COMS10015 lecture: week #8 + #9

► Agenda: introduce the topic [4, Part 1] of

finite automata ≡ Finite State Machines (FSMs)

via

- 1. an "in theory", i.e., concept-oriented perspective, and
- 2. an "in practice", i.e., perspective, spanning
 - 2.1 general application, and
 - 2.2 specific implementation in sequential logic design.

Definition

An alphabet is a non-empty set of symbols.

Definition

A string X with respect to some alphabet Σ is a sequence, of finite length, whose elements are members of Σ , i.e.,

$$X = \langle X_0, X_1, \dots, X_{n-1} \rangle$$

for some n such that $X_i \in \Sigma$ for $0 \le i < n$; if n is zero, we term X the **empty string** and denote it ϵ . It can be useful, and is common to write elements in in human-readable form termed a **string literal**: this basically means writing them from right-to-left without any associated notation (e.g., brackets or commas).

Definition

A **language** Λ is a set of strings.

► Concept: Finite State Machines (FSMs) are a model of computation.

- ► Concept: Finite State Machines (FSMs) are a model of computation.
 - ▶ An FSM is an (idealised) computer *C*, which, at a given point in time, is in one of some finite set of states.

- ► Concept: Finite State Machines (FSMs) are a model of computation.
 - ▶ An FSM is an (idealised) computer *C*, which, at a given point in time, is in one of some finite set of states.
 - ightharpoonup C accepts an input string with respect to some alphabet Σ , one symbol at a time; each symbol induces a change in state.

- Concept: Finite State Machines (FSMs) are a model of computation.
 - ▶ An FSM is an (idealised) computer *C*, which, at a given point in time, is in one of some finite set of states.
 - C accepts an input string with respect to some alphabet Σ, one symbol at a time; each symbol induces a change in state.
 - ▶ Once the input is exhausted, C halts: depending on the state it halts in, we say either
 - 1. *C* accepts (or recognises) the input string
 - 2. *C* rejects the input string

- Concept: Finite State Machines (FSMs) are a model of computation.
 - ▶ An FSM is an (idealised) computer *C*, which, at a given point in time, is in one of some finite set of states.
 - C accepts an input string with respect to some alphabet Σ, one symbol at a time; each symbol induces a change in state.
 - ▶ Once the input is exhausted, C halts: depending on the state it halts in, we say either
 - 1. *C* accepts (or recognises) the input string
 - . *C* rejects the input string
 - ightharpoonup For a language Λ of all possible input strings C could accept, we say

C accepts (or recognises) $\Lambda \equiv \Lambda$ is the language of *C*

and use Λ to classify C ...

Definition					
less powerful					more powerful
Machine	Combinatorial logic	Finite automaton	Push-down automaton	Linear-bounded automaton	Turing machine
Memory		0 stacks	1 stacks	2 stacks	2 stacks
Language		regular	context free	context sensitive	recursively enumerable
Grammar		regular $(X \to x \text{ or } X \to xY)$	context free $(X \rightarrow \gamma)$	context sensitive $(\alpha X\beta \rightarrow \alpha \gamma \beta)$	unrestricted $(\alpha \to \beta)$
Chomsky-Schützenberger hierarchy		type-3	type-2	type-1	type-0

Definition

A (deterministic) Finite State Machine (FSM) is a tuple

$$C = (S, s, A, \Sigma, \Gamma, \delta, \omega)$$

including

- 1. S, a finite set of **states** that includes a **start state** $s \in S$,
- 2. $A \subseteq S$, a finite set of accepting states,
- 3. an **input alphabet** Σ and an **output alphabet** Γ ,
- 4. a transition function

$$\delta: S \times \Sigma \longrightarrow S$$

and

5. an output function

$$\omega:S\to\Gamma$$

in the case of a Moore FSM, or

$$\omega: S \times \Sigma \to \Gamma$$

in the case of a Mealy FSM,

noting an **empty** input denoted ϵ allows a transition that can *always* occur.

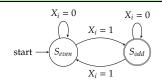
▶ Problem: design an FSM that decides whether a binary sequence *X* has an odd number of 1 elements in it.

Solution:

Algorithm (tabular)

	δ			
Q	Q'			
	$X_i = 0$	$X_i = 1$		
Seven	S_{even}	S_{odd}		
S_{odd}	S_{odd}	S_{even}		

Algorithm (diagram)



where, e.g.,

1. for the input string $X = \langle 1, 0, 1, 1 \rangle$ the transitions are

$$\sim S_{even} \overset{X_0=1}{\sim} S_{odd} \overset{X_1=0}{\sim} S_{odd} \overset{X_2=1}{\sim} S_{even} \overset{X_3=1}{\sim} S_{odd}$$

so the input is accepted (i.e., has an odd number of 1 elements).

2. for the input string $X = \langle 0, 1, 1, 0 \rangle$ the transitions are

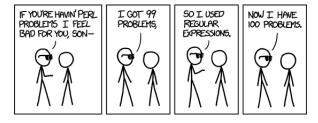
$$\sim S_{even} \stackrel{X_0=0}{\sim} S_{even} \stackrel{X_1=1}{\sim} S_{odd} \stackrel{X_2=1}{\sim} S_{even} \stackrel{X_3=0}{\sim} S_{even}$$

so the input is rejected (i.e., has an even number of 1 elements).

Part 2.1: in practice, application (1)

Example #1: regular expressions + grep → FSMs as recognisers

- ► Context:
 - -ve perspective:



► +ve perspective: we could say that

arithmetic expression regular expression

evaluate

evaluate

ovaluate

number language

so a regular expression (or regex) can be used as

- 1. a pattern used to describe or generate a language, or
- 2. a pattern used to identify (i.e., match) members of a language.

Definition

We say *X* is a **regular expression** if it is

- 1. a symbol in the alphabet, i.e., $\{x\}$ for $x \in \Sigma$,
- 2. the union of regular expressions X and Y such that

$$X \cup Y = \{x \mid x \in X \lor x \in Y\},\$$

3. the concatination of regular expressions X and Y such that

$$X \parallel Y = \{\langle x, y \rangle \mid x \in X \land y \in Y\},\$$

or

4. the Kleene star of regular expression X such that

$$X^* = \{\langle x_0, x_1, \dots, x_{n-1} \rangle \mid n \geq 0, x_i \in X\}.$$

allowing for various short-hands, e.g.,

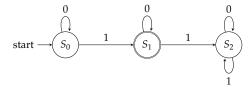
$$\begin{array}{rcl}
x & \equiv & \{x\} \\
xy & \equiv & \{x\} \parallel \{y\} \\
X^+ & \equiv & X \parallel X^*
\end{array}$$

Example [4, Example 1.53]: if $\Sigma = \{0, 1\}$, then

$$0^*10^* \equiv \left\{ s \mid \begin{array}{c} s \text{ is a string containing} \\ a \text{ single } 1 \end{array} \right\}$$

Example [4, Example 1.53]: if $\Sigma = \{0, 1\}$, then

$$0^*10^* \equiv \left\{ s \mid \begin{array}{c} s \text{ is a string containing} \\ a \text{ single 1} \end{array} \right\}$$

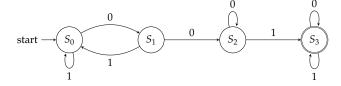


Example [4, Example 1.53]: if $\Sigma = \{0, 1\}$, then

$$\Sigma^*001\Sigma^* \equiv \left\{ s \mid s \text{ is a string containing } 001 \text{ as a sub-string} \right\}$$

Example [4, Example 1.53]: if $\Sigma = \{0, 1\}$, then

$$\Sigma^* 001\Sigma^* \equiv \left\{ s \mid s \text{ is a string containing } 001 \text{ as a sub-string} \right\}$$

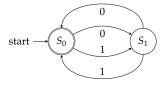


Example [4, Example 1.53]: if $\Sigma = \{0, 1\}$, then

$$(\Sigma \Sigma)^* \equiv \left\{ s \mid \begin{array}{c} s \text{ is a string} \\ \text{of even length} \end{array} \right\}$$

Example [4, Example 1.53]: if $\Sigma = \{0, 1\}$, then

$$(\Sigma \Sigma)^* \equiv \left\{ \begin{array}{c|c} s & \text{is a string} \\ of \text{ even length} \end{array} \right\}$$

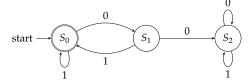


Example [4, Example 1.53]: if $\Sigma = \{0, 1\}$, then

$$1^*(01^+)^* \equiv \left\{ \begin{array}{c|c} s \text{ is a string in which} \\ \text{every 0 is followed by at least one 1} \end{array} \right\}$$

Example [4, Example 1.53]: if $\Sigma = \{0, 1\}$, then

$$1^*(01^+)^* \equiv \begin{cases} s & \text{is a string in which} \\ \text{every } 0 & \text{is followed by at least one } 1 \end{cases}$$



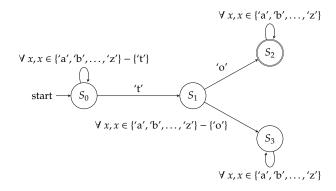
25 minple #11 regular expressions + grep -- Total as recognises

Example [4, Example 1.53]: if
$$\Sigma = \{'a', 'b', ..., 'z'\}$$
, then

grep -E '.*to+.*' $\equiv \left\{ \begin{array}{c} s \text{ is a line read from stdin containing} \\ a \text{ 't' followed by at least one 'o' character} \end{array} \right.$

Example [4, Example 1.53]: if $\Sigma = \{'a', 'b', \dots, 'z'\}$, then

grep -E '.*to+.*'
$$\equiv \left\{ \begin{array}{c} s \text{ is a line read from stdin containing} \\ a \text{ 't' followed by at least one 'o' character} \end{array} \right.$$



Example [4, Example 1.53]: if $\Sigma = \{'a', 'b', \dots, 'z'\}$, then

grep -E '.*to+.*'
$$\equiv \left\{ \begin{array}{c} s \text{ is a line read from stdin containing} \\ a \text{ 't' followed by at least one 'o' character} \end{array} \right.$$

```
for all lines X read from stdin do
\begin{vmatrix}
Q \leftarrow s \\
\text{for } i = 0 \text{ upto } n - 1 \text{ do} \\
0 & | Q \leftarrow \delta(Q, X_i) \\
0 & \text{end} \\
0 & | print line } X \text{ to stdout} \\
0 & \text{end} \\
0 & | end \\
0
```

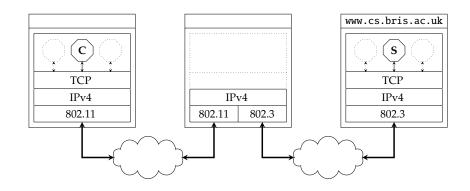
Example [4, Example 1.53]: if $\Sigma = \{'a', 'b', \dots, 'z'\}$, then

grep -E '.*to+.*'
$$\equiv \left\{ \begin{array}{c} s \text{ is a line read from stdin containing} \\ a \text{ 't' followed by at least one 'o' character} \end{array} \right.$$

```
1 void grep() {
2    char X[ 1024 ];
3
4    while( NULL != fgets( X, 1024, stdin ) ) {
5        int n = strlen( X ), Q = start;
6
7        if( X[ n - 1 ] == '\n' ) {
8             X[ n - 1 ] = '\o'; n--;
9        }
10
11        for(int i = 0; i < n; i++ ) {
12             Q = delta[ Q ][ X[ i ] ];
13        }
14
15        if( accept[ Q ] ) {
16             fprintf( stdout, "%s\n", X );
17        }
18        }
19    }</pre>
```

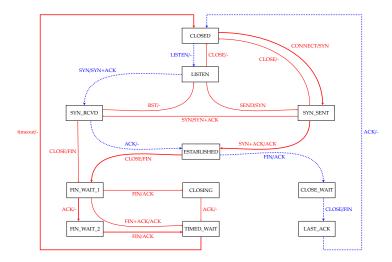
Part 2.1: in practice, application (4) Example #2: networked communication via TCP \sim FSMs as controllers

Context:



Part 2.1: in practice, application (5) Example #2: networked communication via $TCP \sim FSMs$ as controllers

Example:



Part 2.1: in practice, application (6) Example #3: typical video game "loop" → FSMs as systems

Context:

Algorithm

- 1 reset the game state
- 2 while ¬ game over do
 - read control pad (e.g., check if button pressed)
- 4 update game state (e.g., move player)
- 5 produce graphics and/or sound
- 6 end

Part 2.1: in practice, application (6) Example #3: typical video game "loop" → FSMs as systems

Context:

Algorithm

```
1 Q \leftarrow s

2 while Q \notin A do

3 X_i \leftarrow \text{control pad}

4 Q \leftarrow \delta(Q, X_i)

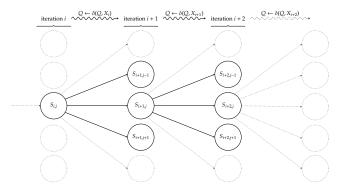
5 \{\text{graphics}, \text{sound}\} \leftarrow \omega(Q)

6 end
```

Part 2.1: in practice, application (7) Example #3: typical video game "loop" → FSMs as systems

Example:

i.e.,



which is most obvious with respect to turn-based games (e.g., chess).

► Recall:

Definition

A (deterministic) Finite State Machine (FSM) is a tuple

$$C = (S, s, A, \Sigma, \Gamma, \delta, \omega)$$

including

1. S, a finite set of states that includes a start state $s \in S$,

2. $A \subseteq S$, a finite set of accepting states,

3. an **input alphabet** Σ and an **output alphabet** Γ ,

4. a transition function

$$\delta: S \times \Sigma \to S$$

and

5. an output function

$$\omega:S\to\Gamma$$

in the case of a Moore FSM, or

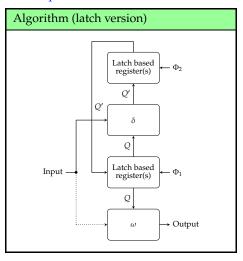
$$\omega:S\times\Sigma\to\Gamma$$

in the case of a Mealy FSM,

noting an \mathbf{empty} input denoted ϵ allows a transition that can always occur.

Part 2.2: in practice, implementation (2) Design framework

Concept:

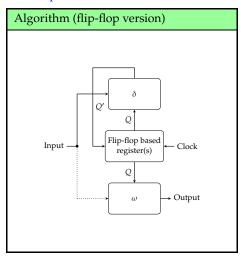


Note that

- 1. the state is retained in a register (i.e., a group of latches, resp. flip-flops),
- 2. δ and ω are simply combinatorial logic,
- 3. within the current clock cycle
 - ω computes the output from the current state and input, and
 - δ computes the next state from the current state and input,
- 4. the next state is latched by an appropriate feature (i.e., level, resp. edge) in the clock
- i.e., it's a computer we can build!

Part 2.2: in practice, implementation (3) Design framework

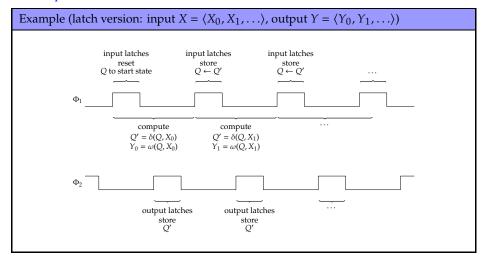
Concept:



Note that

- the state is retained in a register (i.e., a group of latches, resp. flip-flops),
- 2. δ and ω are simply combinatorial logic,
- 3. within the current clock cycle
 - ω computes the output from the current state and input, and
 - δ computes the next state from the current state and input,
- 4. the next state is latched by an appropriate feature (i.e., level, resp. edge) in the clock
- i.e., it's a *computer* we can *build*!

Concept:

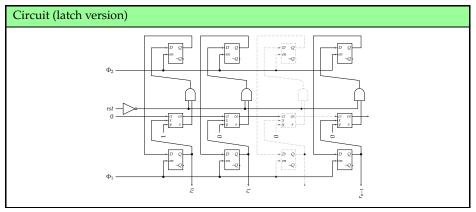


Concept:

```
Example (flip-flop version: input X = \langle X_0, X_1, \ldots \rangle, output Y = \langle Y_0, Y_1, \ldots \rangle)
                                                     compute
                                                                      compute
                                                  O' = \delta(O, X_0) O' = \delta(O, X_1)
                                                  Y_0 = \omega(Q, X_0) Y_1 = \omega(Q, X_1)
                                            flip-flops
                                                             flip-flops
                                                                               flip-flops
                                              reset
                                                                store
                                                                                 store
                                         O to start state
                                                              O ← O'
                                                                               O \leftarrow O'
```

Part 2.2: in practice, implementation (6) Design framework

Concept: this should sound familar, because from

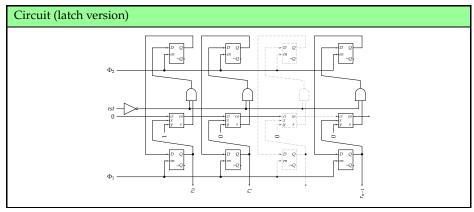


it now becomes clear that

- \triangleright 2ⁿ states, labelled S₀ through S_{2ⁿ-1}; state S_i represented as (unsigned) n-bit integer i,
- the start state is $s = S_0$ and there are no accepting states (so $A = \emptyset$),

Part 2.2: in practice, implementation (6) Design framework

Concept: this should sound familar, because from



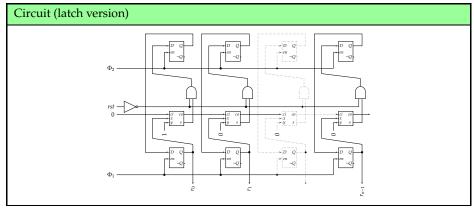
it now becomes clear that

• the δ function is

$$Q' \leftarrow \delta(Q, rst) = \begin{cases} Q+1 \pmod{2^n} & \text{if } rst = 0\\ 0 & \text{if } rst = 1 \end{cases}$$

Part 2.2: in practice, implementation (6) Design framework

Concept: this should sound familiar, because from

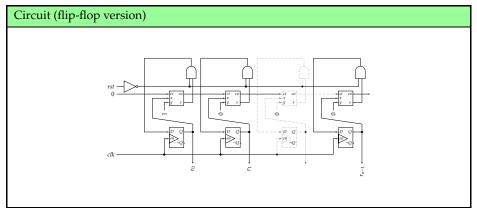


it now becomes clear that

• the ω function is $r \leftarrow \omega(Q) = Q$.

Part 2.2: in practice, implementation (7) Design framework

Concept: this should sound familar, because from

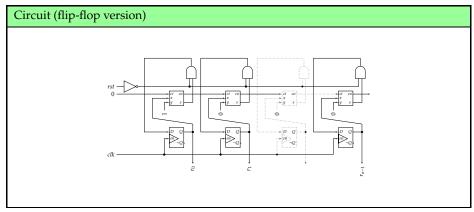


it now becomes clear that

- \triangleright 2ⁿ states, labelled S₀ through S_{2ⁿ-1}; state S_i represented as (unsigned) n-bit integer i,
- the start state is $s = S_0$ and there are no accepting states (so $A = \emptyset$),

Part 2.2: in practice, implementation (7) Design framework

Concept: this should sound familar, because from



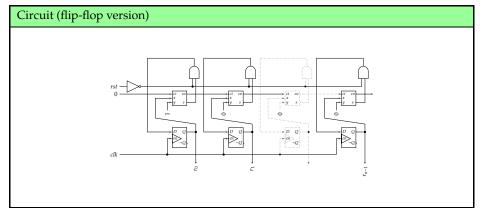
it now becomes clear that

• the δ function is

$$Q' \leftarrow \delta(Q, rst) = \left\{ \begin{array}{ll} Q+1 \pmod{2^n} & \text{if } rst = 0 \\ 0 & \text{if } rst = 1 \end{array} \right.$$

Part 2.2: in practice, implementation (7) Design framework

Concept: this should sound familar, because from



it now becomes clear that

• the ω function is $r \leftarrow \omega(Q) = Q$.

Part 2.2: in practice, implementation (8) Design process

► Concept to solve a concrete problem, we follow a (fairly) standard sequence of steps

Algorithm

- 1. Count the number of states required, and give each state an abstract label.
- 2. Describe the state transition and output functions using a tabular or diagrammatic approach.
- Perform state assignment, i.e., decide how concrete values will represent the abstract labels, allocating appropriate register(s) to hold the state.
- 4. Express the functions δ and ω as (optimised) Boolean expressions, i.e., combinatorial logic.
- 5. Place the registers and combinatorial logic into the framework.

noting that it's common to

- include a reset input that (re)initialises the FSM into the start state,
- replace the accepting state(s) with an idle or error state since "halting" doesn't make sense in hardware, and
- use the FSM to control an associated data-path using the outputs, rather than (necessarily) solve some problem outright.

Part 2.2: in practice, implementation (9) Design process

- Concept: we can optimise the state representation based on use of it, e.g.,
 - 1. a **binary encoding** represents the *i*-th of *n* states as a ($\lceil \log_2(n) \rceil$)-bit unsigned integer *i*, e.g.,

$$\begin{array}{cccc} S_0 & \mapsto & \langle 0, 0, 0 \rangle \\ S_1 & \mapsto & \langle 1, 0, 0 \rangle \\ S_2 & \mapsto & \langle 0, 1, 0 \rangle \\ S_3 & \mapsto & \langle 1, 1, 0 \rangle \\ S_4 & \mapsto & \langle 0, 0, 1 \rangle \\ S_5 & \mapsto & \langle 1, 0, 1 \rangle \end{array}$$

2. a **one-hot encoding** represents the *i*-th of *n* states as a sequence *X* such that $X_i = 1$ and $X_j = 0$ for $j \neq i$, e.g.,

$$\begin{array}{cccc} S_0 & \mapsto & \langle 1,0,0,0,0,0,0 \rangle \\ S_1 & \mapsto & \langle 0,1,0,0,0,0 \rangle \\ S_2 & \mapsto & \langle 0,0,1,0,0,0 \rangle \\ S_3 & \mapsto & \langle 0,0,0,1,0,0 \rangle \\ S_4 & \mapsto & \langle 0,0,0,0,1,0 \rangle \\ S_5 & \mapsto & \langle 0,0,0,0,0,1 \rangle \end{array}$$

noting that we have a larger state (i.e., n bits instead of $\lceil \log_2(n) \rceil$), but

- transition between states is easier, and
- switching behaviour (and hence power consumption) is reduced.

Example #2: a modulo 6 ascending or decending counter, with cycle alert

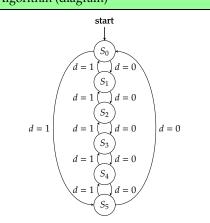
- Problem: design an FSM that
 - 1. acts as a cyclic counter modulo n = 6 (versus 2^n),
 - 2. has an input *d* which selects between increment and decrement, and
 - 3. has an output f which signals when a cycle occurs.

► Solution:

Algorithm (tabular)

	i	5	ω			
Q	Ç	<u>)</u> ′	r	f		
	d = 0	d = 1		d = 0	d = 1	
S_0	S_1	S_5 S_0	0	0	1	
S_1	S_2	S_0	1	0	0	
S_2	S_3	S_1	2	0	0	
S ₀ S ₁ S ₂ S ₃ S ₄ S ₅	S ₃ S ₄ S ₅ S ₀	S_1 S_2 S_3 S_4	3	0	0	
S_4	S_5	S_3	4	0	0	
S_5	S_0	S_4	5	1	0	
	•		•	•		

Algorithm (diagram)



Example #2: a modulo 6 ascending or decending counter, with cycle alert

- ► Solution:
 - there are 6 abstract labels

$$\begin{array}{cccc} S_0 & \mapsto & 0 \\ S_1 & \mapsto & 1 \\ S_2 & \mapsto & 2 \\ S_3 & \mapsto & 3 \\ S_4 & \mapsto & 4 \\ S_5 & \mapsto & 5 \end{array}$$

we can represent using 6 concrete values, e.g.,

• since $2^3 = 8 > 6$, we can capture each of

1.
$$Q = \langle Q_0, Q_1, Q_2 \rangle \equiv$$
 the current state
2. $Q' = \langle Q'_0, Q'_1, Q'_2 \rangle \equiv$ the next state

in a 3-bit register (i.e., via 3 latches or flip-flops).

Example #2: a modulo 6 ascending or decending counter, with cycle alert

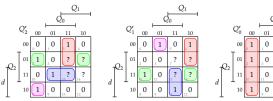
► Solution:

rewriting the abstract labels yields the following concrete truth table

				δ			ω			
d	Q_2	Q_1	Q_0	Q_2'	Q'_1	Q_0'	r_2	r_1	r_0	f
0	0	0	0	0	0	1	0	0	0	0
0	0	0	1	0	1	0	0	0	1	0
0	0	1	0	0	1	1	0	1	0	0
0	0	1	1	1	0	0	0	1	1	0
0	1	0	0	1	0	1	1	0	0	0
0	1	0	1	0	0	0	1	0	1	1
0	1	1	0	?	?	?	?	?	?	?
0	1	1	1	?	?	?	?	?	?	?
1	0	0	0	1	0	1	0	0	0	1
1	0	0	1	0	0	0	0	0	1	0
1	0	1	0	0	0	1	0	1	0	0
1	0	1	1	0	1	0	0	1	1	0
1	1	0	0	0	1	1	1	0	0	0
1	1	0	1	1	0	0	1	0	1	0
1	1	1	0	?	?	?	?	?	?	?
1	1	1	1	?	?	?	?	?	?	?

Example #2: a modulo 6 ascending or decending counter, with cycle alert

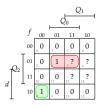
- ► Solution:
 - the truth table can be translated into



• doing so yields the following Boolean expressions for δ :

Example #2: a modulo 6 ascending or decending counter, with cycle alert

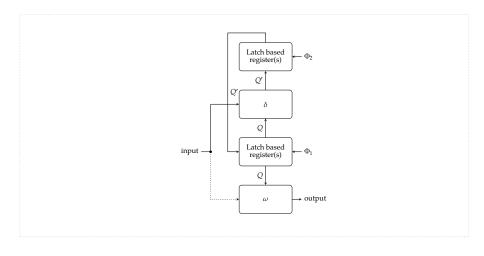
- ► Solution:
 - the truth table can be translated into



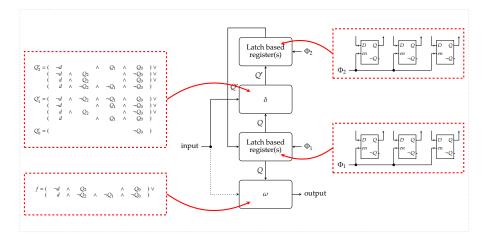
• doing so yields the following Boolean expressions for ω :

$$f = (\begin{array}{cccc} \neg d & \wedge & Q_2 & & \wedge & Q_0 \\ (& d & \wedge & \neg Q_2 & \wedge & \neg Q_1 & \wedge & \neg Q_0 \end{array}) \vee$$

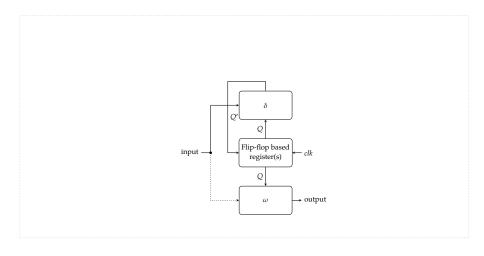
Part 2.2: in practice, implementation (11) Example #2: a modulo 6 ascending or decending counter, with cycle alert



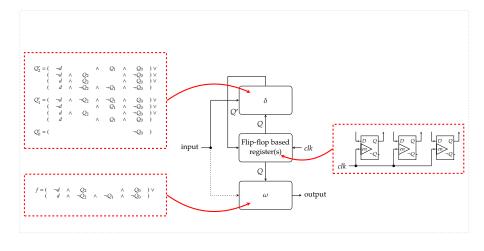
Example #2: a modulo 6 ascending or decending counter, with cycle alert



Part 2.2: in practice, implementation (11) Example #2: a modulo 6 ascending or decending counter, with cycle alert



Example #2: a modulo 6 ascending or decending counter, with cycle alert



Part 2.2: in practice, implementation (12) Example #3: a loop counter

- ▶ Problem: design an FSM that
 - $1. \ \ replicates \ the \ behaviour \ of \ a \ controlled \ loop \ counter, \ e.g., \ i \ within \ a \ C-style \ for \ loop \ such \ as$

```
for( int i = m; i < n; i++ ) {
    ...
}</pre>
```

2. has an interface that allows signalling for

```
the start of iteration \equiv so i = m
the end of iteration \equiv when i = n
```

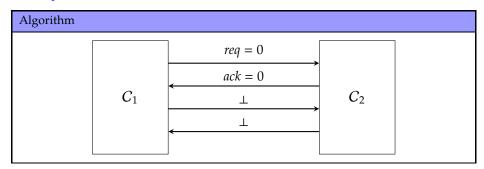
focused wlog. on 4-bit values of i, m, and n.

Part 2.2: in practice, implementation (13) Example #3: a loop counter

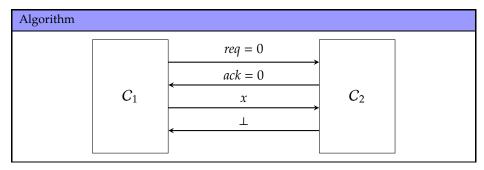
► Design:

- given a user C_1 of some component C_2 , how does
 - $ightharpoonup C_2$ know when to start computation (e.g., when any input x is available), and
 - C_1 know when computation has finished (e.g., when any output r = f(x) is available).
- we could implement an the interface which
 - 1. uses a shared clock signal to synchronise events,
 - 2. uses a control protocol, e.g., via additional req (or request) and ack (or acknowledge) signals,
 - 3. ...

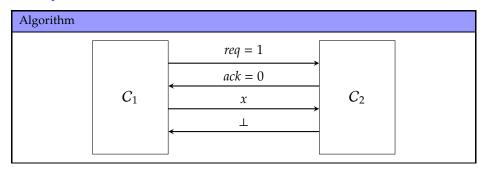
- Design:
 - given a user C_1 of some component C_2 , how does
 - $ightharpoonup C_2$ know when to start computation (e.g., when any input x is available), and
 - C_1 know when computation has finished (e.g., when any output r = f(x) is available).
 - we could implement an the interface which
 - 1. uses a shared clock signal to synchronise events,
 - 2. uses a **control protocol**, e.g., via additional *req* (or **request**) and *ack* (or **acknowledge**) signals, 3. ...
- Example:



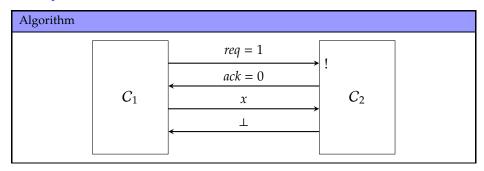
- Design:
 - given a user C_1 of some component C_2 , how does
 - $ightharpoonup C_2$ know when to start computation (e.g., when any input x is available), and
 - C_1 know when computation has finished (e.g., when any output r = f(x) is available).
 - we could implement an the interface which
 - 1. uses a shared clock signal to synchronise events,
 - 2. uses a **control protocol**, e.g., via additional *req* (or **request**) and *ack* (or **acknowledge**) signals, 3. ...
- Example:



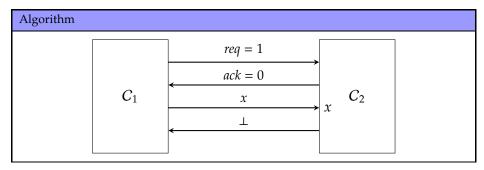
- Design:
 - given a user C_1 of some component C_2 , how does
 - \triangleright C_2 know when to start computation (e.g., when any input x is available), and
 - C_1 know when computation has finished (e.g., when any output r = f(x) is available).
 - we could implement an the interface which
 - 1. uses a shared clock signal to synchronise events,
 - 2. uses a **control protocol**, e.g., via additional *req* (or **request**) and *ack* (or **acknowledge**) signals, 3. ...
- Example:



- Design:
 - given a user C_1 of some component C_2 , how does
 - $ightharpoonup C_2$ know when to start computation (e.g., when any input x is available), and
 - C_1 know when computation has finished (e.g., when any output r = f(x) is available).
 - we could implement an the interface which
 - 1. uses a shared clock signal to synchronise events,
 - 2. uses a **control protocol**, e.g., via additional *req* (or **request**) and *ack* (or **acknowledge**) signals, 3. ...
- Example:

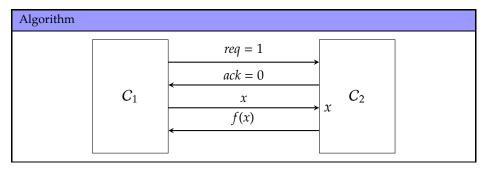


- Design:
 - given a user C_1 of some component C_2 , how does
 - $ightharpoonup C_2$ know when to start computation (e.g., when any input x is available), and
 - C_1 know when computation has finished (e.g., when any output r = f(x) is available).
 - we could implement an the interface which
 - 1. uses a shared clock signal to synchronise events,
 - 2. uses a **control protocol**, e.g., via additional *req* (or **request**) and *ack* (or **acknowledge**) signals, 3. ...
- Example:

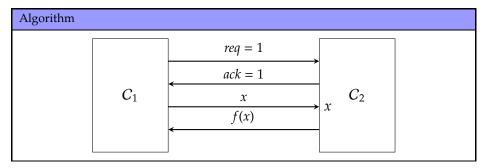


Example #3: a loop counter

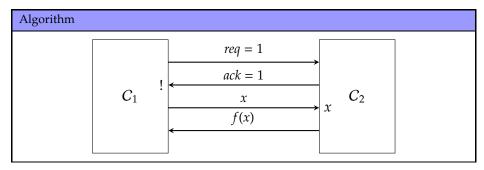
- given a user C_1 of some component C_2 , how does
 - $ightharpoonup C_2$ know when to start computation (e.g., when any input x is available), and
 - $ightharpoonup C_1$ know when computation has finished (e.g., when any output r = f(x) is available).
- we could implement an the interface which
 - 1. uses a shared clock signal to synchronise events,
 - 2. uses a **control protocol**, e.g., via additional *req* (or **request**) and *ack* (or **acknowledge**) signals, 3. ...
- Example:



- Design:
 - given a user C_1 of some component C_2 , how does
 - $ightharpoonup C_2$ know when to start computation (e.g., when any input x is available), and
 - C_1 know when computation has finished (e.g., when any output r = f(x) is available).
 - we could implement an the interface which
 - 1. uses a shared clock signal to synchronise events,
 - 2. uses a **control protocol**, e.g., via additional *req* (or **request**) and *ack* (or **acknowledge**) signals, 3. ...
- Example:

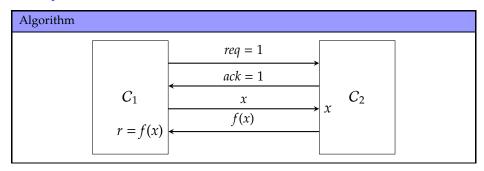


- Design:
 - given a user C_1 of some component C_2 , how does
 - $ightharpoonup C_2$ know when to start computation (e.g., when any input x is available), and
 - C_1 know when computation has finished (e.g., when any output r = f(x) is available).
 - we could implement an the interface which
 - 1. uses a shared clock signal to synchronise events,
 - 2. uses a **control protocol**, e.g., via additional *req* (or **request**) and *ack* (or **acknowledge**) signals, 3. ...
- Example:



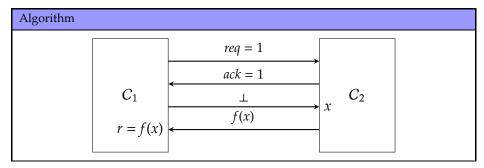
Example #3: a loop counter

- given a user C_1 of some component C_2 , how does
 - $ightharpoonup C_2$ know when to start computation (e.g., when any input x is available), and
 - C_1 know when computation has finished (e.g., when any output r = f(x) is available).
- we could implement an the interface which
 - 1. uses a shared clock signal to synchronise events,
 - 2. uses a **control protocol**, e.g., via additional *req* (or **request**) and *ack* (or **acknowledge**) signals, 3. ...
- Example:



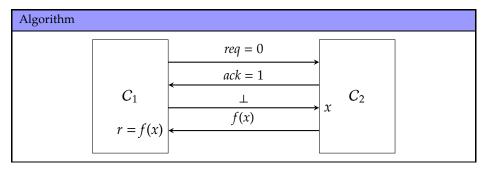
Example #3: a loop counter

- given a user C_1 of some component C_2 , how does
 - $ightharpoonup C_2$ know when to start computation (e.g., when any input x is available), and
 - C_1 know when computation has finished (e.g., when any output r = f(x) is available).
- we could implement an the interface which
 - 1. uses a shared clock signal to synchronise events,
 - 2. uses a **control protocol**, e.g., via additional *req* (or **request**) and *ack* (or **acknowledge**) signals, 3. ...
- Example:



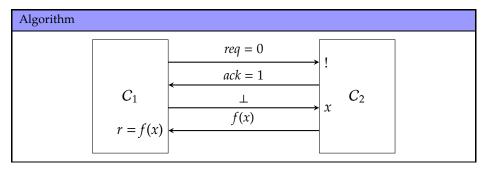
Example #3: a loop counter

- given a user C_1 of some component C_2 , how does
 - $ightharpoonup C_2$ know when to start computation (e.g., when any input x is available), and
 - C_1 know when computation has finished (e.g., when any output r = f(x) is available).
- we could implement an the interface which
 - 1. uses a shared clock signal to synchronise events,
 - 2. uses a **control protocol**, e.g., via additional *req* (or **request**) and *ack* (or **acknowledge**) signals, 3. ...
- Example:



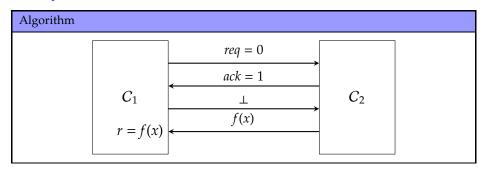
Example #3: a loop counter

- given a user C_1 of some component C_2 , how does
 - $ightharpoonup C_2$ know when to start computation (e.g., when any input x is available), and
 - C_1 know when computation has finished (e.g., when any output r = f(x) is available).
- we could implement an the interface which
 - 1. uses a shared clock signal to synchronise events,
 - 2. uses a **control protocol**, e.g., via additional *req* (or **request**) and *ack* (or **acknowledge**) signals, 3. ...
- Example:

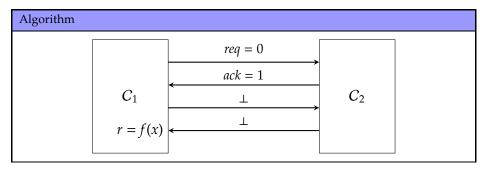


Part 2.2: in practice, implementation (13) Example #3: a loop counter

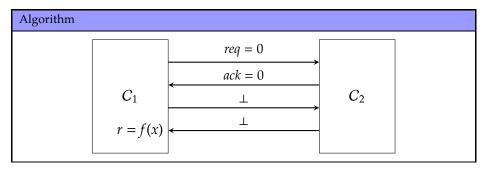
- given a user C_1 of some component C_2 , how does
 - C_2 know when to start computation (e.g., when any input x is available), and
 - C_1 know when computation has finished (e.g., when any output r = f(x) is available).
- we could implement an the interface which
 - 1. uses a shared clock signal to synchronise events,
 - 2. uses a **control protocol**, e.g., via additional *req* (or **request**) and *ack* (or **acknowledge**) signals, 3. ...
- Example:



- Design:
 - given a user C_1 of some component C_2 , how does
 - $ightharpoonup C_2$ know when to start computation (e.g., when any input x is available), and
 - C_1 know when computation has finished (e.g., when any output r = f(x) is available).
 - we could implement an the interface which
 - 1. uses a shared clock signal to synchronise events,
 - 2. uses a **control protocol**, e.g., via additional *req* (or **request**) and *ack* (or **acknowledge**) signals, 3. ...
- Example:

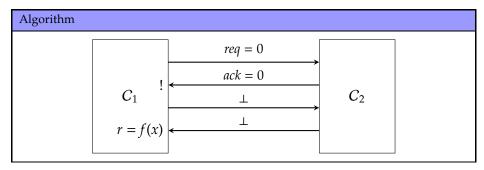


- Design:
 - given a user C_1 of some component C_2 , how does
 - $ightharpoonup C_2$ know when to start computation (e.g., when any input x is available), and
 - C_1 know when computation has finished (e.g., when any output r = f(x) is available).
 - we could implement an the interface which
 - 1. uses a shared clock signal to synchronise events,
 - 2. uses a **control protocol**, e.g., via additional *req* (or **request**) and *ack* (or **acknowledge**) signals, 3. ...
- Example:

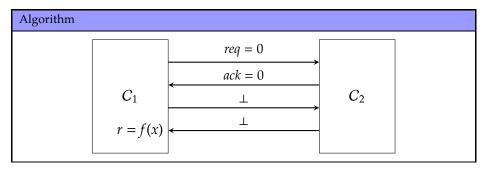


Part 2.2: in practice, implementation (13) Example #3: a loop counter

- given a user C_1 of some component C_2 , how does
 - $ightharpoonup C_2$ know when to start computation (e.g., when any input x is available), and
 - C_1 know when computation has finished (e.g., when any output r = f(x) is available).
- we could implement an the interface which
 - 1. uses a shared clock signal to synchronise events,
 - 2. uses a **control protocol**, e.g., via additional *req* (or **request**) and *ack* (or **acknowledge**) signals, 3. ...
- Example:



- Design:
 - given a user C_1 of some component C_2 , how does
 - $ightharpoonup C_2$ know when to start computation (e.g., when any input x is available), and
 - C_1 know when computation has finished (e.g., when any output r = f(x) is available).
 - we could implement an the interface which
 - 1. uses a shared clock signal to synchronise events,
 - 2. uses a **control protocol**, e.g., via additional *req* (or **request**) and *ack* (or **acknowledge**) signals, 3. ...
- Example:



Design:

Circuit (latch version) $\begin{array}{c} req \longrightarrow \\ loop counter \\ control-path \\ ack \longrightarrow \\ \Phi_1 \quad \Phi_2 \end{array}$ $\begin{array}{c} cmp \\ loop counter \\ data-path \\ \uparrow \quad i \end{array}$ $\begin{array}{c} n \\ i \end{array}$

i.e., the design is itself the combination of

- a data-path, of computational and/or storage components, and
- ▶ a **control-path**, that tells components in the data-path what to do and when to do it, with the latter more overtly realised using an FSM.

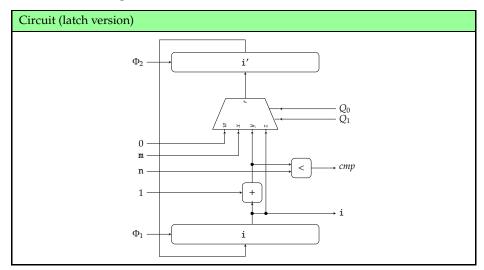
Design:

Circuit (flip-flop version) $\begin{array}{c} req \longrightarrow \\ loop counter \\ control-path \end{array}$ $\begin{array}{c} cmp \\ loop counter \\ data-path \end{array}$ $\begin{array}{c} n \\ i \end{array}$

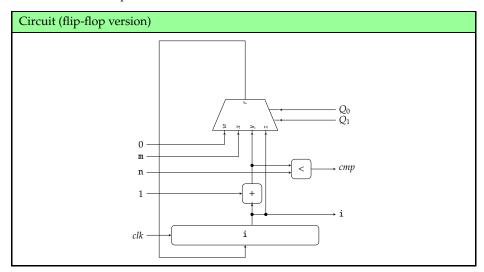
i.e., the design is itself the combination of

- a data-path, of computational and/or storage components, and
- ▶ a **control-path**, that tells components in the data-path what to do and when to do it, with the latter more overtly realised using an FSM.

► Solution: the data-path.



► Solution: the data-path.



Part 2.2: in practice, implementation (16)

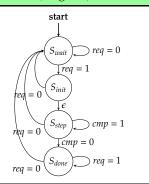
Example #3: a loop counter

► Solution: the control-path.

Algorithm (tabular)

		δ		ω	
	Q	Q'		ack	
		cmp = 0	cmp = 1	cmp = 0	cmp = 1
(S_{wait}	S_{wait}	S_{wait}	0	0
req = 0	S_{init}	S_{wait}	S_{wait}	0	0
	S_{step}	S_{wait}	S_{wait}	0	0
(S_{done}	S_{wait}	S_{wait}	1	1
req = 1	S_{wait}	S_{init}	S_{init}	0	0
	S_{init}	S_{step}	S_{step}	0	0
	S_{step}	S_{done}	S_{step}	0	0
	S_{done}	S_{done}	S_{done}	1	1

Algorithm (diagram)



i.e.,

- in S_{wait} it waits for req = 1,
- ightharpoonup in S_{init} it uses any input to initialise itself (e.g., setting the initial loop counter value),
- ightharpoonup in S_{step} it performs an iteration of the loop, and
- in S_{done} it waits for req = 0 while setting ack = 1.

- ► Solution: the control-path.
 - there are 4 abstract labels

$$\begin{array}{ccc} S_{wait} & \mapsto & 0 \\ S_{init} & \mapsto & 1 \\ S_{step} & \mapsto & 2 \\ S_{done} & \mapsto & 3 \end{array}$$

we can represent using 4 concrete values, e.g.,

$$\begin{array}{ccccc} S_{wait} & \longmapsto & \langle 0,0 \rangle & \equiv & 00 \\ S_{init} & \longmapsto & \langle 1,0 \rangle & \equiv & 01 \\ S_{step} & \longmapsto & \langle 0,1 \rangle & \equiv & 10 \\ S_{done} & \longmapsto & \langle 1,1 \rangle & \equiv & 11 \\ \end{array}$$

ightharpoonup since $2^2 = 4$, we can capture each of

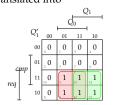
1.
$$Q = \langle Q_0, Q_1 \rangle \equiv$$
 the current state
2. $Q' = \langle Q'_0, Q'_1 \rangle \equiv$ the next state

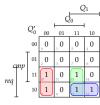
in a 2-bit register (i.e., via 2 latches or flip-flops).

- ► Solution: the control-path.
 - rewriting the abstract labels yields the following concrete truth table

					5	ω
req	стр	Q_1	Q_0	Q_1'	Q_0'	ack
0	0	0	0	0	0	0
0	0	0	1	0		0
0	0	1	0	0	0	0
0	0	1	1	0	0	1
0	1 1	1 0	0	0	0	0
0	1	0	1	0	0	0
0	1 1	1	0	0	0	0
0		1	1	0	0	1
0 0 0 0 0 0 0 0 1 1 1 1 1	0	1 1 0 0	0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 1 0 1 1	0
1	0	0	1	1	0	0
1	0	1	0	1	1	0
1	0	1 1 0	1	1	1	1
1	1	0	0	0	1	0
1	1	0	1 0 1 0 1 0 1 0 1 0 1 0 1 0	1	0	0 0 0 1 0 0 0 1 0 0 0 1 0 0
1	1	1	0	1	0	0
1	1	1	1	1	1	1

- Example #3. a loop counter
- Solution: the control-path.the truth table can be translated into





• doing so yields the following Boolean expressions for δ :

- ► Solution: the control-path.
 - the truth table can be translated into

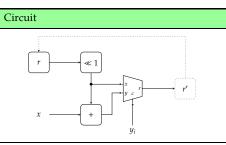
			Q_0		
	ack	00	01	11	10
	00	。0	1 0	1	4 0
стр	01	2 0	3 0	, 1	6 0
req	11	10	110	1 1	14
	10	_s 0	9 0	,1	12

b doing so yields the following Boolean expressions for ω :

$$ack = Q_1 \wedge Q_0$$

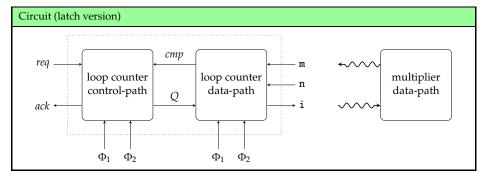
- ► Use-case:
 - we want(ed) to implement a bit-serial multiplier, i.e.,

Algorithm Input: Two unsigned, n-bit, base-2 integers x and yOutput: An unsigned, 2n-bit, base-2 integer $r = y \cdot x$ 1 $r \leftarrow 0$ 2 for i = n - 1 downto 0 step -1 do 3 $| r \leftarrow 2 \cdot r |$ 4 if $y_i = 1$ then 5 $| r \leftarrow r + x |$ end 7 end 8 return r



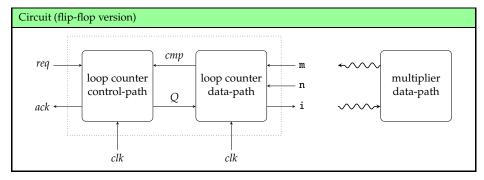
- we did have the data-path,
- we *didn't* have the control-path.

- ▶ Use-case:
 - we now have the loop counter implemented, i.e.



- the remaining challenge is integration, e.g., specifying
 - any additional data-path components required, and
 - how loop counter (the control-path) controls them so we end up with a bit-serial multiplier.

- ▶ Use-case:
 - we now have the loop counter implemented, i.e.



- the remaining challenge is integration, e.g., specifying
 - any additional data-path components required, and
 - how loop counter (the control-path) controls them

Conclusions

Take away points:

- 1. FSMs are abstract computational models, but we can used them to solve concrete problems, e.g.,
 - recognisers,
 - controllers,
 - ► CONTROLLE
 - specifications: like an algorithm, but more easily able to cater for asynchronous events.
- 2. The "killer application" of FSMs for *us* is as a general-purpose way to realise controlled step-by-step forms of computation.
- 3. Clearly more complex problem \Rightarrow more complex solution, *but*
 - same framework and process (both conceptual, and practical),
 - same components (e.g., interface, implementation; data-path, control-path), so difference is (arguably) creativity re. design.

Additional Reading

- ▶ Wikipedia: Finite State Machine (FSM). URL: https://en.wikipedia.org/wiki/Finite-state_machine.
- D. Page. "Chapter 2: Basics of digital logic". In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.
- M. Sipster. "Chapter 1: Regular languages". In: Introduction to the Theory of Computation. 2nd ed. Thomson Course Technology, 2006.

References

- [1] Wikipedia: Finite State Machine (FSM). url: https://en.wikipedia.org/wiki/Finite-state_machine (see p. 86).
- D. Page. "Chapter 2: Basics of digital logic". In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009 (see p. 86).
- [3] M. Sipster. "Chapter 1: Regular languages". In: Introduction to the Theory of Computation. 2nd ed. Thomson Course Technology, 2006 (see p. 86).
- [4] M. Sipster. Introduction to the Theory of Computation. 2nd ed. Thomson Course Technology, 2006 (see pp. 1, 14–25).