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COMS30048 lecture: week #16

▶ Agenda: explore implementation attacks via
1. an “in theory”, i.e., concept-oriented perspective,

1.1 explanation,
1.2 justification,
1.3 formalisation.
and

2. an “in practice”, i.e., example-oriented perspective,
2.1 attacks,
2.2 countermeasures.

▶ Caveat!

∼ 2 hours ⇒ introductory, and (very) selective (versus definitive) coverage.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Applied Cryptology git # b282dbb9 @ 2025-09-03

Notes:

Part 1.1: in theory (1)
Explanation

▶ Scenario:
▶ given the following interaction between an attacker ℰ and a target T

E T
P

G

r ∈ {false, true}

▶ and noting that
▶ the password P has |P| characters in it,
▶ each character in G and P is assumed to be from a known alphabet

A = {‘a’, ‘b’, . . . , ‘z’}
such that |A| = 26,

▶ how can ℰ mount a successful attack, i.e., input a guess G matching P?
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Part 1.1: in theory (2)
Explanation

▶ Idea: brute-force attack (i.e., try every G).

Attack (P = “pencil”)

E T
P

G

r ∈ {false, true}
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Part 1.1: in theory (2)
Explanation

▶ Idea: brute-force attack (i.e., try every G).

Attack (P = “pencil”)

E T
P

G = “aaaaaa”

r = false
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Part 1.1: in theory (2)
Explanation

▶ Idea: brute-force attack (i.e., try every G).

Attack (P = “pencil”)

E T
P

G = “baaaaa”

r = false
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Part 1.1: in theory (2)
Explanation

▶ Idea: brute-force attack (i.e., try every G).

Attack (P = “pencil”)

E T
P

G = “caaaaa”

r = false
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Part 1.1: in theory (2)
Explanation

▶ Idea: brute-force attack (i.e., try every G).

Attack (P = “pencil”)

E T
P

G = “. . . ”

r = false
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Part 1.1: in theory (2)
Explanation

▶ Idea: brute-force attack (i.e., try every G).

Attack (P = “pencil”)

E T
P

G = “zaaaaa”

r = false
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Part 1.1: in theory (2)
Explanation

▶ Idea: brute-force attack (i.e., try every G).

Attack (P = “pencil”)

E T
P

G = “abaaaa”

r = false
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Part 1.1: in theory (2)
Explanation

▶ Idea: brute-force attack (i.e., try every G).

Attack (P = “pencil”)

E T
P

G = “bbaaaa”

r = false
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Part 1.1: in theory (2)
Explanation

▶ Idea: brute-force attack (i.e., try every G).

Attack (P = “pencil”)

E T
P

G = “cbaaaa”

r = false
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Part 1.1: in theory (2)
Explanation

▶ Idea: brute-force attack (i.e., try every G).

Attack (P = “pencil”)

E T
P

G = “. . . ”

r = false
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Part 1.1: in theory (2)
Explanation

▶ Idea: brute-force attack (i.e., try every G).

Attack (P = “pencil”)

E T
P

G = “pencil”

r = true

∴ if we play by the rules then
+ve: we always guess a G = P
−ve: we need quite a lot of guesses, e.g., for a 6-character lower-case password we’d make

266 = 308915776

in the worst-case
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Part 1.1: in theory (2)
Explanation

▶ Idea: dictionary attack (i.e., try common G).

Attack (P = “pencil”, G ∈ D = {“password”, “admin”, “bristolcity”, . . . , “pencil”})

E T
P

G

r ∈ {false, true}
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Part 1.1: in theory (2)
Explanation

▶ Idea: dictionary attack (i.e., try common G).

Attack (P = “pencil”, G ∈ D = {“password”, “admin”, “bristolcity”, . . . , “pencil”})

E T
P

G = “password”

r = false
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Part 1.1: in theory (2)
Explanation

▶ Idea: dictionary attack (i.e., try common G).

Attack (P = “pencil”, G ∈ D = {“password”, “admin”, “bristolcity”, . . . , “pencil”})

E T
P

G = “admin”

r = false
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Part 1.1: in theory (2)
Explanation

▶ Idea: dictionary attack (i.e., try common G).

Attack (P = “pencil”, G ∈ D = {“password”, “admin”, “bristolcity”, . . . , “pencil”})

E T
P

G = “bristolcity”

r = false
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Part 1.1: in theory (2)
Explanation

▶ Idea: dictionary attack (i.e., try common G).

Attack (P = “pencil”, G ∈ D = {“password”, “admin”, “bristolcity”, . . . , “pencil”})

E T
P

G = “. . . ”

r = false
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Part 1.1: in theory (2)
Explanation

▶ Idea: dictionary attack (i.e., try common G).

Attack (P = “pencil”, G ∈ D = {“password”, “admin”, “bristolcity”, . . . , “pencil”})

E T
P

G = “pencil”

r = true

∴ if we play by the rules then
−ve: if P ∉ D, we won’t guess a G = P
+ve: we need fewer guesses, i.e., |D| in the worst-case
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

G

r ∈ {false, true}
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G

r ∈ {false, true}

Λ |= execution latency

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “a”

r = false

1 step

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “aa”

r = false

1 step

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “aaa”

r = false

1 step

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “aaaa”

r = false

1 step

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “aaaaa”

r = false

1 step

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “aaaaaa”

r = false

2 steps

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “aaaaaa”

r = false

2 steps

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “baaaaa”

r = false

2 steps

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “caaaaa”

r = false

2 steps

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “. . . ”

r = false

2 steps

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “paaaaa”

r = false

3 steps

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “paaaaa”

r = false

3 steps

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “pbaaaa”

r = false

3 steps

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “pcaaaa”

r = false

3 steps

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “. . . ”

r = false

3 steps

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “peaaaa”

r = false

4 steps

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “peaaaa”

r = false

4 steps

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “pebaaa”

r = false

4 steps

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “pecaaa”

r = false

4 steps

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “. . . ”

r = false

4 steps

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “penaaa”

r = false

5 steps

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “. . . ”

r = false

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end
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Part 1.1: in theory (2)
Explanation

▶ Idea: side-channel attack.

Attack (P = “pencil”)

E T
P

r =Match(P,G)

G = “pencil”

r = true

7 steps

1 algorithm Match(P,G) begin
2 if |P| ≠ |G| then
3 return false
4 end
5 for i from 0 upto |G| − 1 do
6 if Pi ≠ Gi then
7 return false
8 end
9 end

10 return true
11 end

∴ if we bend the rules a little then
+ve: we always guess a G = P
+ve: we don’t need too many guesses, e.g., for a 6-character lower-case password we’d make

26 · 6 = 156

in the worst-case (plus the few extra to recover |P|)
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Part 1.1: in theory (3)
Explanation

▶ Scenario:
▶ given the following interaction between an attacker ℰ and a target T

E T
(P, c, l)

G

r ∈ {false, true}

▶ and noting that
▶ the Personal Identification Number (PIN) P has |P| = 4 digits in it,
▶ each digit in G and P is assumed to be from a known alphabet

A = {0, 1, . . . , 9}
such that |A| = 10,

▶ the counter c is incremented after each (successive) incorrect guess; when c exceeds a limit l = 3, the
target becomes “locked”,

▶ how can ℰ mount a successful attack, i.e., input a guess G matching P?
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Part 1.1: in theory (4)
Explanation

▶ Idea:

Attack (P = 1234)

E T
(P, c, l)

G

r ∈ {false, true}
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Part 1.1: in theory (4)
Explanation

▶ Idea:

Attack (P = 1234)

E T
(P, c, l)

G

r ∈ {false, true}

∴ similar attacks as before apply, namely
1. brute-force attack:
+ve: 104 = 10000 possible PINs is not many
−ve: the counter limits how viable this approach is
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Part 1.1: in theory (4)
Explanation

▶ Idea:

Attack (P = 1234)

E T
(P, c, l)

G

r ∈ {false, true}

∴ similar attacks as before apply, namely
2. dictionary attack:
+ve: reasoning re. common passwords still applies to PINs (e.g., a birthday)
−ve: the counter limits how viable this approach is

© Daniel Page 〈csdsp@bristol.ac.uk〉
Applied Cryptology git # b282dbb9 @ 2025-09-03

Notes:



Part 1.1: in theory (4)
Explanation

▶ Idea:

Attack (P = 1234)

E T
(P, c, l)

r = Check(P,G)

G

r ∈ {false, true}

Λ |= execution latency

1 algorithm Check(P,G) begin
2 if c ≥ l then
3 return false
4 end
5 if P ≠ G then
6 c← c + 1
7 return false
8 end
9 c← 0

10 return true
11 end

∴ similar attacks as before apply, namely
3. side-channel attack:
+ve: we can still measure execution time of Check
−ve: comparison of P and G no longer has data-dependent execution time
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Part 1.1: in theory (4)
Explanation

▶ Idea:

Attack (P = 1234)

E T S
(P, c, l)

r = Check(G)

G

r ∈ {false, true}

Λ |= bus activity

∆ |= clock glitch, laser pulse
1 algorithm Check(G) begin
2 if Load(c) ≥ Load(l) then
3 return false
4 end
5 if Load(P) ≠ G then
6 Store(c, Load(c) + 1)
7 return false
8 end
9 Store(c, 0)

10 return true
11 end

but consider some more implementation detail:
1. we might consider different indirect inputs and outputs,
2. use of an external, non-volatile storage (e.g., SIM card) implies that for x← y we have

x on LHS ❀ store operation
y on RHS ❀ load operation

}
❀ Store(x, Load(y))
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Part 1.1: in theory (4)
Explanation

▶ Idea: fault induction attack.

Attack (P = 1234)

E T S
(P, c, l)

r = Check(G)

G

r ∈ {false, true}

Λ |= bus activity

∆ |= clock glitch, laser pulse
1 algorithm Check(G) begin
2 if Load(c) ≥ Load(l) then
3 return false
4 end
5 if Load(P) ≠ G then
6 Store(c, Load(c) + 1)
7 return false
8 end
9 Store(c, 0)

10 return true
11 end

∴ we could consider
1. disrupting state, e.g.
▶ corrupt (or randomise) content stored by S,
▶ if l is an n-bit integer, all 2n − l values of a random l′ mean more guesses.
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Part 1.1: in theory (4)
Explanation

▶ Idea: fault induction attack.

Attack (P = 1234)

E T S
(P, c, l)

r = Check(G)

G

r ∈ {false, true}

Λ |= bus activity

∆ |= clock glitch, laser pulse
1 algorithm Check(G) begin
2 if Load(c) ≥ Load(l) then
3 return false
4 end
5 if Load(P) ≠ G then
6 Store(c, Load(c) + 1)
7 return false
8 end
9 Store(c, 0)

10 return true
11 end

∴ we could consider
2. disrupting execution, e.g.
▶ control the power supply and probe the command bus,
▶ when a command of the form Store(x, y) is detected, we know it relates to either

Line #6 : we know P ≠ G ❀ disconnect the power, and prevent update to c
Line #9 : we know P = G ❀ do nothing
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Part 1.2: in theory (1)
Justification: Λ = power consumption

▶ Example: consider a scenario

R

clk

Vdd

x

r

r = f (x)

whereby
▶ Ohm’s Law tells us that, i.e., V = IR, so
▶ we can acquire a power consumption trace

Λ = 〈Λ0 ,Λ1 , . . . ,Λl−1〉
i.e., an l-element sequence of instantaneous samples during execution of f .
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Part 1.2: in theory (1)
Justification: Λ = power consumption

▶ Claim: Λ may be
▶ computation-dependent, i.e., depends on definition and implementation of f , and/or
▶ data-dependent, i.e., depends on x.
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Part 1.2: in theory (1)
Justification: Λ = power consumption

▶ Why?
▶ From a hardware perspective

rx

Vdd

Vss

power consumption will stem from
1. static consumption, and
2. dynamic consumption.

▶ Therefore, different switching behaviour⇒ different power consumption, i.e.,
if x = 0, setting x← 0 ⇒ static only ⇒ low(er) power consumption
if x = 0, setting x← 1 ⇒ static plus dynamic ⇒ high(er) power consumption
if x = 1, setting x← 0 ⇒ static plus dynamic ⇒ high(er) power consumption
if x = 1, setting x← 1 ⇒ static only ⇒ low(er) power consumption

which is data-dependent, and not necessarily in a symmetric manner.
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Part 1.2: in theory (1)
Justification: Λ = power consumption

▶ Why?
▶ From a software perspective

CPU MEM
(data and instruction)

control signals

data bus

address bus

power consumption will stem from
1. computation,
2. communication (i.e., use of buses), and
3. storage (e.g., registers, memory),
4. ...
all of which are data-dependent.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Applied Cryptology git # b282dbb9 @ 2025-09-03

Notes:



Part 1.2: in theory (2)
Justification: Λ = execution latency

▶ Example: consider a scenario

clk

Vdd

x

r

r = f (x)

whereby
▶ we measure

Λx = time when x is transmitted
Λr = time when r is received

so that
▶ Λ = Λr −Λx approximates the execution latency of f .

© Daniel Page 〈csdsp@bristol.ac.uk〉
Applied Cryptology git # b282dbb9 @ 2025-09-03

Notes:

Part 1.2: in theory (2)
Justification: Λ = execution latency

▶ Claim: Λ may be
▶ computation-dependent, i.e., depends on definition and implementation of f , and/or
▶ data-dependent, i.e., depends on x.
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Part 1.2: in theory (2)
Justification: Λ = execution latency

▶ Why? for example, in each of

1.
· · ·
if GPR[x] = 0 then PC← done
stmt

done : · · ·




a. GPR[x] = 0 so stmt is not executed
b. GPR[x] = 1 so stmt is executed

2.
· · ·
GPR[r] ← MEM[GPR[x]]
· · ·

}
a. MEM[GPR[x]] is resident in cache
b. MEM[GPR[x]] is not resident in cache

3.
· · ·
GPR[r] ← GPR[x] × GPR[y]
· · ·

}
a. GPR[x] has small magnitude
b. GPR[x] has large magnitude

it could be the case that

a. ❀ low(er) execution latency
b. ❀ high(er) execution latency
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Part 1.2: in theory (3)
Justification: Δ = clock glitch

▶ Example: consider a scenario

clk

Vdd

x

r

r = f (x)

whereby a controlled “glitch”, i.e.,
∆δ ∆ρ ≪ ρ

ρ

such that
▶ � is the clock period,
▶ Δ� is the period of the glitch,
▶ Δ� is the offset of the glitch.
can be caused in the clock signal clk.
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Part 1.2: in theory (3)
Justification: Δ = clock glitch

▶ Claim: given
· · ·
if GPR[x] = 0 then PC← done
stmt

done : · · ·
Δ might allow one to skip the branch instruction, i.e., always execute stmt.
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Part 1.2: in theory (3)
Justification: Δ = clock glitch

▶ Why?
▶ recall that

Register Register

clk clkcritical path

where, if � is close to the critical path, the glitch is likely shorter,
▶ therefore, it is plausible such a glitch can prevent complete execution of an instruction, e.g.,
▶ GPR[x] = 0 is not computed in time,
▶ PC is not updated in time,
▶ ...
meaning that instruction is skipped.
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Part 1.2: in theory (4)
Justification: Δ = laser pulse

▶ Example: consider a scenario

clk

Vdd

x

r

r = f (x)

whereby a focused laser pulse can be aimed at the target device.
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Part 1.2: in theory (4)
Justification: Δ = laser pulse

▶ Claim: Δ might allow one to toggle the state of
wl

bl

¬bl

Vdd

Vss

i.e., an SRAM-based memory cell (within some larger device).
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Part 1.2: in theory (4)
Justification: Δ = laser pulse

▶ Why?
▶ after decapsulation

❀

at least the top layer of the device is exposed,
▶ the laser pulse can ionise regions of semi-conductor material,
▶ doing so can be used to activate a transistor,
▶ if the bottom-left transistor can be activated (for some short period), this will toggle Q.

https://www.cl.cam.ac.uk/~sps32/ches02-optofault.pdf
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Part 1.3: in theory (1)
Formalisation: attacks

Definition

A cryptanalytic attack focuses on exploiting a vulnerability in the abstract, on-paper specification of a target. In contrast,
an implementation attack focuses on exploiting a vulnerability in the concrete, in-practice implementation of a target by
1) actively influencing and/or 2) passively observing behaviour by it.
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Part 1.3: in theory (1)
Formalisation: attacks

Definition

Within the following scenario

E T
direct input

direct output

indirect input: ∆

indirect output: Λ

computation

ℰ is said to

observe T via Λ ❀ side-channel attack
influence T via Δ ❀ fault induction attack
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Part 1.3: in theory (1)
Formalisation: attacks

Definition

Within the following scenario

E TE
direct input

direct output

indirect input: ∆

indirect output: Λ

computation

ℰ is said to

observe T via Λ ❀ side-channel attack
influence T via Δ ❀ fault induction attack
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Part 1.3: in theory (2)
Formalisation: attacks

Definition

ℰ wants to realise some sort of attack goal, e.g.,

1. recovery of state from the target
2. manipulation of state in the target
3. manipulation of behaviour by the target

measured relative to both efficacy and efficiency.
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Part 1.3: in theory (2)
Formalisation: attacks

Definition

ℰ employs an attack strategy, which might be (generically) characterised as, e.g.,

1. profiled versus non-profiled
2. adaptive versus non-adaptive
3. differential versus non-differential

which also captures features of standard cryptanalysis, including known plaintext, chosen plaintext, etc.

Definition

ℰ operates an attack process: typically this involves

1. an offline pre-interaction phase : characterise, calibrate, pre-compute, etc.
2. an online interaction phase : use input to acquire output
3. an offline post-interaction phase : use input and output to realise goal
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Part 1.3: in theory (2)
Formalisation: attacks

Definition

ℰ employs an attack mechanism, which can be (generically) characterised as, e.g.,

1. software versus hardware
2. generic versus specific
3. local versus remote
4. contact-based versus contact-less
5. invasive versus non-invasive
6. destructive versus non-destructive
7. synchronous versus non-synchronous
8. deterministic versus non-deterministic
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Part 1.3: in theory (3)
Formalisation: attacks

▶ Note that:
▶ a differential cryptanalytic attack [5]

T

T

analysis

k

k

x0

x1

r0

r1

result

(roughly) analyses how an input difference affects the output difference.
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Part 1.3: in theory (3)
Formalisation: attacks

▶ Note that:
▶ a differential fault induction attack

T

T

analysis

k

k

x

∆, x

r

r̄

result

(typically) analyses how a fault affects the output difference.
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Part 1.3: in theory (3)
Formalisation: attacks

▶ Note that:
▶ a differential side-channel attack

T

M

analysis

k

x

k̃, x

Λ

Λ̃

result

is (typically) such that
▶ ℳ is a model (or simulation) of T ,
▶ k̃ is a hypothesis about (part of) k,
▶ Λ̃ is the hypothetical leakage (cf. the actual leakage Λ),
and so

non-differential ⇒ 1 interaction ' analysis within single Λ
differential ⇒ n interactions ' analysis between many Λ
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Part 1.3: in theory (4)
Formalisation: attacks

Definition

The information leaked via some side-channel is modelled asℳ(·) =ℳd(·) +ℳn , i.e., as the sum of 1) data-dependent
signal (of interest) and 2) noise components.

Definition

Let V denote a set of values some (intermediate) variable can take, and L denote a set of leakage values.
▶ A value-based leakage model is such thatℳd : V→ L, meaning the leakage value depends on the current value of

some variable.
▶ A transition-based leakage model is such thatℳd : V × V→ L, meaning the leakage value depends on the previous

and current value of some variable (i.e., the transition from the former to the latter).
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Part 1.3: in theory (4)
Formalisation: attacks

Definition

The information leaked via some side-channel is modelled asℳ(·) =ℳd(·) +ℳn , i.e., as the sum of 1) data-dependent
signal (of interest) and 2) noise components.

Definition

Let V denote a set of values some (intermediate) variable can take, and L denote a set of leakage values.
▶ A value-based leakage model is such thatℳd : V→ L, meaning the leakage value depends on the current value of

some variable.
▶ A transition-based leakage model is such thatℳd : V × V→ L, meaning the leakage value depends on the previous

and current value of some variable (i.e., the transition from the former to the latter).

▶ Example:

1. Hamming weight ⇒ value-based leakage model
2. Hamming distance ⇒ transition-based leakage model
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Part 1.3: in theory (5)
Formalisation: attacks

Definition

A fault model is an abstraction of the fault induction mechanism, i.e., it separates fault induction from fault exploitation.
it captures features such as

1. timing ⇒ precise control, imprecise control, no control
2. location ⇒ precise control, imprecise control, no control
3. duration ⇒ transient, permanent, destructive
4. plurality ⇒ single fault; multiple, i.e., n faults
5. granularity ⇒ 1 bit, n bits, variable
6. effect ⇒ set-to-0/1, stuck-at-0/1, flip, randomise, variable
7. implication ⇒ input data, computation on data, storage of data, execution of instructions
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Part 1.3: in theory (6)
Formalisation: countermeasures

Definition

T might employ a countermeasure strategy, which can be (generically) characterised as, e.g.,

1. implicit versus explicit
2. detection versus prevention

and typically forms a layered approach, i.e., a suite of countermeasures versus a single “silver-bullet” or panacea.
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Part 1.3: in theory (6)
Formalisation: countermeasures

Definition

T might design an abstract countermeasure mechanism, within (at least) the following levels
1. protocol,

2. specification,

3. implementation, i.e.,
▶ software, and/or
▶ hardware.

Definition

T might implement a concrete countermeasure mechanism, which can be (generically) characterised as, e.g.,

1. software versus hardware
2. generic versus specific
3. selective versus non-selective
4. proactive versus reactive
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Part 1.3: in theory (7)
Formalisation: countermeasures

Definition

Countermeasures against implementation attacks based on information leakage often fall into the following classes:
1. hiding ' decrease SNR, or

2. masking ' randomised redundant representation.
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Part 1.3: in theory (8)
Formalisation: countermeasures

Definition

Among a large design space of countermeasures, instances that focus on hiding (typically) fall into the following sub-
classes:
1. increase noise, e.g., make Λ random:

a. spatial displacement, i.e., where the operation is computed,
b. temporal displacement, i.e., when the operation is computed, which can be further divided into
▶ padding (or skewing), and
▶ reordering (or shuffling),

c. diversified computation, i.e., how the operation is computed,
d. obfuscated computation, e.g., whether the operation computed is real or fake (or a dummy).

2. decrease signal, e.g., make Λ constant:
a. data-oblivious (or “constant-time”) computation of the operation.
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Part 1.3: in theory (9)
Formalisation: countermeasures

Definition

Among a large design space of countermeasures, instances that focus on masking (typically) fall into the following sub-
classes:
1. Boolean masking (or additive masking):

x ↦→ x̂ = 〈x̂[0], x̂[1], . . . , x̂[d]〉
such that

x = x̂[0] ⊕ x̂[1] ⊕ · · · ⊕ x̂[d],
and

2. arithmetic masking (or multiplicative masking):

x ↦→ x̂ = 〈x̂[0], x̂[1], . . . , x̂[d]〉
such that

x = x̂[0] + x̂[1] + · · · + x̂[d] (mod 2w).
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Part 1.3: in theory (10)
Formalisation: countermeasures

Definition

Countermeasures against implementation attacks based on fault induction often fall into the following classes:
1. induction-oriented, e.g.,
▶ shielding,
▶ sensing,
▶ hiding,

and

2. exploitation-oriented, e.g.,
▶ duplication,
▶ infection,
▶ checksum.
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Part 1.3: in theory (11)
Formalisation: countermeasures

Definition

Among a large design space of countermeasures, instances that focus on exploitation are (typically) parameterised by
1. type of duplication, e.g.,
▶ temporal duplication: n computations of f (x) in 1 location,
▶ spatial duplication: 1 computation of f (x) in n locations,

2. degree of duplication,

3. type of check, e.g.,

▶ direct check: f (x) ?
= f (x),

▶ linearity check: f (−x) ?
= −f (x),

▶ inversion check: f−1(f (x)) ?
= x,

4. frequency of check, and

5. type of action, e.g.,
▶ preventative action: f (x) ≠ f (x) ❀ ⊥,
▶ infective action: f (x) ≠ f (x) ❀ $,

and yield an outcome with an associated detection probability.
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Conclusions

▶ Take away points: implementation attacks
1. are a potent threat, forming part of a complex attack landscape,
2. extend well beyond cryptographic targets, posing a more general (cyber-)security challenge,
3. present significant challenges, e.g., per
▶ “attacks only get better” principle,
▶ “no free lunch” principle,
▶ need to consider multiple layers of abstraction,
such that “raising the bar” is of use if not ideal,

4. demand care re. evaluation and/or certification (e.g., FIPS 140-3 [9]) requirements.
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▶ S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer, 2007.
▶ P.C. Kocher et al. “Introduction to differential power analysis”. In: Journal of Cryptographic Engineering (JCEN) 1.1 (2011), pp. 5–27.
▶ M. Joye and M. Tunstall, eds. Fault Analysis in Cryptography. Information Security and Cryptography. Springer, 2012.
▶ H. Bar-El et al. “The Sorcerer’s Apprentice Guide to Fault Attacks”. In: Proceedings of the IEEE 94.2 (2006), pp. 370–382.
▶ A. Barenghi et al. “Fault Injection Attacks on Cryptographic Devices: Theory, Practice, and Countermeasures”. In: Proceedings of

the IEEE 100.11 (2012), pp. 3056–3076.
▶ D. Karaklajić, J.-M. Schmidt, and I. Verbauwhede. “Hardware Designer’s Guide to Fault Attacks”. In: IEEE Transactions on Very

Large Scale Integration (VLSI) Systems 21.12 (2013), pp. 2295–2306.
▶ B. Yuce, P. Schaumont, and M. Witteman. “Fault Attacks on Secure Embedded Software: Threats, Design, and Evaluation”. In:

Journal of Hardware and Systems Security 2.2 (2018), pp. 111–130.
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