
Computer Architecture

Daniel Page

Department of Computer Science,
University Of Bristol,

Merchant Venturers Building,
Woodland Road,

Bristol, BS8 1UB. UK.
⟨csdsp@bristol.ac.uk⟩

September 5, 2025

Keep in mind there are two PDFs available (of which this is the latter):
1. a PDF of examinable material used as lecture slides, and
2. a PDF of non-examinable, extra material:
▶ the associated notes page may be pre-populated with extra, written explaination of

material covered in lecture(s), plus
▶ anything with a “grey’ed out” header/footer represents extra material which is

useful and/or interesting but out of scope (and hence not covered).

Notes:

Notes:

COMS10015 lecture: week #9

▶ Context: this is a HP-35 calculator

noting that it was
▶ originally released in 1972 and discontinued in 1975 with 300, 000+ units sold,
▶ originally priced $395, i.e., about the same as a modern laptop (!),
▶ posthumously named an IEEE Milestone [2] in 2009.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• Some of the limitations (or simplications) include:
– The HP-35 could store and process 56-bit floating-point values, represented using BCD; we focus on 8-bit integer values, represented using

two’s-complement.
– The HP-35 could compute a wide range of operations, including

arithmetic : addition, subtraction, multiplication, division
trigonometry : sin, arc sin, cos, arc cos, tan, arc tan
logarithms : log10x, logex, ex

other : 1/x,
√

x, xy , �

We focus on a basic set arithmetic operations, namely addition, subtraction, and multiplication.

COMS10015 lecture: week #9

▶ Agenda: justify the claim

FSM + arithmetic ❀ calculator ≃ micro-processor,

by exploring a (limited) HP-35 implementation based on content covered so far.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• Some of the limitations (or simplications) include:
– The HP-35 could store and process 56-bit floating-point values, represented using BCD; we focus on 8-bit integer values, represented using

two’s-complement.
– The HP-35 could compute a wide range of operations, including

arithmetic : addition, subtraction, multiplication, division
trigonometry : sin, arc sin, cos, arc cos, tan, arc tan
logarithms : log10x, logex, ex

other : 1/x,
√

x, xy , �

We focus on a basic set arithmetic operations, namely addition, subtraction, and multiplication.

The HP-35 calculator (1)
Design

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• The calculator was 5.8inch long and 3.2inch wide, leading to the advertised “feature” of fitting into a standard shirt pocket.

The HP-35 calculator (2)
Design

▶ Concept:
▶ the HP-35 uses (a variant of) Reverse Polish Notation (RPN):
▶ in-fix operators give

(19 − 5) × (1 + 2)
▶ pre-fix operators (or “Polish notation”) give

× − 19 5 + 1 2,
and finally

▶ post-fix operators (or “reverse Polish notation”) give
19 5 − 1 2 + ×.

▶ doing so is attractive because, for example, it
1. is unambiguous without parentheses, and
2. can be evaluated naturally using a stack.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

The HP-35 calculator (3)
Implementation

▶ External interface:

1. ‘V’ for V ∈ {0, 1, . . . 9}
▶ X′ ← 10 · X + V

2. ‘⊙’ for ⊙ ∈ {+,−,×}
▶ X′ ← Y ⊙ X, Y′ ← Z, Z′ ← T, T′ ← T

3. ‘CLR’ (or “clear”)
▶ X′ ← 0, Y′ ← 0, Z′ ← 0, T′ ← 0

4. ‘STO’ (or “store”)
▶ S′ ← X

5. ‘RCL’ (or “recall”)
▶ X′ ← S

6. ‘↑’ (or “enter”)
▶ X′ ← X, Y′ ← X, Z′ ← Y, T′ ← Z

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• As can be inferred from the instructions, the A&R unit housed registers labelled T, Z, Y and X plus S, a fifth storage register (that we
often colloquially term “memory” when discussing calculators, but is not an SRAM or similar); the value of X is shown on the display.

• There is an interesting historical note about the HP-35 design which is relevant: the original HP-35 had a bug in the exp (or ex)
function, for example it computed

exp(ln(2.02)) = 2

instead of 2.02. HP had already sold 25, 000 units when this bug was discovered; it (bravely) offered a refund rather than keep quiet,
but in the end only ∼ 5000 were returned.

The HP-35 calculator (3)
Implementation

▶ External interface:

1. ‘V’ for V ∈ {0, 1, . . . 9}
▶ X′ ← 10 · X + V

2. ‘⊙’ for ⊙ ∈ {+,−,×}
▶ X′ ← Y ⊙ X, Y′ ← Z, Z′ ← T, T′ ← T

3. ‘CLR’ (or “clear”)
▶ X′ ← 0, Y′ ← 0, Z′ ← 0, T′ ← 0

4. ‘STO’ (or “store”)
▶ S′ ← X

5. ‘RCL’ (or “recall”)
▶ X′ ← S

6. ‘↑’ (or “enter”)
▶ X′ ← X, Y′ ← X, Z′ ← Y, T′ ← Z

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• As can be inferred from the instructions, the A&R unit housed registers labelled T, Z, Y and X plus S, a fifth storage register (that we
often colloquially term “memory” when discussing calculators, but is not an SRAM or similar); the value of X is shown on the display.

