
Computer Architecture

Daniel Page

Department of Computer Science,
University Of Bristol,

Merchant Venturers Building,
Woodland Road,

Bristol, BS8 1UB. UK.
⟨csdsp@bristol.ac.uk⟩

September 5, 2025

Keep in mind there are two PDFs available (of which this is the latter):
1. a PDF of examinable material used as lecture slides, and
2. a PDF of non-examinable, extra material:
▶ the associated notes page may be pre-populated with extra, written explaination of

material covered in lecture(s), plus
▶ anything with a “grey’ed out” header/footer represents extra material which is

useful and/or interesting but out of scope (and hence not covered).

Notes:

Notes:



COMS10015 lecture: week #11

▶ Agenda: recalling that COMS10015 comprises 3 high-level themes, i.e.,

Theme #1 ⇒ “from Mathematics and Physics to digital logic”
Theme #2 ⇒ “from digital logic to computer processors”
Theme #3 ⇒ “from computer processors to software applications”

the aim is to summarise (or wrap-up), by

1. looking backward ⇒ what we have done in TB1
2. looking forward ⇒ what we will do in TB2

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Unit summary (1)
Looking backward, low-level perspective: arc #1 = “no remaining magic between abstract and concrete computation”

x y r
0 0 0
0 1 0
1 0 0
1 1 1

r = f (x, y) = x ∧ y r = f (x, y) = (x ∧ y) ∧ (x ∧ y) ∧
∧

∧

x
y

x
y

r

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:



Unit summary (1)
Looking backward, low-level perspective: arc #1 = “no remaining magic between abstract and concrete computation”

x y r
0 0 0
0 1 0
1 0 0
1 1 1

r = f (x, y) = x ∧ y r = f (x, y) = (x ∧ y) ∧ (x ∧ y)

r̂ = g(x̂, ŷ) r = x + y

∧
∧

∧

x
y

x
y

r

↦→

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Unit summary (1)
Looking backward, low-level perspective: arc #1 = “no remaining magic between abstract and concrete computation”

x y r
0 0 0
0 1 0
1 0 0
1 1 1

r = f (x, y) = x ∧ y r = f (x, y) = (x ∧ y) ∧ (x ∧ y)

r̂ = g(x̂, ŷ) r = x + y

∧
∧

∧

x
y

x
y

r

xy

xy
r

Vss

Vdd

↦→

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:



Unit summary (2)
Looking backward, low-level perspective: arc #2 = “progressively more involved versions of addition”

theory ❀ representation
}

unsigned and signed integer

theory ❀ computation
}

“school-book” addition algorithm

.

.

.

combinatorial logic ❀ fixed function computation, not stateful
}

full-adder cell, ripple-carry adder

sequential logic ❀ fixed function computation, stateful



counter
FSM ❀ fixed function computation, stateful

RM ❀ not fixed function computation, stateful
}

counter machine

.

.

.

micro-processor ❀ not fixed function computation, stateful
}
add instruction

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Unit summary (3)
Looking backward, high-level perspective

Theory
(data structures and algorithms)

...

Instruction Set Architecture (ISA)

Micro-architecture

Digital (micro-)electronics

Theory
(Mathematics and Physics)

hardware

software

interface

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:



Unit summary (3)
Looking backward, high-level perspective

Theory
(data structures and algorithms)

...

Instruction Set Architecture (ISA)

Micro-architecture

Digital (micro-)electronics

Theory
(Mathematics and Physics)

hardware

software

interface

Boolean algebra, integer representation and arithmetic 1

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Unit summary (3)
Looking backward, high-level perspective

Theory
(data structures and algorithms)

...

Instruction Set Architecture (ISA)

Micro-architecture

Digital (micro-)electronics

Theory
(Mathematics and Physics)

hardware

software

interface

Boolean algebra, integer representation and arithmetic 1
Semi-conductors 2

Transistors 2
Combinatorial (or stateless) logic, Karnaugh maps 2

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:



Unit summary (3)
Looking backward, high-level perspective

Theory
(data structures and algorithms)

...

Instruction Set Architecture (ISA)

Micro-architecture

Digital (micro-)electronics

Theory
(Mathematics and Physics)

hardware

software

interface

Boolean algebra, integer representation and arithmetic 1
Semi-conductors 2

FSMs 3

Transistors 2
Combinatorial (or stateless) logic, Karnaugh maps 2

Sequential (or stateful) logic 3
Memory cells, devices 3

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Unit summary (3)
Looking backward, high-level perspective

Theory
(data structures and algorithms)

...

Instruction Set Architecture (ISA)

Micro-architecture

Digital (micro-)electronics

Theory
(Mathematics and Physics)

hardware

software

interface

Boolean algebra, integer representation and arithmetic 1
Semi-conductors 2

FSMs 3
RMs 4

Transistors 2
Combinatorial (or stateless) logic, Karnaugh maps 2

Sequential (or stateful) logic 3
Memory cells, devices 3

Control- and data-paths, fetch-decode-execute cycle,
design paradigms

4

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:



Unit summary (4)
Looking forward

▶ ... yet to come, in TB2:

1. Instruction Set Architecture (ISAs):
▶ instruction set design: instruction classes; addressing modes; instruction encoding and decoding
▶ real-world examples: ARMv7-A

2. micro-architecture (revisited):
▶ pipelined instruction execution
▶ von Neumann bottleneck, memory hierarchy; cache memories

3. (system) software:
▶ development tools: assembly language; assembly and linkage processes; debuggers; compilers
▶ support for structured programming (e.g., function calls)
▶ support for operating systems: interrupts; protection; virtual memory

4. ...

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:

Conclusions

▶ Take away points: hopefully, TB1 has delivered
1. some understanding,
▶ Boolean algebra; integer representation and arithmetic
▶ physical design of logic components (e.g., logic gates from transistors)
▶ use of combinatorial logic components (e.g., Karnaugh maps)
▶ use of sequential logic components (e.g., state machines)
▶ processor paradigms: counter, accumulator, stack, and register machines; von Neumann vs. Harvard

architecture; RISC vs. CISC
▶ ...

2. some skills,
▶ Verilog-based modelling and simulation of digital logic
▶ ...

3. some experience,
▶ hierarchical design (via abstraction, and “understand-design-implement” ethos)
▶ debugging strategies
▶ ...

which will be further extended and enhanced by TB2.

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:



References

© Daniel Page ⟨csdsp@bristol.ac.uk⟩
Computer Architecture git # b282dbb9 @ 2025-09-03

Notes:


