushed, then
▶ reset the system into an initial start state when released.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (19)
Example #4: a traffic light controller

▶ Solution:

Algorithm (tabular)

� $
Q Q′ Mg Ma Mr Ag Aa Ar

rst = 0 rst = 1
S0 S1 S6 1 0 0 0 0 1
S1 S2 S6 0 1 0 0 0 1
S2 S3 S6 0 0 1 0 1 0
S3 S4 S6 0 0 1 1 0 0
S4 S5 S6 0 0 1 0 1 0
S5 S0 S6 0 1 0 0 0 1
S6 S0 S6 0 0 1 0 0 1

Algorithm (diagram)

S0

startstart

S1

S2

S3

S4

S5

S6

rst = 0

rst = 1
rst = 0

rst = 1

rst = 0
rst = 1

rst = 0

rst = 1

rst = 0

rst = 1

rst = 0

rst = 1

rst = 0

rst = 1

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (19)
Example #4: a traffic light controller

▶ Solution:
▶ there are 7 abstract labels

S0 ↦→ 0
S1 ↦→ 1
S2 ↦→ 2
S3 ↦→ 3
S4 ↦→ 4
S5 ↦→ 5
S6 ↦→ 6

we can represent using 7 concrete values, e.g.,

S0 ↦→ 〈0, 0, 0〉 ≡ 000(2)
S1 ↦→ 〈1, 0, 0〉 ≡ 001(2)
S2 ↦→ 〈0, 1, 0〉 ≡ 010(2)
S3 ↦→ 〈1, 1, 0〉 ≡ 011(2)
S4 ↦→ 〈0, 0, 1〉 ≡ 100(2)
S5 ↦→ 〈1, 0, 1〉 ≡ 101(2)
S6 ↦→ 〈0, 1, 1〉 ≡ 110(2)

▶ since 23 = 8 > 7, we can capture each of
1. Q = 〈Q0 ,Q1 ,Q2〉 ≡ the current state
2. Q′ = 〈Q′0 ,Q′1 ,Q′2〉 ≡ the next state

in a 3-bit register (i.e., via 3 latches or flip-flops).

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (19)
Example #4: a traffic light controller

▶ Solution:
▶ rewriting the abstract labels yields the following concrete truth table

� $
rst Q2 Q1 Q0 Q′2 Q′1 Q′0 Mg Ma Mr Ag Aa Ar
0 0 0 0 0 0 1 1 0 0 0 0 1
0 0 0 1 0 1 0 0 1 0 0 0 1
0 0 1 0 0 1 1 0 0 1 0 1 0
0 0 1 1 1 0 0 0 0 1 1 0 0
0 1 0 0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1 0 0 0 1
0 1 1 0 0 0 0 0 0 1 0 0 1
0 1 1 1 ? ? ? ? ? ? ? ? ?
1 0 0 0 1 1 0 1 0 0 0 0 1
1 0 0 1 1 1 0 0 1 0 0 0 1
1 0 1 0 1 1 0 0 0 1 0 1 0
1 0 1 1 1 1 0 0 0 1 1 0 0
1 1 0 0 1 1 0 0 0 1 0 1 0
1 1 0 1 1 1 0 0 1 0 0 0 1
1 1 1 0 1 1 0 0 0 1 0 0 1
1 1 1 1 ? ? ? ? ? ? ? ? ?

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (19)
Example #4: a traffic light controller

▶ Solution:
▶ the truth table can be translated into

00 01 11 10

00

01

11

10

Q′2

rst

Q1

Q2

Q0

0
0

0
1

1
2

0
3

0
4

1
5

0
6

?
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

?
15

00 01 11 10

00

01

11

10

Q′1

rst

Q1

Q2

Q0

0
0

1
1

0
2

0
3

1
4

0
5

0
6

?
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

?
15

00 01 11 10

00

01

11

10

Q′0

rst

Q1

Q2

Q0

1
0

0
1

1
2

0
3

1
4

0
5

0
6

?
7

0
8

0
9

0
10

0
11

0
12

0
13

0
14

?
15

▶ doing so yields the following Boolean expressions for �:

Q′2 = (rst) ∨
(Q2 ∧ ¬Q1 ∧ ¬Q0) ∨
(Q1 ∧ Q0)

Q′1 = (rst) ∨
(¬Q2 ∧ ¬Q1 ∧ Q0) ∨
(¬Q2 ∧ Q1 ∧ ¬Q0)

Q′0 = (¬rst ∧ ¬Q1 ∧ ¬Q0) ∨
(¬rst ∧ ¬Q2 ∧ ¬Q0)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Part 2.2: in practice, implementation (19)
Example #4: a traffic light controller

▶ Solution:
▶ the truth table can be translated into

00 01 11 10

0

1

Mg

Q1

Q2

Q0

1
0

0
1

0
2

0
3

0
4

0
5

0
6

?
7

00 01 11 10

0

1

Ma

Q1

Q2

Q0

0
0

1
1

0
2

1
3

0
4

0
5

0
6

?
7

00 01 11 10

0

1

Mr

Q1

Q2

Q0

0
0

0
1

1
2

0
3

1
4

1
5

1
6

?
7

00 01 11 10

0

1

Ag

Q1

Q2

Q0

0
0

0
1

0
2

0
3

0
4

1
5

0
6

?
7

00 01 11 10

0

1

Aa

Q1

Q2

Q0

0
0

0
1

1
2

0
3

1
4

0
5

0
6

?
7

00 01 11 10

0

1

Ar

Q1

Q2

Q0

1
0

1
1

0
2

1
3

0
4

0
5

1
6

?
7

▶ doing so yields the following Boolean expressions for �:

Mg = (¬Q2 ∧ ¬Q1 ∧ ¬Q0)
Ma = (¬Q1 ∧ Q0)
Mr = (Q1) ∨

(Q2 ∧ ¬Q0)

Ag = (Q1 ∧ Q0)
Aa = (¬Q2 ∧ Q1 ∧ ¬Q0) ∨

(Q2 ∧ ¬Q1 ∧ ¬Q0)
Ar = (¬Q2 ∧ ¬Q1) ∨

(¬Q1 ∧ Q0) ∨
(Q2 ∧ Q1)

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Conclusions

▶ Take away points:
1. FSMs are abstract computational models, but we can used them to solve concrete problems,

e.g.,
▶ recognisers,
▶ controllers,
▶ ...
▶ specifications: like an algorithm, but more easily able to cater for asynchronous events.

2. The “killer application” of FSMs for us is as a general-purpose way to realise controlled
step-by-step forms of computation.

3. Clearly more complex problem⇒more complex solution, but
▶ same framework and process (both conceptual, and practical),
▶ same components (e.g., interface, implementation; data-path, control-path),
so difference is (arguably) creativity re. design.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Additional Reading

▶ Wikipedia: Finite State Machine (FSM). url: https://en.wikipedia.org/wiki/Finite-state_machine.
▶ D. Page. “Chapter 2: Basics of digital logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.
▶ M. Sipster. “Chapter 1: Regular languages”. In: Introduction to the Theory of Computation. 2nd ed. Thomson Course Technology,

2006.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

References

[1] Wikipedia: Finite State Machine (FSM). url: https://en.wikipedia.org/wiki/Finite-state_machine (see p. 207).

[2] D. Page. “Chapter 2: Basics of digital logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009 (see
p. 207).

[3] M. Sipster. “Chapter 1: Regular languages”. In: Introduction to the Theory of Computation. 2nd ed. Thomson Course Technology,
2006 (see p. 207).

[4] M. Sipster. Introduction to the Theory of Computation. 2nd ed. Thomson Course Technology, 2006 (see pp. 5, 33–56).

© Daniel Page 〈csdsp@bristol.ac.uk〉
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

