Computer Architecture

Daniel Page

Department of Computer Science,
University Of Bristol,
Merchant Venturers Building,
Woodland Road,

Bristol, BS8 1UB. UK.
({csdsp@bristol.ac.uk)

September 5, 2025

Keep in mind there are fwo PDFs available (of which this is the latter):
1. a PDF of examinable material used as lecture slides, and
2. a PDF of non-examinable, extra material:

> the associated notes page may be pre-populated with extra, written explaination of
material covered in lecture(s), plus

> anything with a “grey’ed out” header/footer represents extra material which is
useful and/or interesting but out of scope (and hence not covered).

Notes:

Notes:

COMS10015 lecture: week #11

> Agenda: recalling that COMS10015 comprises 3 high-level themes, i.e.,

Theme #1 = “from Mathematics and Physics to digital logic”
Theme#2 = “from digital logic to computer processors”
Theme #3 = “from computer processors to software applications”

the aim is to summarise (or wrap-up), by

1. looking backward = what we have done in TB1
2. looking forward = whatwe willdo inTB2

© Daniel Pag
git # b282dbb9 @ 2025-09-03

Computer Architecture

Unit summary (1)
Looking backward, low-level perspective: arc #1 = “no remaining magic between abstract and concrete computation”

/—\ /\
Cr:f(x,y):x/\y r=fl,) =AY AXAY)
~—__

)

~_

== O O R
O = O
-0 O ol

Notes:

Notes:

Unit summary (1)
Looking backward, low-level perspective: arc #1 = “no remaining magic between abstract and concrete computation”

/T~ -
C’=f<xfy>=xw r=fey =AY ERY)
~_

)

= =1 k1
- O = o<
===l

P=s(®,9) “ rezty

© Daniel Page (BIKE University of

Computer Architecture B} BRISTOL git #b282dbb9 @ 2025-09-03

Unit summary (1)
Looking backward, low-level perspective: arc #1 = “no remaining magic between abstract and concrete computation”

Vad

o BB T §:D°—L
’ ~_ i ~_ _— 1= D—*r

J— -
Cr=f(x,y)=xw r=fl,)=GRYAEAY)
_/

(

<
|

=m0 OR
—_ O = o<
= =)

7 =g(&,7) — r=x+y

Compu

Notes:

Notes:

Unit summary (2)

Looking backward, low-level perspective: arc #2 = “progressively more involved versions of addition”

theory

theory

combinatorial logic
sequential logic
FSM

RM

micro—processor

representation

computation

fixed function computation,
fixed function computation,
fixed function computation,

not fixed function computation,

not fixed function computation,

unsigned and signed integer

“school-book” addition algorithm

not stateful

stateful
counter
stateful
stateful counter machine
stateful } add instruction

full-adder cell, ripple-carry adder

Unit summary (3)
Looking backward, high-level perspective

Theory
(data structures and algorithms)

Theory
(Mathematics and Physics)

software

hardware

Notes:

Notes:

Unit summary (3)
Looking backward, high-level perspective

Theory
(data structures and algorithms)

software

Instruction Set Architecture (ISA) < interface

,,,,,,,,,,,,,,,,,,,,,,,,,,,, hardware

Boolean algebra, integer representation and arithmetic @
Theory
(Mathematics and Physics)

Computer Architecture) gt #b282dbb9 @ 202!

Unit summary (3)
Looking backward, high-level perspective

Theory
(data structures and algorithms)

software

---------------------------- hardware

Transistors
Combinatorial (or stateless) logic, Karnaugh maps

Boolean algebra, integer representation and arithmetic
Semi-conductors

Theory
(Mathematics and Physics)

Notes:

Notes:

Unit summary (3)
Looking backward, high-level perspective

Theory
(data structures and algorithms)

software

Instruction Set Architecture (ISA) < interface

**************************** hardware
Transistors 9
Combinatorial (or stateless) logic, Karnaugh maps e Digital (micro-)electronics
Sequential (or stateful) logic e 8
Memory cells, devices e

Boolean algebra, integer representation and arithmetic
Semi-conductors
FSMs

Theory

git # b282dbb9 @ 202

Unit summary (3)
Looking backward, high-level perspective

Theory

(data structures and algorithms)

software

Control- and data-paths, fetch-decode-execute cycle, @
design paradigms

---------------------------- hardware

Transistors

Combinatorial (or stateless) logic, Karnaugh maps
Sequential (or stateful) logic

Memory cells, devices

Theory
(Mathematics and Physics)

Semi-conductors
FSMs
RMs

@
@)
©
®
Boolean algebra, integer representation and arithmetic o
@)
©,
@

Notes:

Notes:

Unit summary (4)
Looking forward

> ... yet to come, in TB2:

1. Instruction Set Architecture (ISAs):

> instruction set design: instruction classes; addressing modes; instruction encoding and decoding
> real-world examples: ARMv7-A

2. micro-architecture (revisited):

> pipelined instruction execution
> von Neumann bottleneck, memory hierarchy; cache memories

3. (system) software:

> development tools: assembly language; assembly and linkage processes; debuggers; compilers
> support for structured programming (e.g., function calls)
> support for operating systems: interrupts; protection; virtual memory

© Daniel P

er Architecture S git #b282dbb9 @ 2025-09-03

Conclusions

> Take away points: hopefully, TB1 has delivered

1. some understanding,

> Boolean algebra; integer representation and arithmetic

physical design of logic components (e.g., logic gates from transistors)

use of combinatorial logic components (e.g., Karnaugh maps)

use of sequential logic components (e.g., state machines)

processor paradigms: counter, accumulator, stack, and register machines; von Neumann vs. Harvard
architecture; RISC vs. CISC

vyvyyvyy

»

2. some skills,
> Verilog-based modelling and simulation of digital logic
> ...

3. some experience,

> hierarchical design (via abstraction, and “understand-design-implement” ethos)
> debugging strategies
>

which will be further extended and enhanced by TB2.

Notes:

Notes:

References

Notes:

