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Assessed coursework assignment
AttackHW

Note that:

1. This coursework assignment has a 100 percent weighting, i.e., it represents 100 percent of Credit

Points (CPs) associated with COMS30048, and is assessed on an individual basis. The submission

deadline is 30/04/26.

2. Before you start work, ensure you are aware of and adhere to various regulations
a

which govern

coursework-based assessment: pertinent examples include those related to academic integrity.

3. There are numerous support resources available, for example:

• via the unit forum, where you can get help and feedback via 𝑛-to-𝑚, collective discussion,

• via any lab. and/or drop-in slot(s), where you can get help and feedback via 1-to-1, personal

discussion, or

• via the staff responsible for this coursework assignment: although the above are often preferable, you

can make contact in-person or online (e.g., via email).

a
See both the formal regulations at https://www.bristol.ac.uk/academic-quality/assessment/codeonline.html, and

also the less formal advice at https://www.bristol.ac.uk/students/support/academic-advice.
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1 Introduction

There are two main categories of cryptanalytic attack, which can overlap to some extent: they either focus on the

underlying design (or theory), or on the properties of a resulting implementation. This assignment is concerned

with the second category, with the overarching goal being to gain a deeper understanding of 1) implementation

challenges for given cryptographic primitives, 2) attacks against said implementations, and 3) countermeasures

against said attacks, all through applied research and development tasks set within a motivating, example scenario.

2 Terms and conditions

• The assignment description may refer to the ASCII text file question.txt, or more generally “the marksheet”:

download this file from

https://assets.phoo.org/COMS30048_2025_TB-2/csdsp/cw/AttackHW/question.txt

then complete and include it in your submission. This is important, in the sense that 1) it offers you clarity with

respect to the assessment process, e.g., via a marking scheme, and 2) it offers us useful (meta-)information about

your submission. Keep in mind that

– if separate assessment units exist, they may have different assessment criteria and so marking scheme,

– the section related to citation of third-party resources includes use of AI: per the University1 and Faculty2

guidance, you should “you should describe and cite your usage [of AI] and quote output [produced by AI] appropriately
in your work”.

• Certain aspects of the assignment have a (potentially large) design space of possible approaches. Where there

is some debate about the correct or “best” approach, the assignment demands you make an informed decision

yourself: it is therefore not (purely) a programming exercise such that blindly implementing an approach will

be enough. Such decisions should ideally be based on a reasoned argument formed via your own background

research (versus relying exclusively on taught content), and clearly documented (e.g., using the marksheet).

• The assignment design includes some heavily supported, closed initial stages which reflect a lower mark, and

some mostly unsupported, open later stages which reflects a higher mark. This suggests the marking scale is

non-linear: it is clearly easier to obtain 𝑋 marks in the initial stages than in the final stage. The term open (resp.

closed) should be understood as meaning flexibility with respect to options for work, not non-specificity with

respect to workload: each stage has a clear success criteria that limit the functionality you implement, meaning

you can (and should) stop work once they have been satisfied.

• As was outlined in the lab. worksheets, the SCALE kits are only available in the lab. slots. Our rationale is that

doing so acts to control the amount of time you invest in the assignment, and so your overall workload; such an

approach may not suit everyone, but please keep in mind that it is carefully considered and well intended.

• Where a report-like document of “up to 𝑛 pages” (or similar) is required, those 𝑛 pages of content represent what

will be read and assessed. However, you should interpret such a limit as excluding standard front- (e.g., a title

page, or table of contents) and back-matter (e.g., a bibliography, glossary, and appendices). For example, you

may include extra content in appendices beyond the 𝑛-page limit, e.g., technical detail which is useful but not

crucial with respect to assessment; one rationale for doing so might be to include large tables or figures.

• Where a choice is possible, noting this is not always the case, you can select the programming language used to

produce any implementations required by the assignment. Viable examples include C, Python, and SageMath

(which is based on Python). Use of (correctly cited) third-party libraries is allowed for cases that do not conflict

with the associated ILOs. Viable examples include OpenSSL for C, and the pycryptodome package for Python.

• Include a set of instructions that clearly describe how to compile and execute any implementations produced

as part of the assignment. The ideal approach would be to 1) submit (or alter) a Makefile, and/or 2) use the

marksheet to provide written instructions.

• To make the assessment process easier, any implementations produced as part of the assignment should only

write error messages to stderr (or equivalent). In addition, the only output written to stdout (resp. input read

from stdin, or equivalents) should be that specified by the assignment description: do not, for example, write

additional debugging messages to stdout.

