Computer Architecture

Daniel Page

Department of Computer Science, University Of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB. UK. ⟨csdsp@bristol.ac.uk⟩

September 5, 2025

Keep in mind there are *two* PDFs available (of which this is the latter):

- 1. a PDF of examinable material used as lecture slides, and
- 2. a PDF of non-examinable, extra material:
 - the associated notes page may be pre-populated with extra, written explaination of material covered in lecture(s), plus

 anything with a "grey'ed out" header/footer represents extra material which is
 - useful and/or interesting but out of scope (and hence not covered).

Notes.		
Natara		
Notes:		

COMS10015 lecture: week #9

► Context: this is a **HP-35** calculator

noting that it was

- originally released in 1972 and discontinued in 1975 with 300, 000+ units sold,
- originally priced \$395, i.e., about the same as a modern laptop (!),
- posthumously named an IEEE Milestone [2] in 2009.

git # b282dbb9 @ 2025-09-03

COMS10015 lecture: week #9

► Agenda: justify the claim

 $FSM + arithmetic \rightarrow calculator \simeq micro-processor,$

by exploring a (limited) HP-35 implementation based on content covered so far.

Notes:

- · Some of the limitations (or simplications) include:
 - The HP-35 could store and process 56-bit floating-point values, represented using BCD; we focus on 8-bit integer values, represented using two's-complement.
- The HP-35 could compute a wide range of operations, including

arithmetic : addition, subtraction, multiplication, division trigonometry : sin, arc sin, cos, arc cos, tan, arc tan

logarithms : $log_{10}x$, log_ex , e^x other : 1/x, \sqrt{x} , x^y , π

We focus on a basic set arithmetic operations, namely addition, subtraction, and multiplication.

Notes:

- · Some of the limitations (or simplications) include:
 - The HP-35 could store and process 56-bit floating-point values, represented using BCD; we focus on 8-bit integer values, represented using two's-complement.
 - The HP-35 could compute a wide range of operations, including

arithmetic : addition, subtraction, multiplication, division trigonometry : sin, arc sin, cos, arc cos, tan, arc tan

 $\begin{array}{cccc} \text{logarithms} & : & log_{10}x, log_ex, e^x \\ \text{other} & : & 1/x, \sqrt{x}, x^y, \pi \end{array}$

We focus on a basic set arithmetic operations, namely addition, subtraction, and multiplication.

The HP-35 calculator (1) Design

Notes:

The HP-35 calculator (2) Design

► Concept:

- ▶ the HP-35 uses (a variant of) **Reverse Polish Notation (RPN)**:
 - in-fix operators give

$$(19-5) \times (1+2)$$

pre-fix operators (or "Polish notation") give

$$\times$$
 - 19 5 + 1 2,

and finally

post-fix operators (or "reverse Polish notation") give

$$19\ 5\ -\ 1\ 2\ +\ \times.$$

- doing so is attractive because, for example, it
 - is unambiguous *without* parentheses, and
 can be evaluated naturally using a stack.

Notes:			

. The calculator was 5.8inch long and 3.2inch wide, leading to the advertised "feature" of fitting into a standard shirt pocket.

The HP-35 calculator (3) Implementation

External interface:

- 1. 'V' for $V \in \{0, 1, \dots 9\}$
 - $X' \leftarrow 10 \cdot X + V$
- 2. ' \odot ' for $\odot \in \{+, -, \times\}$
 - $X' \leftarrow Y \odot X, Y' \leftarrow Z, Z' \leftarrow T, T' \leftarrow T$
- 3. *'CLR'* (or "clear")
 - $X' \leftarrow 0, Y' \leftarrow 0, Z' \leftarrow 0, T' \leftarrow 0$
- 4. 'STO' (or "store")
 - \triangleright $S' \leftarrow X$
- 5. '*RCL*' (or "recall")
 - $X' \leftarrow S$
- 6. '↑' (or "enter")
 - $X' \leftarrow X, Y' \leftarrow X, Z' \leftarrow Y, T' \leftarrow Z$

© Daniel Page (csdsp@bristol.ac.uk)

Computer Architecture

git # b282dbb9 @ 2025-09-03

The HP-35 calculator (3) Implementation

External interface:

- 1. 'V' for $V \in \{0, 1, \dots 9\}$
 - $X' \leftarrow 10 \cdot X + V$
- 2. ' \odot ' for $\odot \in \{+, -, \times\}$
 - $X' \leftarrow Y \odot X, Y' \leftarrow Z, Z' \leftarrow T, T' \leftarrow T$
- 3. *'CLR'* (or "clear")
 - $X' \leftarrow 0, Y' \leftarrow 0, Z' \leftarrow 0, T' \leftarrow 0$
- 4. 'STO' (or "store")
 - \triangleright $S' \leftarrow X$
- 5. 'RCL' (or "recall")
 - $ightharpoonup X' \leftarrow S$
- 6. '↑' (or "enter")
 - $X' \leftarrow X, Y' \leftarrow X, Z' \leftarrow Y, T' \leftarrow Z$

Daniel Page (csdsp@bristol.ac.uk)

Computer Architecture

Notes:

- As can be inferred from the instructions, the A&R unit housed registers labelled T, Z, Y and X plus S, a fifth storage register (that we
 often colloquially term "memory" when discussing calculators, but is not an SRAM or similar); the value of X is shown on the display.
- There is an interesting historical note about the HP-35 design which is relevant: the original HP-35 had a bug in the exp (or ε^χ) function, for example it computed

$$\exp(\ln(2.02)) = 2$$

instead of 2.02. HP had already sold 25, 000 units when this bug was discovered; it (bravely) offered a refund rather than keep quiet, but in the end only ~ 5000 were returned.

