COMS10015 lecture: week #11

> Agenda: recalling that COMS10015 comprises 3 high-level themes, i.e.,

Theme#1 = “from Mathematics and Physics to digital logic”
Theme#2 = “from digital logic to computer processors”
Theme#3 = “from computer processors to software applications”

the aim is to summarise (or wrap-up), by

1. looking backward = what we have done in TB1
2. looking forward = whatwe willdo inTB2

© Daniel Page (A University of
BRI

mailto:csdsp@bristol.ac.uk

Unit summary (1)

Looking backward, low-level perspective: arc #1 = “no remaining magic between abstract and concrete computation”

P N P
Cr:f(x,y):x/\y r=flx,y) =AY AEXAY)
\/

)

~_

=RoSR

—= = O Ol R
= O = o
-0 o olx

mailto:csdsp@bristol.ac.uk

Unit summary (1)

Looking backward, low-level perspective: arc #1 = “no remaining magic between abstract and concrete computation”

P 7~
(o r=tmn=xay r=fen) =GR R GRY)
~_

)

~_

=RroSR

=0 Ol R
_ O - o<
-0 O Oolx

P =g(&) “— r=x+y

Computer Architecture

mailto:csdsp@bristol.ac.uk

Unit summary (1)

Looking backward, low-level perspective: arc #1 = “no remaining magic between abstract and concrete computation”

Vaa

” ~_ | ~_ ¥ '

P -
C r=fy) =xAy r=fey) =AY A ERY)
_/

()

~_

=RroSR

=0 Ol R
_ O - o<
-0 O Oolx

P =g(&) “— r=x+y

Computer Architecture

mailto:csdsp@bristol.ac.uk

Unit summary (2)

Looking backward, low-level perspective: arc #2 = “progressively more involved versions of addition”

theory

theory

combinatorial logic
sequential logic
FSM

RM

micro—processor

representation

computation

fixed function computation,
fixed function computation,
fixed function computation,

not fixed function computation,

not fixed function computation,

not stateful

stateful

stateful

stateful

stateful

unsigned and signed integer

“school-book” addition algorithm

full-adder cell, ripple-carry adder

counter

counter machine

add instruction

mailto:csdsp@bristol.ac.uk

Unit summary (3)
Looking backward, high-level perspective

Theory
(data structures and algorithms)

software

,,,,,,,,,,,,,,,,,,,,,,,,,,,, hardware

Theory
(Mathematics and Physics)

mailto:csdsp@bristol.ac.uk

Unit summary (3)
Looking backward, high-level perspective

Theory

(data structures and algorithms)

software

,,,,,,,,,,,,,,,,,,,,,,,,,,,, hardware

Boolean algebra, integer representation and arithmetic @

Theory
(Mathematics and Physics)

mailto:csdsp@bristol.ac.uk

Unit summary (3)
Looking backward, high-level perspective

Theory
(data structures and algorithms)

software

**************************** hardware
Transistors
Combinatorial (or stateless) logic, Karnaugh maps

Boolean algebra, integer representation and arithmetic
Semi-conductors

Theory
(Mathematics and Physics)

mailto:csdsp@bristol.ac.uk

Unit summary (3)
Looking backward, high-level perspective

Theory
(data structures and algorithms)

software

**************************** hardware

Transistors

Combinatorial (or stateless) logic, Karnaugh maps
Sequential (or stateful) logic

Boolean algebra, integer representation and arithmetic
Semi-conductors
FSMs

Theory
(Mathematics and Physics)

@
@
©)
Memory cells, devices e

mailto:csdsp@bristol.ac.uk

Unit summary (3)
Looking backward, high-level perspective

Theory
(data structures and algorithms)

software

Control- and data-paths, fetch-decode-execute cycle,
design paradigms

£
3
g
?
g
3
z
T
g
g
g
(]

**************************** hardware

Transistors

Combinatorial (or stateless) logic, Karnaugh maps
Sequential (or stateful) logic

Memory cells, devices

Boolean algebra, integer representation and arithmetic

EEEE @EEE

Semi-conductors Theory
FSMs (Mathematics and Physics)
RMs

mailto:csdsp@bristol.ac.uk

Unit summary (4)
Looking forward

> ... yet to come, in TB2:

1. Instruction Set Architecture (ISAs):

> instruction set design: instruction classes; addressing modes; instruction encoding and decoding
> real-world examples: ARMv7-A

2. micro-architecture (revisited):

> pipelined instruction execution
> von Neumann bottleneck, memory hierarchy; cache memories

3. (system) software:
> development tools: assembly language; assembly and linkage processes; debuggers; compilers
> support for structured programming (e.g., function calls)
> support for operating systems: interrupts; protection; virtual memory

mailto:csdsp@bristol.ac.uk

Conclusions

> Take away points: hopefully, TB1 has delivered

1. some understanding,

Boolean algebra; integer representation and arithmetic

physical design of logic components (e.g., logic gates from transistors)

use of combinatorial logic components (e.g., Karnaugh maps)

use of sequential logic components (e.g., state machines)

processor paradigms: counter, accumulator, stack, and register machines; von Neumann vs. Harvard
archltecture, RISC vs. CISC

vVYVYYVYY

>

2. some skills,
> Verilog-based modelling and simulation of digital logic
>

3. some experience,
> hierarchical design (via abstraction, and “understand-design-implement” ethos)
> debuggmg strategies
>

which will be further extended and enhanced by TB2.

mailto:csdsp@bristol.ac.uk

References

mailto:csdsp@bristol.ac.uk