• There is an interesting historical note about the HP-35 design which is relevant: the original HP-35 had a bug in the exp (or ex)
function, for example it computed

exp(ln(2.02)) = 2

instead of 2.02. HP had already sold 25, 000 units when this bug was discovered; it (bravely) offered a refund rather than keep quiet,
but in the end only ∼ 5000 were returned.

The HP-35 calculator (4)
Implementation

▶ External interface:
▶ consider

19 5 − 1 2 + ×
as evaluated using the following key presses

Key-press
1 9 ↑ 5 − 1 ↑ 2 + ×

Re
gi

st
er X 0 1 19 19 5 14 1 1 2 3 42

Y 0 0 0 19 19 0 14 1 1 14 0
Z 0 0 0 0 0 0 0 14 14 0 0
T 0 0 0 0 0 0 0 0 0 0 0

noting that
▶ ↑ signals the end of multi-digit operands,
▶ T, Z, Y and X are used as an evaluation stack,

▶ doing so yields the result
X = (19 − 5) × (1 + 2) = 42

at the Top of Stack (ToS).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

The HP-35 calculator (5)
Implementation

▶ Internal implementation:

LED elements
LED controller

Key-pad contactsC&T unit

ROM unit

A&R unit
2-phase

clock

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

• In more detail, the image shows
– a 2-phase clock generator,
– a Read Only Memory (ROM) unit,
– an Arithmetic and Register (A&R) unit, and
– a Control and Timing (C&T) unit

plus a keypad to provide input, and an LED-based display to provide output.

• The LED-based characters displayed are 1
10 inch high, but magnified using a spherical plastic lens: this design, e.g., reduced power

consumption (versus LEDs of a larger height).

• The calculator can be powered via either 1) a mains power supply, or 2) a removable battery pack, containing three AA-sized NiCd
batteries (a capacity supporting ∼ 3h of use).

The HP-35 calculator (6)
Implementation

Circuit (sketch of “A” part of A&R unit)

+ − × +

w x y z

r

c

x y
r

10 Y X value

ctrlALU
2

ctrlALU
1

ctrlALU
0

result

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

The HP-35 calculator (7)
Implementation

Circuit (sketch of “R” part of A&R unit)

X′

X

X

Φ1

Φ2

STZYX
re

su
lt

va
lu

e0

ctrlX0
ctrlX1
ctrlX2

Y′

Y

Y

Φ1

Φ2

STZYX
re

su
lt

va
lu

e0

ctrlY0
ctrlY1
ctrlY2

Φ1

Φ2

STZYX
re

su
lt

va
lu

e0

S′

S

S

Φ1

Φ2

STZYX
re

su
lt

va
lu

e0

ctrlS0
ctrlS1
ctrlS2

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Conclusions

Demo

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Conclusions

▶ We’re done: we’ve understood and implemented enough of a (limited) HP-35
calculator to compute

(19 − 5) × (1 + 2) = 42,

but the main point is what you can do with this next:

Comparison

A pocket calculator
▶ has input and output peripherals (e.g. keypad, display),
▶ responds to simple commands from the user:
▶ numeric keys specifying what to perform arithmetic on, and
▶ control keys prompting arithmetic to be performed,

▶ has an ALU to perform arithmetic, and
▶ has one or more registers (or accumulators), plus a

limited amount of memory (e.g., accessed via STO and
RCL, or M+ and MR).

Comparison

A micro-processor
▶ has input and output peripherals (e.g. keyboard, hard

disk, monitor),
▶ executes sequences of simple instructions called

programs:
▶ operands are what values to operate on, and
▶ opcodes determine the operation performed,

▶ has an ALU to perform arithmetic, and
▶ has one or more registers (or accumulators), plus

(potentially) many levels and large amounts of memory.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Additional Reading

▶ Wikipedia: HP-35. url: https://en.wikipedia.org/wiki/HP-35.
▶ T.M. Whitney, F. Rodé, and C.C. Tung. “The “Powerful Pocketful”: an Electronic Calculator Challenges the Slide Rule”. In:

Hewlett-Packard Journal. 1972, pp. 2–9.
▶ D.S. Cochran. “Algorithms and Accuracy in the HP-35”. In: Hewlett-Packard Journal. 1972, pp. 10–11.
▶ E.T. Liljenwall. “Packaging the Pocket Calculator”. In: Hewlett-Packard Journal. 1972, pp. 12–13.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

References

[1] Wikipedia: HP-35. url: https://en.wikipedia.org/wiki/HP-35 (see p. 29).

[2] Wikipedia: List of IEEE milestones. url: https://en.wikipedia.org/wiki/List_of_IEEE_milestones (see p. 5).

[3] D.S. Cochran. “Algorithms and Accuracy in the HP-35”. In: Hewlett-Packard Journal. 1972, pp. 10–11 (see p. 29).

[4] E.T. Liljenwall. “Packaging the Pocket Calculator”. In: Hewlett-Packard Journal. 1972, pp. 12–13 (see p. 29).

[5] T.M. Whitney, F. Rodé, and C.C. Tung. “The “Powerful Pocketful”: an Electronic Calculator Challenges the Slide Rule”. In:
Hewlett-Packard Journal. 1972, pp. 2–9 (see p. 29).

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

