COMS10015 lecture: week #8 + #9

> Agenda: introduce the topic [4, Part 1] of
finite automata = Finite State Machines (FSMs)

via
1. an “in theory”, i.e., concept-oriented perspective, and
2. an “in practice”, i.e., perspective, spanning

2.1 general application, and

2.2 specific implementation in sequential logic design.
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Part 1: in theory (1)

Definition

An alphabet is a non-empty set of symbols.

Definition

A string X with respect to some alphabet L is a sequence, of finite length, whose elements are members of L, i.e.,
X = (Xo, X1,..., Xu-1)

for some n such that X; € I for 0 < i < n; if n is zero, we term X the empty string and denote it €. It can be useful, and
is common to write elements in in human-readable form termed a string literal: this basically means writing them from
right-to-left without any associated notation (e.g., brackets or commas).

Definition

A language A is a set of strings.
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Part 1: in theory (3)

> Concept: Finite State Machines (FSMs) are a model of computation.
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Part 1: in theory (3)

> Concept: Finite State Machines (FSMs) are a model of computation.

> An FSM is an (idealised) computer C, which, at a given point in time, is in one of some finite
set of states.



mailto:csdsp@bristol.ac.uk

Part 1: in theory (3)

> Concept: Finite State Machines (FSMs) are a model of computation.
> An FSM is an (idealised) computer C, which, at a given point in time, is in one of some finite
set of states.
> C accepts an input string with respect to some alphabet L, one symbol at a time; each symbol
induces a change in state.
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Part 1: in theory (3)

> Concept: Finite State Machines (FSMs) are a model of computation.
> An FSM is an (idealised) computer C, which, at a given point in time, is in one of some finite
set of states.
> C accepts an input string with respect to some alphabet L, one symbol at a time; each symbol
induces a change in state.
> Once the input is exhausted, C halts: depending on the state it halts in, we say either
1. Caccepts (or recognises) the input string
2. Crejects the input string
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Part 1: in theory (3)

> Concept: Finite State Machines (FSMs) are a model of computation.
> An FSM is an (idealised) computer C, which, at a given point in time, is in one of some finite
set of states.
> C accepts an input string with respect to some alphabet L, one symbol at a time; each symbol
induces a change in state.
> Once the input is exhausted, C halts: depending on the state it halts in, we say either

1. Caccepts (or recognises) the input string
2. Crejects the input string

> For a language A of all possible input strings C could accept, we say

C accepts (or recognises) A = A is the language of C

and use A to classify C ...
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Part 1: in theory (4)

Definition

less powerful more powerful

Machine E Combinatorial E Finite Push-down E Linear-bounded E Turing

logic automaton machine
E E E context E context E recursively
Language ' : regular ! free B sensitive H enumerable
. : : regular : coptext : Soniext, ; unrestricted
rammar : I XoxorXoan X5 L @Xpoayp) @=p
Chomsky-Schiltzenberger | : : ) )
hierarchy type3 type-2 type-1 type-0

© Daniel {

Computer Architecture
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Part 1: in theory (5)

Definition

A (deterministic) Finite State Machine (FSM) is a tuple
C=(S,s,A,LT,6,w)

including

1. S, a finite set of states that includes a start state s € S,

2. A C S, afinite set of accepting states,

3. aninput alphabet L and an output alphabet T,

4

. a transition function

§5:SXE—>S
and
5. an output function
w:S—>T
in the case of a Moore FSM, or
w:SXL—T

in the case of a Mealy FSM,

noting an empty input denoted € allows a transition that can always occur.
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Part 1: in theory (6)

> Problem: design an FSM that decides whether a binary sequence X has an odd
number of 1 elements in it.
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Part 1: in theory (6)

» Solution:
Algorithm (tabular) Algorithm (diagram)
o Xi=0 X;=0
Q Q
Xi=0 Xi=1

Seven Seven Sodd

Sodd Sadd Srfvcn
where, e.g.,

1. for the input string X = (1,0, 1, 1) the transitions are

Xo=1 X1=0 Xp=1 X3=1
~+ Seven ~ Sodd ~* Sodd ~* Seven = Sodd

so the input is accepted (i.e., has an odd number of 1 elements).
2. for the input string X = (0,1, 1, 0) the transitions are

Xp=0 Xq=1 Xo=1 X3=0

~> Seven ~* Seven ~ Sodd ~* Seven = Seven

so the input is rejected (i.e., has an even number of 1 elements).

puter Architecture
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Part 2.1: in practice, application (1)

Example #1: regular expressions + grep ~» FSMs as recognisers

> Context:
> —ve perspective:

IF YOU'RE HAWIN' PERL LGoT 99 SO T UsED Now T HAVE
PROBLEMS T FEEL PROBLEMS, REGULAR 100 PROBLEMS.
BAD FOR You, SON—

sl

> +ve perspective: we could say that

evaluate

arithmetic expression ~ ~*  number

evaluate
regular expression ~  language
so a regular expression (or regex) can be used as

1. a pattern used to describe or generate a language, or
2. apattern used to identify (i.e., match) members of a language.

https://xkcd.com/1171
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Part 2.1: in practice, application (2)

Example #1: regular expressions + grep ~» FSMs as recognisers

Definition

We say X is a regular expression if it is
1. asymbol in the alphabet, i.e., {x} for x € £,
2. the union of regular expressions X and Y such that
XUY={x|xeXVvxeY},
3. the concatination of regular expressions X and Y such that
X[ Y={xy|lxeXAyeY},
or
4. the Kleene star of regular expression X such that

X' ={{x0,x1,...,%-1) | n 2 0,x; € X}.

allowing for various short-hands, e.g.,

x = {x}
o= {x |l {y}
Xt = X || X
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Part 2.1: in practice, application (3)

Example #1: regular expressions + grep ~» FSMs as recognisers

> Example [4, Example 1.53]: if © = {0, 1}, then

010" = {

s is a string containing
asingle 1
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Part 2.1: in practice, application (3)

Example #1: regular expressions + grep ~» FSMs as recognisers

> Example [4, Example 1.53]: if © = {0, 1}, then

0710* = { s

s is a string containing
asingle 1

which can be realised using

start So 1 j/% 1 S
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Part 2.1: in practice, application (3)

Example #1: regular expressions + grep ~» FSMs as recognisers

> Example [4, Example 1.53]: if © = {0, 1}, then

r001x* = { s

s is a string containing
001 as a sub-string

which can be realised using
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Part 2.1: in practice, application (3)

Example #1: regular expressions + grep ~» FSMs as recognisers

> Example [4, Example 1.53]: if © = {0, 1}, then

r001x* = { s

s is a string containing
001 as a sub-string

which can be realised using

0 0
0
start @. S 0 S @
! \>2/ ’
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Part 2.1: in practice, application (3)

Example #1: regular expressions + grep ~» FSMs as recognisers

> Example [4, Example 1.53]: if © = {0, 1}, then

s is a string
of even length

(LX) = { s
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Part 2.1: in practice, application (3)

Example #1: regular expressions + grep ~» FSMs as recognisers

> Example [4, Example 1.53]: if © = {0, 1}, then

(s

(D)

s is a string
of even length

which can be realised using

start



mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (3)

Example #1: regular expressions + grep ~» FSMs as recognisers

> Example [4, Example 1.53]: if © = {0, 1}, then

1°(01%)* = { s

s is a string in which
every 0 is followed by at least one 1
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Part 2.1: in practice, application (3)

Example #1: regular expressions + grep ~» FSMs as recognisers

> Example [4, Example 1.53]: if © = {0, 1}, then

1°(01%)* = { s

s is a string in which
every 0 is followed by at least one 1

which can be realised using

0
0
OWB OSSO
start
1
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Part 2.1: in practice, application (3)

Example #1: regular expressions + grep ~» FSMs as recognisers

> Example [4, Example 1.53]: if © = {"a’,b’, ..., ‘2’}, then

grep -E '.*to+.*' = { s

s is a line read from stdin containing
a ‘t’ followed by at least one ‘o’ character
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Part 2.1: in practice, application (3)

Example #1: regular expressions + grep ~» FSMs as recognisers

> Example [4, Example 1.53]: if © = {"a’,b’, ..., ‘2’}, then

grep -E '.*to+.*' = { s

s is a line read from stdin containing
a ‘t’ followed by at least one ‘o’ character
which can be realised using

‘0

Vxxe{a,b,...,6 7}

Vx,xefa,b,.., z}-{t}

start

Vx,xefla,b,..., z}-{0o}

VYxxe{a,b,..., 2}
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Part 2.1: in practice, application (3)

Example #1: regular expressions + grep ~» FSMs as recognisers

> Example [4, Example 1.53]: if © = {"a’,b’, ..., ‘2’}, then

grep -E '.*to+.*' = { s

s is a line read from stdin containing
a ‘t’ followed by at least one ‘o’ character

which can be realised using

1 forall lines X read from stdin do
3 Qs

4 fori=0upton —1do

5 | Q< o(Q Xi)

6 end

7 if Q € A then

8 | print line X to stdout
10 end

11 end
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Part 2.1: in practice, application (3)

Example #1: regular expressions + grep ~» FSMs as recognisers
> Example [4, Example 1.53]: if © = {"a’,b’, ..., ‘2’}, then

s is a line read from stdin containing
a ‘t’ followed by at least one ‘o’ character

grep -E '.*to+.*' = { s

which can be realised using

void grep() {

1

2 char X[ 1024 ];

3

4 while( NULL != fgets( X, 1024, stdin ) ) {
5 int n = strlen( X ), Q = start;
6

7 if( X[n - 11 =="\n") {

8 XILn -11="\0"; n-—-;

9 }

10

11 for( int i = 0; i < n; i++ ) {
12 Q = deltal Q IL X[ i1 1;

13 }

14

15 if( accept[ Q@ 1) {

16 fprintf( stdout, "%s\n", X );
17

18 }
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Part 2.1: in practice, application (4)

Example #2: networked communication via TCP ~» FSMs as controllers

> Context:
www.cs.bris.ac.uk
TCP ' ' TCP
IPv4 IPv4 1Pv4
802.11 802.11 802.3 802.3
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Part 2.1: in practice, application (5)

Example #2: networked communication via TCP ~» FSMs as controllers

> Example:

CONNECT/SYN
LISTEN/-

SYN/SYN+ACK
LISTEN

SEND/SYN
SYN_SENT

SYN/SYN+ACK

ESTABLISHED

ACK/-

timeout/-

SYN+ACK/ACK

CLOSE/FIN

CLOSE/FIN

CLOSING CLOSE_WAIT

FIN_WAIT_1

FIN/ACK

il

ACK/- ] CLOSE/FIN

LAST_ACK

FIN+ACK/ACK

FIN_WAIT_2 TIMED_WAIT

FIN/JACK

Architecture


mailto:csdsp@bristol.ac.uk

Part 2.1: in practice, application (6)

Example #3: typical video game “loop” ~+ FSMs as systems

> Context:

Algorithm

1 reset the game state

> while — game over do

3 read control pad (e.g., check if button pressed)
4 | update game state (e.g., move player)

5 | produce graphics and/or sound

6 end
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Part 2.1: in practice, application (6)

Example #3: typical video game “loop” ~+ FSMs as systems

> Context:

Algorithm

1 Qes

> while Q ¢ A do

3 X « control pad

+ | Qe 0(Q,Xi)

5 {graphics, sound} < w(Q)
6 end
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Part 2.1: in practice, application (7)
Example #3: typical video game “loop” ~+ FSMs as systems

> Example:
iterations of game loop ~+ game tree
~ state space

Q—0(QXj1) Q « 0(Q, Xis2)
ANNNNANN~ teration i + 2 e e

ie.,

Q—o0QXx)
ANNNNANNAteration i+ 1

iteration

which is most obvious with respect to turn-based games (e.g., chess).
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Part 2.2: in practice, implementation (1)
Design framework

> Recall:

Definition

A (deterministic) Finite State Machine (FSM) is a tuple

C=(55A,LT,0,0)

including
1. S, a finite set of states that includes a start state s € S,
2. A C S, afinite set of accepting states,
3. aninput alphabet L and an output alphabet I,
4. atransition function
6:SXL—>S
and
5. an output function
w:S—>T
in the case of a Moore FSM, or
w:SXL—-T

in the case of a Mealy FSM,

noting an empty input denoted € allows a transition that can always occur.
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Part 2.2: in practice, implementation (2)
Design framework

> Concept:

Algorithm (latch version)

|

h
L:‘etgistt;??se)d — @, > Note that
1. the state is retained in a register (i.e., a group
of latches, resp. flip-flops),
2. 6 and w are simply combinatorial logic,
3. within the current clock cycle
e computes the output from the current state
and input, and
e 0 computes the next state from the current state
and input,
4. the next state is latched by an appropriate
feature (i.e., level, resp. edge) in the clock

o

£

Latch based
register(s)

Input —  L—y

i.e., it’s a computer we can build!

-

L N w — Output
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Part 2.2: in practice, implementation (3)
Design framework

> Concept:

Algorithm (flip-flop version)

> Note that

1. the state is retained in a register (i.e., a group
of latches, resp. flip-flops),
2. 6 and w are simply combinatorial logic,
3. within the current clock cycle
e computes the output from the current state
and input, and
Clock e 0 computes the next state from the current state
and input,
4. the next state is latched by an appropriate
feature (i.e., level, resp. edge) in the clock

o

Flip-flop based

Input register(s)

Output i.e., it’s a computer we can build!
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Part 2.2: in practice, implementation (4)

Design framework

> Concept:

input latches input latches input latches
reset store store
Q to start state Q< Qe
@
compute compute
Q' =6(Q,Xo) Q' =0(Q X1)
Yo = (Q, Xo) Y1 =w(Q,X1)

o | [ [ [ [

output latches output latches
store store
/ ’

chitecture
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Part 2.2: in practice, implementation (5)

Design framework

> Concept:

compute compute
Q' =0(Q Xo) Q' =0Q X1)
Yo =w(Q,Xo) Yi=w(Q X1)

N S A S R O B

[ A |

flip-flops flip-flops flip-flops
reset store store

Qtostartstate Q « Q’ Qe«Q

#1b282dbb9
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Part 2.2: in practice, implementation (6)

Design framework

> Concept: this should sound familar, because from

Circuit (latch version)

b0 o R R
{ -0 -0 -0 -0
Dy
)

©

I

D

q
on

Q

D,

o I
B
)
©
]
)
.

n

it now becomes clear that

> 2" states, labelled Sy through Syn_y; state S; represented as (unsigned) n-bit integer i,
> the start state is s = Sp and there are no accepting states (so A = 0),
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Part 2.2: in practice, implementation (6)
Design framework

> Concept: this should sound familar, because from

Circuit (latch version)

EIE) D Q D Q b o
{ “ g " o o, "
rst —|>c
o} o al

y s y s sy s

D Q D Q =D Qe
Q| -Q

Dy

o
n

it now becomes clear that
> the 6 function is

] Q41 (mod?2") ifrst=0
Q < o(Qrst) = { 0 ifrst =1
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Part 2.2: in practice, implementation (6)

Design framework

> Concept: this should sound familar, because from

Circuit (latch version)

D Q D Q D Q
{ “ g on o, "
rst —|>c
o} o al

Bl
L ©

v s v

D Q D Q

en »en
~Q| Q

Dy

o
n

it now becomes clear that
> the w function is r < w(Q) = Q.
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Part 2.2: in practice, implementation (7)
Design framework

> Concept: this should sound familar, because from

Circuit (flip-flop version)

ol B o

b Q

-Q
clk

o
n

Tn-1

it now becomes clear that

> 2" states, labelled Sy through Syn_y; state S; represented as (unsigned) n-bit integer i,
> the start state is s = Sg and there are no accepting states (so A = 0),
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Part 2.2: in practice, implementation (7)
Design framework

> Concept: this should sound familar, because from

Circuit (flip-flop version)

ol B o

D Q] ) D Qe

2Q 2Q “Q
clk

o
n

Tn-1

it now becomes clear that
> the 6 function is

_ ] Q+1 (mod?2") ifrst=0
Q < o(Qrst) = { 0 ifrst =1
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Part 2.2: in practice, implementation (7)
Design framework

> Concept: this should sound familar, because from

Circuit (flip-flop version)

-

b Q

~Q
clk

o
n

Tn-1

it now becomes clear that
> the w function is r < w(Q) = Q.
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Part 2.2: in practice, implementation (8)
Design process

> Concept to solve a concrete problem, we follow a (fairly) standard sequence of steps

Algorithm

1. Count the number of states required, and give each state an abstract label.
2. Describe the state transition and output functions using a tabular or diagrammatic approach.

3. Perform state assignment, i.e., decide how concrete values will represent the abstract labels, allocating appropriate register(s)
to hold the state.

4. Express the functions 6 and w as (optimised) Boolean expressions, i.e., combinatorial logic.

5. Place the registers and combinatorial logic into the framework.

noting that it's common to

> include a reset input that (re)initialises the FSM into the start state,
replace the accepting state(s) with an idle or error state since “halting” doesn’t make sense in
hardware, and

use the FSM to control an associated data-path using the outputs, rather than (necessarily)
solve some problem outright.

>

>
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Part 2.2: in practice, implementation (9)
Design process

> Concept: we can optimise the state representation based on use of it, e.g.,
1. a binary encoding represents the i-th of n states as a ([log,(n)])-bit unsigned integer 7, e.g.,

Sy = (0,0,0)
Si - (10,0
S, +— (0,1,0)
S3 +— (1,1,0)
Sy +— (0,0,1)
Ss +— (1,0,1)

2. aone-hot encoding represents the i-th of n states as a sequence X such that X; = 1and X; =0
forj+#i,eg.,

So +~— (1,0,0,0,0,0)
Sy +— 0,1,0,0,0,0)
S, +— (0,0,1,0,0,0)
S3 +— (0,0,0,1,0,0)
Sy +— (0,0,0,0,1,0)
Ss +— (0,0,0,0,0,1)
noting that we have a larger state (i.e., n bits instead of [log,(n)]), but

> transition between states is easier, and
> switching behaviour (and hence power consumption) is reduced.

© Daniel Page

Computer Architecture
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Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

> Problem: design an FSM that
1. acts as a cyclic counter modulo n = 6 (versus 2"),
2. has an input d which selects between increment and decrement, and

3. has an output f which signals when a cycle occurs.

Computer Architecture
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Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

» Solution:
Algorithm (tabular) Algorithm (diagram)
0 3 start
Q of v 7
d=0 d=1 d=0 d=1

S0 | S S5 0] 0 1
Si| S So |[1] o0 0
S| S St 2] 0 0
S3 | S S |3 0 0
Si | Ss S5 |4 o 0
Ss | S Si |5] 1 0
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Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

> Solution:
> there are 6 abstract labels

So — 0

Sl [ 1

S, B> 2

S3 > 3

54 i 4

S5 +—> 5

we can represent using 6 concrete values, e.g.,

So = (0,0,0) = 0000
S1 +— (1,0,0) = 001(2)
S2 = (0,1,00 = 010p
Sz +— (1,1,0) = 011(2)
Sy +— (0,0,1) = 100(2)
S5 = (1,0,1) = 101y

> since 23 = 8 > 6, we can capture each of

1. Q= (QOr Q11Q2>
2. Q' =4(Qy, Q1,2

in a 3-bit register (i.e., via 3 latches or flip-flops).

the current state
the next state
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Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

> Solution:
> rewriting the abstract labels yields the following concrete truth table

0 @
d[Q Q1 Q| Q Qlrn n n]|f
0 0 0 0 0 0 1 0 0 010
0| 0 0 1 0 1 0 0 0 110
0| 0 1 0 0 1 1 0 1 010
0] O 1 1 1 0 0 0 1 110
0| 1 0 0 1 0 1 1 0 010
0| 1 0 1 0 0 0 1 0 1|1
0 1 1 0 ? ? ? ? ? ?21?
0] 1 1 1 ? ? ? ? 0?2 207
1 0 0 0 1 0 1 0O 0 0|1
110 0 1 0 0 0 0 0 110
110 1 0 0 0 1 0 1 010
1 0 1 1 0 1 0 0 1 11]0
1] 1 0 0 0 1 1 1 0 010
1 1 0 1 1 0 0 1 0 110
1 1 1 0 ? ? ? ? ? ?21?
1] 1 1 1 ? ? ? ? 0?2 2?27
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Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

> Solution:
> the truth table can be translated into
Q Qi Qi
0 0 0
Qé 00 01 11 10 { 00 01 11 10 Q(’J 00 01 11 B
| 00 F‘O wf 0 ‘0 T OOT 00 :1\
OIEHOLLQ o002 (2] orf 11022
: 1l o (1 ?2).? : 1 GJ 0 ’7\[7J : uffry o2
d — d —t - d -
wf(1)fo]0].0 w0 [ ofl].o ol 1)l o]0
> doing so yields the following Boolean expressions for 6:
Q=0 —d A QA Q)Y
( ~d A O A =Qo )V
( d r Q A Qo )V
( d A =Q A Q1 A =Q )
Q= ~d AN Q2 A Q1 A Q )V
( ~d A Q1A Qe )YV
(d rn Q@ A =Qo )V
( d A QoA Q)
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Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

> Solution:
> the truth table can be translated into
Qi
d()

—

f 00 01 11 10

00f 0101010

afo|(1]2)>

: mnolofz2]?

p 01007

mm 0010

> doing so yields the following Boolean expressions for w:

f=(C -d A Q@ A Qo )V
(d AN =Q A =Q1 A ~Q )

Computer Architecture
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Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

> Solution:

|

Latch based
register(s)

R

Latch based

input — register(s)

)

(— output

Pag

Computer Architecture
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Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

> Solution:

____________________________________ Latchbaser

: H register(s)

: H

= AL QA Q)Y

: (~ A @ A -Q )Vl o

: ( dAr Q@ A Q IV o

: ( d A -Q A -Q A -Q ) /—\'Q‘

PQ=( A A A A Qi A Q )V 5

H [ AQA Q)Y

: (d A Q@ A -Q )V b -

: [ A AQ : QI

bog=( - )

: H

e e e ! input— L| Latchbased

register(s)

~

R Q

: f=( ~d A Q A Q )V

R A ) \/ @ [ output

: A

'
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Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

> Solution:

1
o
o

Flip-flop based
register(s)

input —s L

Pag

[«— clk

(— output
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Part 2.2: in practice, implementation (11)
Example #2: a modulo 6 ascending or decending counter, with cycle alert

> Solution:

@=( ~ A QA Q )V
(- A Q A -Q )V
Cdrn Q@ A Q )V
( d A =Q A -Q A -Q )

PWI_‘

A QA -Qp

andd
>
]

. Flip-flop based E E
S — = S S S

(— output
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Part 2.2: in practice, implementation (12)
Example #3: a loop counter

> Problem: design an FSM that
1. replicates the behaviour of a controlled loop counter, e.g., i within a C-style for loop such as

for( int i = m; i < n; i++ ) {

.

2. has an interface that allows signalling for

so i=m
wheni=n

the start of iteration
the end of iteration

focused wlog. on 4-bit values of i, m, and n.
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Part 2.2: in practice, implementation (13)
Example #3: a loop counter

> Design:
> given a user C; of some component C, how does
> C; know when to start computation (e.g., when any input x is available), and
> C; know when computation has finished (e.g., when any output r = f(x) is available).
> we could implement an the interface which

1. uses a shared clock signal to synchronise events,
2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,

3.
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3. .
> Example:
req =0
ack =0
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Part 2.2: in practice, implementation (14)

Example #3: a loop counter

> Design:

Circuit (latch version)

req | cmp -
loop counter loop counter  n
control-path 0 data-path

ack < —— i

O D, D Dy

i.e., the design is itself the combination of

> a data-path, of computational and/or storage components, and
> a control-path, that tells components in the data-path what to do and when to do it,

with the latter more overtly realised using an FSM.

omputer Architecture


mailto:csdsp@bristol.ac.uk

Part 2.2: in practice, implementation (14)

Example #3: a loop counter

> Design:

Circuit (flip-flop version)

req | cmp -
loop counter loop counter  n
control-path 0 data-path

ack < —— i

clk clk

i.e., the design is itself the combination of

> a data-path, of computational and/or storage components, and
> a control-path, that tells components in the data-path what to do and when to do it,

with the latter more overtly realised using an FSM.

omputer Architecture
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Part 2.2: in practice, implementation (15)
Example #3: a loop counter

> Solution: the data-path.

Circuit (latch version)

Oy —

Qo
e Q1
1 ()
i
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Part 2.2: in practice, implementation (15)
Example #3: a loop counter
> Solution: the data-path.

Circuit (flip-flop version)

Qo
8 = y \ Ql

i
clk —H[ i
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Part 2.2: in practice, implementation (16)
Example #3: a loop counter

> Solution: the control-path.

Algorithm (tabular) Algorithm (diagram)
start
0 [
Q Q ack
cnp=0 cmp=1 | cmp=0 cmp=1
Swait Swait Swait 0 0
Si Sowai Suwai 0 0
=0 init wait wait
o Step | Sumt  Suwat 0 0
Sdone Suwait Sawnit 1 1
Suwait Sinit Sinit 0 0
Si S S 0 0
-1 init step step
i Ssb:p Sdone Ssn'p 0 0
Sdone Sdone Sdone 1 1

1
> in Sy it waits for req = 1,

> in S;,; it uses any input to initialise itself (e.g., setting the initial loop counter value),
> in Seep it performs an iteration of the loop, and

> in S,y it waits for req = 0 while setting ack = 1.
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Part 2.2: in practice, implementation (16)
Example #3: a loop counter

> Solution: the control-path.
> there are 4 abstract labels

Swit 0
Sinit 1
S step - 2
Sdone 3

Swit +— (0,00 = 00(2)
Simie (1,00 = 0lp
Sstep [ <0, 1) = 10(2)
done > (L1) = 11
> since 22 = 4, we can capture each of
the current state

L Q =(Qo, Q1)
2. Q' =(Qp QD

the next state

in a 2-bit register (i.e., via 2 latches or flip-flops).
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Part 2.2: in practice, implementation (16)
Example #3: a loop counter

> Solution: the control-path.
> rewriting the abstract labels yields the following concrete truth table

0 2]
req [emp [ Q1 Qo [ Q7 Qp | ack
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 0 1
0 1 0 0 0 0 0
0 1 0 1 0 0 0
0 1 1 0 0 0 0
0 1 1 1 0 0 1
1 0 0 0 0 1 0
1 0 0 1 1 0 0
1 0 1 0 1 1 0
1 0 1 1 1 1 1
1 1 0 0 0 1 0
1 1 0 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 1 1 1
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Part 2.2: in practice, implementation (16)

Example #3: a loop counter

> Solution: the control-path.

> the truth table can be translated into

Q

00

01
p
1
req

10

0
0
0
0

\«l \1
1)1

> doing so yields the following Boolean expressions for 6:

Q=( reg

( reg
Q=( reg

( req

( reg A

—cmp

Q
0
Q(’J 00 01 11 10
00 0] 0]0]0
]u olofo]o
p ——
- 1|1 ‘0 ﬂ‘o
10;1/ 0 Fl)
A Qo )V
AN O )
A=Qr A 2Qo )V
AN QoA Q)Y
AN )
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Part 2.2: in practice, implementation (16)
Example #3: a loop counter

> Solution: the control-path.
> the truth table can be translated into

Qi

du

—
ack o0 01110
00f 0] 0 T 0
ol 0[O0 |1(o0
p

1m0 0|10

reg WO s
ol 00 (1)0

> doing so yields the following Boolean expressions for w:

ack = Q1 A Qo

Computer Architecture
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Part 2.2: in practice, implementation (17)
Example #3: a loop counter

> Use-case:
> we want(ed) to implement a bit-serial multiplier, i.e.,

Algorithm Circuit

Input: Two unsigned, n-bit, base-2 integers x

and y
Output: An unsigned, 2n-bit, base-2 integer <1

r=y-x
1 re0 D r
2> fori=n—1downto 0 step —1 do
3 re2-r x ’
4 if y; = 1 then
5 | rer+x Yi
6 end
7 end
s returnr

> we did have the data-path,
> we didn’t have the control-path.
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Part 2.2: in practice, implementation (18)

Example #3: a loop counter

> Use-case:
> we now have the loop counter implemented, i.e.

Circuit (latch version)

cmp

req ——f l———m
loop counter loop counter n multiplier
control-path 0 data-path data-path

ack <~ ——i

> the remaining challenge is integration, e.g., specifying
> any additional data-path components required, and
> how loop counter (the control-path) controls them

so we end up with a bit-serial multiplier.
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Circuit (flip-flop version)

cmp

req ——f l———m
loop counter loop counter n multiplier
control-path 0 data-path data-path

ack <~ ——i

clk clk

> the remaining challenge is integration, e.g., specifying
> any additional data-path components required, and
> how loop counter (the control-path) controls them

so we end up with a bit-serial multiplier.
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Conclusions

> Take away points:

1.

FSMs are abstract computational models, but we can used them to solve concrete problems,
eg.,

> recognisers,
> controllers,
>

> specifications: like an algorithm, but more easily able to cater for asynchronous events.

. The “killer application” of FSMs for us is as a general-purpose way to realise controlled

step-by-step forms of computation.

. Clearly more complex problem = more complex solution, but

> same framework and process (both conceptual, and practical),
> same components (e.g., interface, implementation; data-path, control-path),

so difference is (arguably) creativity re. design.
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Additional Reading

> Wikipedia: Finite State Machine (FSM). urL: https://en.wikipedia.org/wiki/Finite-state_machine.

> D. Page. “Chapter 2: Basics of digital logic”. In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.

> M. Sipster. “Chapter 1: Regular languages”. In: Introduction to the Theory of Computation. 2nd ed. Thomson Course Technology,
2006.
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