• You should submit your work into the correct component via

https://www.ole.bris.ac.uk

1https://www.bristol.ac.uk/students/support/academic-advice/academic-integrity
2https://www.ole.bris.ac.uk/bbcswebdav/pid-8241705-dt-content-rid-48627612_3/xid-48627612_3
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Figure 1: A diagrammatic description of the material in ${USER}.tar.gz.

Include any 1) source code files, 2) text or PDF files, (e.g., documentation) and 3) auxiliary files (e.g., example

output), either as required or that you feel are relevant. Keep in mind the following points:

– If separate teaching and assessment units exist, you should submit via the latter not the former.

– Make sure you have actually made a submission, rather than saved a draft ready for submission; ensure said

submission matches what you expect, e.g., by (re)downloading and checking the content.

– Your last submission will be the one assessed, meaning, e.g., you cannot partially or entirely “roll-back” to

some earlier submission.

• To make the submission process easier, the recommended approach is to develop your solution within the same
directory structure as the material provided. This will allow you to first create then submit a single archive (e.g.,

solution.zip using zip, or solution.tar.gz using tar and gzip) of your entire solution, rather than multiple
separate files.

• Any implementations produced as part of the assignment will be assessed using a platform equivalent to the

MVB Linux lab(s). (e.g., MVB-1.15 or MVB-2.11). As such, they must compile, execute, and be thoroughly tested

using both the operating system and development tool-chain versions available by default.

• Although you can definitely expect to receive a partial mark for a partial solution, it will be assessed as is. This

means 1) there will be no effort to enable either optional or commented functionality (e.g., by uncommenting

it, or via specification of compile-time or run-time parameters), and 2) submitting multiple variant solutions is

strongly discouraged, but would be dealt with by considering the variant which yields the highest single mark.

3 Description

3.1 Material
Selected material, personalised on a per student basis, is provided for you to use. Assuming ${USER} is used to

represent your 7-digit UoB student number, download3 and unarchive the file

https://assets.phoo.org/COMS30048_2025_TB-2/csdsp/cw/AttackHW/${USER}.tar.gz

somewhere secure in your file system: from here on, we assume ${ARCHIVE} denotes a path to the resulting,

unarchived content illustrated by Figure 1. More specifically,

• ${ARCHIVE}/board/target.[ch] provides a skeleton attack target implementation (i.e., some source code,

written in C), which relates to stage 1.

• ${ARCHIVE}/scope/attack.py; provides a skeleton attack implementation (i.e., some source code, written in

Python), which relates to stage 2.

• ${ARCHIVE}/board/${USER}.elf (plus${ARCHIVE}/board/${USER}.binand${ARCHIVE}/board/${USER}.hex,
which are derived from it) provides a compiled attack target implementation (i.e., an executable for a SCALE

development board), which relates to stage 2; it is expanded upon in Appendix A.

• ${ARCHIVE}/scope/${USER}.elf provides a compiled attack implementation (i.e., an executable for a control

workstation), which relates to stages 2 and 3; it is expanded upon in Appendix B. The executable was produced

(i.e., is the result of compilation) on a platform equivalent to those in the MVB Linux lab(s). (e.g., MVB-1.15 or

3If your 7-digit UoB student numberis 0123456, for example, the corresponding URL would be https://assets.phoo.org/COMS30048_
2025_TB-2/csdsp/cw/AttackHW/0123456.tar.gz. If you have a problem downloading or unarchiving this file (e.g., you find it is missing,

which can occur if you register late for the unit for example), it is vital you contact the lecturer responsible for the assignment immediately.
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(a) A more abstract description of the scenario.
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(b) A less abstract description of the scenario.

Figure 2: A diagrammatic description of the scenario considered.

MVB-2.11). As such, it is only guaranteed to work on either the same or at least a compatible platform, and, even

then, only once the file has appropriate permissions set using chmod.

• ${ARCHIVE}/board/Makefile and ${ARCHIVE}/scope/Makefile are fairly self explanatory, acting as analogues

to the files encountered in lab. worksheet #1.1 and #1.2. The former, for example, includes a build system for

the skeleton attack target implementation.

3.2 Overview

Context. Consider an example scenario, where you join the development team for a device 𝒯 : the device is

intended to act as a cryptographic co-processor, offering a range of functionality such as 1) secure key generation

and storage, and 2) off-load of cryptographic operations. One use-case for 𝒯 is captured by Figure 2a, wherein

some host system ℋ𝑗 engages with TLS-based communication across the Internet with a remote system ℋ𝑖 . In

such a use-case ℋ𝑗 will manage the network interface and the high-level protocol, but make use of 𝒯 , e.g., for the

low-level cryptographic operations.

To minimise cost, no bespoke hardware is used: all the functionality is realised in software, or rather firmware,

as executed by the integrated micro-controller. For convenience, we use 𝒯 to denote the whole device from here

on, i.e., the hardware plus software, including firmware, executed on it. The development of an initial prototype

has just begun, with a focus on delivery of functionality related to AES-128. This means the prototype 𝒯 1) has

non-volatile, secure storage for an AES-128 cipher key, and 2) can compute AES-128 encryption operations using it.

Note that the use-case in which the post-prototype, complete 𝒯 will be deployed means implementation attacks,

e.g., those based on passively monitoring the power consumption of 𝒯 while it executes said encryption, are

relevant and so must be mitigated.

Challenge. This assignment models aspects of the scenario outlined above, and, in particular, a simplification

described by Figure 2b which assumes some user 𝒰 has physical access to 𝒯 . Replicating broader challenges with

respect to cryptographic engineering, and using the SCALE kit (per lab. worksheets #1.1 and #1.2) as a vehicle to do

so, it tasks you with developing 1) an attack target implementation (i.e., an AES-128 implementation) modelling

the firmware for 𝒯 , executed on a SCALE development board, and 2) an attack implementation modelling a

malicious, or adversarial 𝒰 , executed on a control workstation (using a PicoScope 2206B to acquire traces of power

consumption from a SCALE development board). The protocol used to communication between the modelled 𝒰
and 𝒯 is detailed in Appendix C.
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3.3 Detail
Stage 1. This stage involves development of an attack target implementation, modelling 𝒯 per Section 3.2. As a

starting point you must use the skeleton attack target implementation provided. Do not alter the main4
function: instead, produce a solution by implementing 1) the placeholder functions octetstr_rd and

octetstr_wr (per lab. worksheet #1.1), and 2) the placeholder functions aes and aes_init (per lab.

worksheet #2).

Success criteria. Demonstrate that the attack target implementation is

(a) correct, i.e., given the cipher key 𝑘 hard-coded in the skeleton, it correctly computes the ciphertext

𝑐 = AES.Enc(𝑘, 𝑚) for any given plaintext 𝑚,

(b) efficient, i.e., yields said ciphertext within a 1ms “efficiency budget” (or time limit).

Advice. A sensible approach would be to 1) develop an AES-128 implementation independently of

the SCALE board, e.g., using a workstation, then only once you are confident it works as intended, 2)

port said implementation to the SCALE board. Doing so will likely render development, debugging in

particular, significantly easier and quicker.

Advice. As the documentation (i.e., comments in the source code) states, the aes_init function allows

initialisation before an associated encryption operation is then performed via the aes function: examples

include expansion of a cipher key into round keys. If your solution requires no initialisation, aes_init
can be ignored.

Advice. At this stage, your solution can and should ignore the argument r to aes_init and aes: this

only becomes relevant if/when you attempt stage 3.

Stage 2. This stage involves development of an attack implementation, modelling𝒰 per Section 3.2: your solution

should demonstrate the recovery of 𝑘 by 𝒰 , via analysis of power consumption traces acquired during

execution of aes by 𝒯 . As a starting point you could use the skeleton attack implementation provided,

although 1) you are free not to, and 2) can use a programming language of your choice. There are two

classes of valid solution that you can select between; since the former (resp. latter) is easier (resp. harder),

it is weighted less (resp. more) with respect to the mark scheme.

(a) In an assisted (or dependent) solution, the idea is to 1) use the compiled attack implementation

provided to acquire and store a trace data set, then 2) load and use said trace data set as input to your

solution.

Success criteria. Demonstrate a successful key recovery attack, executing it using a command similar

to

./attack ${FILE}

where the mandatory command-line argument ${FILE} specifies the trace data set to use as input.

(b) In an unassisted (or independent) solution, the idea is your solution is standalone, meaning that it can

acquire then use a trace data set itself.

Success criteria. Demonstrate a successful key recovery attack, executing it using a command similar

to

./attack

For either class of solution, ensure the attack output clearly reports both the 1) recovered key (represented

as an octet string), and 2) relevant metrics (e.g., the number of traces used).

Advice. A sensible approach would be to work step-by-step, first developing an assisted solution

and then extending it to form an unassisted solution. Doing so 1) employs best-practice with respect to

incremental development, plus 2) decouples development of the attack itself from the challenge of using

a 2206B, plus dependency on the MVB Linux lab(s). (e.g., MVB-1.15 or MVB-2.11); having acquired a

trace data set in the lab. one could develop the attack itself anywhere, for example.

To support this approach and further decouple work on the attack from the 2206B, you can download an

example (compressed) trace data set from

https://assets.phoo.org/COMS30048_2025_TB-2/csdsp/cw/AttackHW/stage2.dat.gz

An attack target implementation equivalent to the one provided (i.e., ${USER}.elf) was used to produce

the data set; if your attack implementation works using said data set as input, you can be confident it will

work more generally (e.g., against ${USER}.elf itself, noting of course that the cipher key will differ).

4The main function within the skeleton implements the 1) communication protocol and 2) trigger signal management, required to support

interaction with the implementation (e.g., within later stages): if you alter it, said interaction may fail. Likewise, it includes a hard-coded

AES-128 key k that differs per student: if you alter it, verifying your implementation works correctly is more difficult.
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Advice. In theory, your attack implementation will be applicable to both 1) the compiled attack target

implementation provided, and 2) your solution to stage 1. In practice, however, it suffices to demonstrate

your attack implementation against the former. Fixing this remit produces a more uniform challenge

(i.e., it is the same for all students, irrespective of their approach in stage 1), and also allows independent

progress with stage 2 (i.e., it removes the need to complete stage 1 first).

Advice. Although the functional correctness of your attack implementation is obviously crucial,

various additional criteria have an impact. The marksheet offers a high-level idea of the marking scheme,

but it remains your task to consider then address more specific criteria. For example, your attack

implementation will ideally be

(a) self-contained, in the sense it requires no input from the user,

(b) robust, in the sense it produces the correct result every time (not just sometimes),

(c) generic, in the sense it produces the correct result for any material (not just your own), and

(d) efficient.

Stage 3. This stage involves development of a countermeasure within the previous attack target implementation

(from stage 1), intended to secure (or a least “harden”) it against the previous attack implementation

(from stage 2).

Success criteria. Demonstrate that the attack target implementation is

(a) correct, i.e., given the cipher key 𝑘 hard-coded in the skeleton, it correctly computes the ciphertext

𝑐 = AES.Enc(𝑘, 𝑚) for any given plaintext 𝑚,

(b) efficient, i.e., yields said ciphertext within a 100ms “efficiency budget” (or time limit),

(c) secure, i.e., it is able to prevent the attack implementation (from stage 2) recovering 𝑘.

Produce a PDF-based report (named stage3.pdf) of upto 3 pages, which precisely specifies and clearly

explains

(a) the underlying design,

(b) the implementation of said design, and

(c) an analysis of the trade-off between expected improvement in security and other metrics (e.g., latency,

area), and a set of assumptions this depends on.

Advice. Note that the success criteria for this stage subsume those for stage 1. That is, there is no

requirement to retain the (insecure) solution for stage 1 if you submit a (secure) solution for stage 3.

Advice. Although analysis and identification of suitable countermeasures forms part of the assessment,

many options will require a source of randomness: per Appendix C, the argument r to aes_init and

aes provides such a source. Ensure you change SIZEOF_RND (in target.h) to suit the requirements of

your solution, so the skeleton attack target implementation can then 1) advertise the correct requirement

to 𝒰 , then both 2) allocate enough space for, and read r correctly in main.

Advice. It is reasonable to interpret “is able to prevent” as “could plausibly prevent” rather than “does

actually prevent”. One reason for making this distinction is that various practical limitations may prevent

you actually executing the attack: a central example is the amount of physical memory available on the

lab. workstations, which limits the number of traces and/or samples per trace and so efficacy of the

attack implementation.

Advice. Although a soft requirement, the recommended report structure is as above, i.e., with the

top-level sections reflecting design, implementation, and analysis.

Stage 4. Recall that the initial prototype𝒯 focused on support for AES-128 alone. This stage involves development

of a written specification for the post-prototype, complete and thus deployable 𝒯 : it should align with

the use-case captured by Figure 2a, in the sense that 𝒯 offers any and all functionality required for ℋ𝑗 to

communicate with ℋ𝑖 using TLS.

Success criteria. Produce a PDF-based report (named stage4.pdf) of upto 5 pages, which precisely

specifies and clearly explains

(a) any requirements or assumptions (e.g., about the post-prototype 𝒯 , or scenario it is used in),

(b) a design for the functionality supported,

(c) an implementation strategy which should be adopted for said functionality, and

(d) how the host system accesses said functionality via the API, e.g., via a suitable analogue of Appendix C,

aligning each point with the use-case.

Advice. Keep in mind that although it is important to consider the implementation of your design,
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there is no need to implement it: you could think of this stage as a thought experiment5 therefore, the

result of which is the specification alone. For example, based on this remit it is reasonable to redesign

versus repurpose (or selectively alter, and so, e.g., maintain compatibility with) any or all elements of

the prototype 𝒯 .

Advice. Although a soft requirement, the recommended report structure is as above, i.e., with the

top-level sections reflecting requirements and assumptions, design, implementation, and interface.

5https://en.wikipedia.org/wiki/Thought_experiment
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A An attack target implementation: ${ARCHIVE}/board/${USER}.elf

A.1 Remit
The compiled attack target implementation provided offers a minimal exemplar that, by design, is 1) correct, but

2) inefficient with respect to time, and insecure with respect to side-channel attack. Although it is common to

assume6 an attacker has full access to the design (e.g., to the source code) of their target, doing so conflicts with

the assignment because stage 1 tasks you with developing it yourself! Instead, sufficient partial access is captured

by the following details:

• Given that it constitutes an implementation of AES-128, it uses 128-bit block and cipher key lengths (meaning a

16-element byte sequence, resp. octet string, representation).

• Following the notation in [1, Figure 5], the fact that 𝑁𝑏 = 4 and 𝑁𝑟 = 10 means a (4 × 4)-element state matrix

will be manipulated in a total of 11 rounds.

• The cipher key embedded in ${ARCHIVE}/board/${USER}.elfmatches ${ARCHIVE}/board/target.c: you can

think of the former as a compiled version of the latter, with the missing functionality related to stage 1 completed.

• [1, Section 6.4] refers to [3] with respect to implementation strategy. Given the platform used to execute it, the

implementation follows [3, Section 4.1] more or less verbatim: doing so 1) uses an 8-bit data-path (i.e., it performs

operations on 8-bit bytes used to represent elements of both the state and round key matrices), and 2) makes a

trade-off that favours low memory footprint over low latency (resp. high throughput). More specifically:

1. a 256 B look-up table in memory is used to store pre-computed values of the S-box (as used, e.g., in the

SubBytes round function),

2. a 256 B look-up table in memory is used to store pre-computed values of xtime (as used, e.g., in the MixColumns
round function),

3. the round keys required are not pre-computed: each encryption operation takes the cipher key and evolves it

forward, step-by-step, to form successive round keys.

A.2 Usage
You can use the compiled attack target implementation (i.e, program a SCALE development board with it) as

follows:

• Fix the working directory:

cd ${ARCHIVE}/board

• Initiate the programming process using

make PROJECT="${USER}" program

to perform the first step, and then perform each of the subsequent (manual) steps.

6Per Kerckhoffs’s principle, in contrast to “security through obscurity”; see, e.g., http://en.wikipedia.org/wiki/Kerckhoffs’s_
principle
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B An attack implementation: ${ARCHIVE}/scope/${USER}.elf

B.1 Remit
The compiled attack implementation provided offers a minimal exemplar that, by design, is 1) limited with respect

to the constituent techniques used, and thus 2) limited with respect to guarantees of performance and effectiveness.

The attack makes use of Correlation Power Analysis (CPA) [2]: it targets the SubBytes round function in the first

AES-128 round (i.e., the operation S-box(𝑚𝑖 ⊕ 𝑘𝑖), for some known plaintext 𝑚 and unknown cipher key 𝑘), and

assumes a Hamming weight leakage model.

B.2 Usage
You can use the compiled attack implementation (i.e., mount said attack against an attack target implementation)

as follows:

• Fix the working directory:

cd ${ARCHIVE}/scope

• Execute

./${USER}.elf --help

to assess the set of command-line options available, which act to control what the attack does and how it does so.

• Execute the attack itself, either

1. manually

./${USER}.elf

or

2. automatically (via Makefile)
make attack

noting that to prevent it being overly aggressive, it will abort if various limits (e.g., target implementation

execution time, number of samples, or memory footprint) are exceeded.

As a benchmark, keep in mind that when used against the attack target implementation provided (using the

default parameters per the above), the attack implementation will 1) take roughly 5min to complete, including

both acquisition and analysis phases, and 2) produce an uncompressed trace data set of roughly 160MB in size.

B.3 Trace data set format
Consider a data set which captures 𝑛 traces each of 𝑙 samples; let Λ𝑖 , 𝑗 denote the 𝑗-th sample of the 𝑖-th such trace,

for 0 ≤ 𝑖 < 𝑛 and 0 ≤ 𝑗 < 𝑙. The traces will have been acquired with respect to AES-128 encryption operations,

each of which uses a (known) plaintext as input and produces a (known) ciphertext as output; let 𝑀𝑖 , 𝑗 (resp. 𝐶𝑖 , 𝑗)

denote the 𝑗-th byte of the 𝑖-th such plaintext (resp. ciphertext) for 0 ≤ 𝑖 < 𝑛 and 0 ≤ 𝑗 < 16. With this in mind,

the (binary) trace data set format is illustrated by Figure 3:

• If 𝑀, 𝐶, and Λ are consider as matrices, their elements are stored in row-major (or trace-major) order.

• The data types involved stem, in part, from the PicoScope API; as expressed using C, they are as follows

𝑛 ; uint32_t
𝑙 ; uint32_t
𝑀𝑖 , 𝑗 ; uint8_t
𝐶𝑖 , 𝑗 ; uint8_t
Λ𝑖 , 𝑗 ; int16_t

Keep in mind that use of int16_t for each sample, i.e., each Λ𝑖 , 𝑗 , matches ps2000aSetDataBuffer and

ps2000aGetValues from the C binding and getDataRaw from the Python binding; as a result, they also match

lab. worksheet #1.2.
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2
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3
1

𝑛

𝑙

𝑀0,3 𝑀0,2 𝑀0,1 𝑀0,0

. . .

𝑀0,15 𝑀0,14 𝑀0,13 𝑀0,12

. . .

𝑀𝑛−1,3 𝑀𝑛−1,2 𝑀𝑛−1,1 𝑀𝑛−1,0

. . .

𝑀𝑛−1,15 𝑀𝑛−1,14 𝑀𝑛−1,13 𝑀𝑛−1,12

𝐶0,3 𝐶0,2 𝐶0,1 𝐶0,0

. . .

𝐶0,15 𝐶0,14 𝐶0,13 𝐶0,12

. . .

𝐶𝑛−1,3 𝐶𝑛−1,2 𝐶𝑛−1,1 𝐶𝑛−1,0

. . .

𝐶𝑛−1,15 𝐶𝑛−1,14 𝐶𝑛−1,13 𝐶𝑛−1,12

Λ0,1 Λ0,0

. . .

Λ0,𝑙−1 Λ0,𝑙−2

. . .

Λ𝑛−1,1 Λ𝑛−1,0

. . .

Λ𝑛−1,𝑙−1 Λ𝑛−1,𝑙−2

Figure 3: A diagrammatic description of the (binary) trace data set format used by the attack implementation
${ARCHIVE}/scope/${USER}.elf.
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C Communication between 𝒰 and 𝒯

C.1 Low-level representation

A textual (vs. binary) representation is used for all communication between 𝒰 and 𝒯 . Although a simplification7

intended to limit the assignment scope, doing so allows human users to easily interact with and so test an

implementation of 𝒯 . A short explanation is that the representation is based on octet strings per lab. worksheet

#1.1, with an assumption that the same EOL semantics are adhered to; a long explanation follows, repeated for

completeness.

C.1.1 Representation of byte sequences using (hexadecimal) octet strings

The term octet8 is normally used as a synonym for byte, most often within the context of communication (and

computer networks). Using octet is arguably more precise than byte, in that the former is always 8 bits whereas the

latter can9 differ. A string is a sequence of characters, and so, by analogy, an octet string10 is a sequence of octets:

ignoring some corner cases, it is reasonable to use the term “octet string” as a synonym for “byte sequence”.

To represent a given byte sequence, we use what can be formally termed a (little-endian) length-prefixed,

hexadecimal octet string. However, doing so requires some explanation: each element of that term relates to

a property of the representation, where we define a) little-endian11 to mean, if read left-to-right, the first octet

represents the 0-th element of the source byte sequence and the last octet represents the (𝑛 − 1)-st element of the

source byte sequence, b) length-prefixed12 to mean 𝑛, the length of the source byte sequence, is prepended to the

octet string as a single 8-bit13 length or “header” octet, and c) hexadecimal14 to mean each octet is represented by

using 2 hexadecimal digits. Note that, confusingly, hexadecimal digits within each pair will be big-endian: if read

left-to-right, the most-significant is first. For convenience, we assume the term octet string is a catch-all implying

all such properties from here on.

An example likely makes all of the above much clearer: certainly there is nothing complex involved. Concretely,

consider a 16-element byte sequence

uint8_t x[ 16 ] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }

defined using C. This would be represented as

𝑥̂ = 10:000102030405060708090A0B0C0D0E0F

using a colon to separate the length and value fields:

• the length (LHS of the colon) is the integer 𝑛 = 10(16) = 16(10) , and

• the value (RHS of the colon) is the byte sequence 𝑥 = ⟨00(16) , 01(16) , . . . , 0𝐹(16)⟩ = ⟨0(10) , 1(10) , . . . , 15(10)⟩ ≡ x.
Note that the special-case of an empty byte sequence is valid: now starting with the 0-element byte sequence

uint8_t x[ 0 ] = { }

defined using C, setting 𝑛 to 0 and 𝑥 to an empty byte sequence yields the representation

𝑥̂ = 00:

vs. say an empty or null string, which, in contrast, is an invalid octet string.

7In reality, a binary representation can be more compact and easier to parse; it is more efficient in space and time. There are also disadvantages,

but these properties would often make it more attractive in scenarios such as the example, cf. a real protocol using a smart-card Application

Protocol Data Unit (APDU) standard; see, e.g.,http://en.wikipedia.org/wiki/Smart_card_application_protocol_data_unit.
8http://en.wikipedia.org/wiki/Octet_(computing)
9http://en.wikipedia.org/wiki/Byte, for example, details the fact that the term “byte” can be and has been interpreted to mean a) a

group of 𝑛 bits for 𝑛 < 𝑤 (i.e., smaller than the word size), b) the data type used to represent characters, or c) the (smallest) unit of addressable

data in memory: although POSIX mandates 8-bit bytes, for example, each of these cases permits an alternative definition.

10Note the octet string terminology stems from ASN.1 encoding; see, e.g., http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_
One.

11http://en.wikipedia.org/wiki/Endianness
12http://en.wikipedia.org/wiki/String_(computer_science)
13Although it simplifies the challenge associated with parsing such a representation, note that use of an 8-bit length implies an upper limit

of 255 elements in the associated byte sequence.

14http://en.wikipedia.org/wiki/Hexadecimal

git # b282dbb9 @ 2025-09-03 12

mailto:csdsp@bristol.ac.uk
https://www.cs.bris.ac.uk
https://www.bris.ac.uk
http://en.wikipedia.org/wiki/Smart_card_application_protocol_data_unit
http://en.wikipedia.org/wiki/Octet_(computing)
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One
http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One
http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Hexadecimal


© Daniel Page ⟨csdsp@bristol.ac.uk⟩ CS @ UoB

U T

k̂

cmd = 00(16)

SIZEOF_BLK

SIZEOF_KEY

SIZEOF_RND

Figure 4: Communication protocol for the inspect command.

U T

k̂

cmd = 01(16)

m
r
c

Λ |= power consumption

aes_init(k̂, r)
aes(c,m, k̂, r)

Figure 5: Communication protocol for the encrypt command.

C.1.2 UART communication and EOL semantics

The concept of the End Of Line (EOL) character (aka. newline15) seems trivial, and, in theory, is: in essence it is a

control character we expect to be associated with pressing a return (or enter) key. In practice, however, the control

character, or characters, used will differ based on various factors. The most obvious example is the use of Carriage

Return (CR), i.e., the byte 0𝐷(16) (or C escape character '\r'), and/or Line Feed (LF), i.e., the byte 0𝐴(16) (or C

escape character '\n'), characters. Note that much of the terminology16 stems from (electronic) typewriters. For

example, CR moves the type element (or cursor) to the start of the same line, whereas LF moves the type element

to the same position on the next line; in combination (i.e., CR+LF) realises what we normally consider to be a new

line (or express verbally as “start a new line”).

As such, different EOL semantics are possible: for example a Linux will typically use LF, whereas Windows will

typically use CR+LF. You may have already observed this difference, when extra control characters appear in a text

file (e.g., C source code) first written on a Windows-based platform then transferred to a Linux-based alternative.

The same difference is important when engaging in serial communication, e.g., with a given development board.

Although not complicated, this does need some care. Arguably the easiest, and hence recommended approach is

to use the same EOL semantics as PuTTY:

1. By default, PuTTY emulates a VT100 terminal17. This means pressing the return key will transmit CR.

2. Match those semantics in your implementation. For example, one might read a line of input by consuming

characters until a CR is encountered; at this point, the CR is “eaten” (or discarded) and the line deemed

complete.

3. When receiving, PuTTY can be configured so it injects an implicit LF and/or CR. This can be useful, since

receiving CR without LF, for example, can induce (visually) odd behaviour in the terminal (per a typewriter,

lack of LF produces “overwritten” text).

4. By default the pyserial function readline waits for a LF to mark the EOL, so a CR-based alternative means

taking an alternative approach. Viable approaches include a) writing a bespoke readline replacement or b)

using the TextIOWrapperwrapper, which allows an explicit selection of EOL semantics.

C.2 High-level communication
The high-level communication between 𝒰 and 𝒯 can be described using a general 4-step protocol, namely

1. 𝒰 sends a command to 𝒯 ,

2. 𝒰 sends input (if any) to 𝒯 ,

15http://en.wikipedia.org/wiki/Newline
16See, e.g., http://en.wikipedia.org/wiki/Carriage_return
17http://en.wikipedia.org/wiki/VT100
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3. 𝒯 performs some computation,

4. 𝒯 sends output (if any) to 𝒰 .

where each step constitutes the communication of data represented as an octet string. The protocol is specialised

depending on the command, of which there are two: the commands are described in detail below, noting that

Figure 6 offers a concrete example.

• The inspect command exposes any parameters used by 𝒯 , notably those related to the AES-128 implementation

it uses, to 𝒰 . The associated protocol is illustrated in Figure 4, and can be described as follows:

– 𝒰 sends a command 𝑐𝑚𝑑 = 00(16) (a sequence of 1 byte) to 𝒯 ,

– 𝒯 sends SIZEOF_BLK (a sequence of 1 byte) to 𝒰 ,

– 𝒯 sends SIZEOF_KEY (a sequence of 1 byte) to 𝒰 ,

– 𝒯 sends SIZEOF_RND (a sequence of 1 byte) to 𝒰 .

Note that use of AES-128 means 𝒰 will expect (and so can assume) SIZEOF_BLK = SIZEOF_KEY = 16, whereas

the value of SIZEOF_RND is determined by 𝒯 : the default is SIZEOF_RND = 0.

• The encrypt command instructs 𝒯 to execute an AES-128 encryption operation on behalf of 𝒰 . The associated

protocol is illustrated in Figure 5, and can be described as follows:

– 𝒰 sends a command 𝑐𝑚𝑑 = 01(16) (a sequence of 1 byte) to 𝒯 ,

– 𝒰 sends an AES-128 plaintext 𝑚 (a sequence of SIZEOF_BLK bytes) to 𝒯 ,

– 𝒰 sends some randomness 𝑟 (a sequence of SIZEOF_RND bytes) to 𝒯 ,

– 𝒯 executes the AES implementation, i.e., invokes aes_init(𝑘, 𝑟) then aes(𝑐, 𝑚, 𝑘, 𝑟), using an AES-128 cipher

key 𝑘 to encrypt the plaintext 𝑚 (and thereby compute the associated ciphertext 𝑐),

– 𝒯 sends an AES-128 ciphertext 𝑐 (a sequence of SIZEOF_BLK bytes) to 𝒰 .

The purpose of 𝑟 is essentially to support the implementation of any (randomised) countermeasures, and, as

such, the provision of 𝑟 to 𝒯 by 𝒰 demands some explanation. In reality, it makes no sense for 𝒯 to trust 𝒰
in this way: 𝒰 could be, and in this example scenario is an adversary! It could, for example, act adversarially

by attempting to control (e.g., provide an non-random value for) or use (e.g., tailor an attack to capitalise on

the known value of) 𝑟 somehow. A real 𝒯 would therefore generate 𝑟 internally, via some form of (T)RBG for

example. Doing so would be non-trivial given the platform used, however, which rationalises the simplification

of having 𝒰 provide it instead.

So, keep two facts in mind. First, it is crucial that 𝒰 makes use of the inspect command to recover SIZEOF_RND:
this determines the amount of randomness required by and so provided to 𝒯 . Second, in any security analysis

you can ignore this simplification and assume 𝒯 generates 𝑟 internally: the simplification exists purely to limit

the assignment scope, rather than to reflect reality.
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Figure 6: An example transcript of communication between some 𝒰 and two different de-
vices 𝒯0 and 𝒯1 (which, for convenience of explanation only, use the same cipher key 𝑘 =

⟨𝐷3(16) , 85(16) , 33(16) , 46(16) , 02(16) , 8𝐵(16) , 6𝐸(16) , 24(16) , 86(16) , 62(16) , 𝐸9(16) , 95(16) , 𝐴𝐵(16) , 68(16) , 7𝐸(16) , 25(16)⟩): note
that 𝒯0 has SIZEOF_RND = 0 whereas 𝒯1 has SIZEOF_RND = 16, which is reflected in the 𝑟 subsequently communicated in
each case.
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