Notes:

- As can be inferred from the instructions, the A&R unit housed registers labelled T, Z, Y and X plus S, a fifth storage register (that we
 often colloquially term "memory" when discussing calculators, but is not an SRAM or similar); the value of X is shown on the display.
- There is an interesting historical note about the HP-35 design which is relevant: the original HP-35 had a bug in the exp (or e^x) function, for example it computed

$$\exp(\ln(2.02)) = 2$$

instead of 2.02. HP had already sold 25,000 units when this bug was discovered; it (bravely) offered a refund rather than keep quiet, but in the end only ~ 5000 were returned.

The HP-35 calculator (4) Implementation

External interface:

consider

$$19\ 5\ -\ 1\ 2\ +\ \times$$

as evaluated using the following key presses

						K	(ey-p	ress				
			1	9	1	5	_	1	\uparrow	2	+	×
ter	X	0	1	19	19	5	14	1	1	2	3	42
ist	Y	0	0	0	19	19	0	14	1	1	14	0
eg	Z	0	0	0	0	0	0	0	14	14	0	0
R	T	0	0	0	0	0	0	0	0	0	0	0

noting that

- ↑ signals the end of multi-digit operands,
 ► T, Z, Y and X are used as an evaluation stack,
- doing so yields the result

$$X = (19-5) \times (1+2) = 42$$

at the Top of Stack (ToS).

University of BRISTOL

Notes:

The HP-35 calculator (5) Implementation

► Internal implementation:

el Page (csdsp@bristol.ac.uk)	卷
Computer Architecture	<u></u>

Not	es:
•	In more detail, the image shows
	 a 2-phase clock generator, a Read Only Memory (ROM) unit, an Arithmetic and Register (A&R) unit, and a Control and Timing (C&T) unit
	plus a keypad to provide input, and an LED-based display to provide output.
	The LED-based characters displayed are $\frac{1}{10}$ inch high, but magnified using a spherical plastic lens: this design, e.g., reduced
•	consumption (versus LEDs of a larger height). The calculator can be powered via either 1) a mains power supply, or 2) a removable battery pack, containing three AA-sized batteries (a capacity supporting \sim 3h of use).
	batteries (a capacity supporting ~ 3n or use).

The HP-35 calculator (6) Implementation

© Daniel Page (caleptoristol.ac.u.)

Computer Architecture

© University of BRISTOL git # b282dbb9 @ 2025-09-03

The HP-35 calculator (7) Implementation

Conclusions

Demo

© Daniel Page (csdsp@bristol.ac.uk)
Computer Architecture

Conclusions

▶ We're done: we've understood and implemented enough of a (limited) HP-35 calculator to compute

$$(19-5) \times (1+2) = 42,$$

but the main point is what you can do with this next:

Comparison

A pocket calculator

- has input and output peripherals (e.g. keypad, display),
- responds to simple commands from the user:
- numeric keys specifying what to perform arithmetic on, and
 control keys prompting arithmetic to be performed,
- has an **ALU** to perform arithmetic, and
- has one or more registers (or accumulators), plus a limited amount of memory (e.g., accessed via STO and RCL, or M+ and MR).

Comparison

A micro-processor

- has input and output peripherals (e.g. keyboard, hard disk, monitor),
- executes sequences of simple instructions called
- operands are what values to operate on, and
- opcodes determine the operation performed,
- has an ALU to perform arithmetic, and
- has one or more registers (or accumulators), plus (potentially) many levels and large amounts of memory.

Notes:		
Notes:		

Additional Reading

- ▶ Wikipedia: HP-35. url: https://en.wikipedia.org/wiki/HP-35.
- T.M. Whitney, F. Rodé, and C.C. Tung. "The "Powerful Pocketful": an Electronic Calculator Challenges the Slide Rule". In: Hewlett-Packard Journal. 1972, pp. 2–9.
- D.S. Cochran. "Algorithms and Accuracy in the HP-35". In: Hewlett-Packard Journal. 1972, pp. 10–11.
- E.T. Liljenwall. "Packaging the Pocket Calculator". In: Hewlett-Packard Journal. 1972, pp. 12–13.

© Daniel Page (csdsp@bristol.ac.uk)	
Computer Architecture	

git # b282dbb9 @ 2025-09-03

References

- [1] Wikipedia: HP-35. URL: https://en.wikipedia.org/wiki/HP-35 (see p. 29).
- [2] Wikipedia: List of IEEE milestones. url: https://en.wikipedia.org/wiki/List_of_IEEE_milestones (see p. 5).
- [3] D.S. Cochran. "Algorithms and Accuracy in the HP-35". In: Hewlett-Packard Journal. 1972, pp. 10–11 (see p. 29).
- [4] E.T. Liljenwall. "Packaging the Pocket Calculator". In: Hewlett-Packard Journal. 1972, pp. 12–13 (see p. 29).
- [5] T.M. Whitney, F. Rodé, and C.C. Tung. "The "Powerful Pocketful": an Electronic Calculator Challenges the Slide Rule". In: Hewlett-Packard Journal. 1972, pp. 2–9 (see p. 29).

Notes:
Notes: