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COMS30048 lecture: week #19

▶ Agenda: explore (pseudo-)random bit generation, via
1. an “in theory”, i.e., design-oriented perspective, and
2. an “in practice”, i.e., implementation-oriented perspective.

▶ Caveat!

∼ 2 hours ⇒ introductory, and (very) selective (versus definitive) coverage.
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COMS30048 lecture: week #19

▶ Bad news: in theory, we need to consider each of
1. random bit, i.e., an

x ∈ {0, 1}
which is random,

2. random bit sequence, i.e., an
x ∈ {0, 1}n

which is random (e.g., for an AES cipher key k),
3. random number, i.e., an

x ∈ {0, 1, . . . , n − 1}
which is random (e.g., for an RSA modulus N = p · q).
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COMS30048 lecture: week #19

▶ Good news: in practice, we don’t because
▶ 1. ⇒ 2.

• concatenate n random bits together, i.e.,
x = x0 ‖ x1 ‖ · · · ‖ xn−1 ,

• produce x as output.
▶ 2. ⇒ 3.
▶ if n = 2n′ for some integer n′, then

• generate an n′-bit sequence x′ per the above,
• interpret x′ as the integer

x =
i<n′∑
i=0

x′i ,

• produce x as output.

▶ if n ≠ 2n′ for any integer n′, then
• let n′ be the smallest integer such that 2n′ > n,
• generate an n′-bit sequence x′ per the above,
• interpret x′ as the integer

x =
i<n′∑
i=0

x′i ,

• if x ≥ n, reject (or discard) it and try again; otherwise, if x < n, produce x as output.

∴ we can focus on random bits (and ignore numbers).

© Daniel Page 〈csdsp@bristol.ac.uk〉
Applied Cryptology git # b282dbb9 @ 2025-09-03

Notes:

Part 1: in theory (1)
Entropy

https://xkcd.com/936
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Part 1: in theory (2)
Entropy

Definition

The concept of entropy is a measure of uncertainty with respect to a random variable. Less formally, the entropy of some
x relates to how much you know (resp. do not know) about x: if some x could be one of 2n possible values, it is said to
have n bits of entropy. In addition, we say
1. an x with n > 0 bits of entropy is termed entropic, and

2. if an entropic x has negligible probability of having been generated before, it is deemed fresh entropy.
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Part 1: in theory (2)
Entropy

Definition

The concept of entropy is a measure of uncertainty with respect to a random variable. Less formally, the entropy of some
x relates to how much you know (resp. do not know) about x: if some x could be one of 2n possible values, it is said to
have n bits of entropy. In addition, we say
1. an x with n > 0 bits of entropy is termed entropic, and

2. if an entropic x has negligible probability of having been generated before, it is deemed fresh entropy.

▶ Example: given a 32-bit sequence x,
▶ if x is random, then it has 32 bits of entropy,
▶ if x0 = 0 and x1 = 1 (i.e., the two LSBs of x are known), then it has 30 bits of entropy,
▶ if HW(x) = 14 (i.e., x has Hamming weight 14), then it has ∼ 29 bits of entropy.
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Part 1: in theory (3)
Entropy

Definition

A noise source is a non-deterministic, physical process which provides a means of generating an unconditioned (or raw)
entropic output.
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Part 1: in theory (3)
Entropy

Definition

A noise source is a non-deterministic, physical process which provides a means of generating an unconditioned (or raw)
entropic output.

▶ Example (see [8, Section 5.2], or [19, Section 3]):
1. hardware-based:
▶ time between emission of (e.g., 
 or �) particles during radioactive decay,
▶ thermal (or Johnson-Nyquist) noise stemming from a resistor or capacitor,
▶ frequency instability (or “jitter”) of a ring oscillator,
▶ fluctuation of hard disk seek-time and access latency,
▶ noise resulting from a disconnected audio input (or ADC),
▶ ...

2. software-based:
▶ a high resolution system clock or cycle counter,
▶ elapsed time between user input (e.g., key-presses or mouse movement),
▶ content of input/output buffers (e.g., disk caches),
▶ operating system state (e.g., load) or events (e.g., network activity),
▶ ...
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Part 1: in theory (4)
Entropy

Definition

An entropy source is a construction, based on a noise source, which provides a means of generating a conditioned entropic
output.

Model [21, Section 2.2]

Noise
source Digitisation Post-processing Conditioning

Health
test

GetEntropy

HealthTest

GetNoise
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Part 1: in theory (5)
Randomness

Definition

Per [20, Section 4], an ideal random bit-sequence

x = 〈x0 , x1 , . . . xn−1〉
will exhibit the following properties

1. unpredictable ⇒ the probability of guessing xi is close to 1
2

2. unbiased ⇒ xi = 0 and xi = 1 occur with equal probability
3. uncorrelated ⇒ xi and xj are statistically independent

and contain n bits of entropy.
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Part 1: in theory (5)
Randomness

Definition

Per [20, Section 4], a pseudo-random bit-sequence

x = 〈x0 , x1 , . . . xn−1〉
“looks random”, i.e., exhibits the same properties as an ideal random sequence, but is generated algorithmically and thus
likely contains less than n bits of entropy.
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Part 1: in theory (6)
(Pseudo-)random bit generators

Definition

A Random Bit Generator (RBG) can be used to generates a sequence of random bits. There are two more specific cases,
namely

True Random Bit Generator (TRBG) ≡ Non-deterministic Random Bit Generator (NRBG)
Pseudo-Random Bit Generator (PRBG) ≡ Deterministic Random Bit Generator (DRBG)

with the right-hand terms preferred by [20]. Based on this, it is reasonable to say that

TRBG ≡ NRBG ' entropy source.
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Part 1: in theory (6)
(Pseudo-)random bit generators

Definition

A Random Bit Generator (RBG) can be used to generates a sequence of random bits. There are two more specific cases,
namely

True Random Bit Generator (TRBG) ≡ Non-deterministic Random Bit Generator (NRBG)
Pseudo-Random Bit Generator (PRBG) ≡ Deterministic Random Bit Generator (DRBG)

with the right-hand terms preferred by [20]. Based on this, it is reasonable to say that

TRBG ≡ NRBG ' entropy source.

▶ Idea: informally at least,

TRBG
▶ unpredictable,
▶ hardware-based,
▶ may have high latency,
▶ can be high quality.

PRBG
▶ predictable,
▶ software-based,
▶ can have low latency,
▶ may be low quality.

∴ we’ll consider a hybrid construction.
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Part 1: in theory (7)
(Pseudo-)random bit generators

Definition

Consider a deterministic, polynomial-time algorithm G. Given a seed � ∈ {0, 1}n� as input, it produces G(�) ∈ {0, 1}nr as
output where nr = f (n�) for some polynomial function f . As such, we call G a Pseudo-Random Generator (PRG) if
1. for every n� it holds that nr > n� , and

2. for all polynomial-time destinguishers D, there exists a negligible function negl such that

| Pr[D(G(�)) = 1] − Pr[D(r) = 1] | ≤ negl(n�)
where � and r are chosen uniformly at random from {0, 1}n� and {0, 1}nr respectively.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Applied Cryptology git # b282dbb9 @ 2025-09-03

Notes:



Part 1: in theory (7)
(Pseudo-)random bit generators

Syntax

Having fixed the (finite) space S of states, a concrete Pseudo-Random Generator (PRG) is defined by
1. an algorithm Seed : Z × {0, 1}n� → S that
▶ accepts a security parameter and an n� -bit seed as input, and
▶ produces an initial state as output

2. an algorithm Update : S → S × {0, 1}nb that
▶ accepts a current state as input, and
▶ produces a next state and an nb-bit block of pseudo-random bits as output.
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Part 1: in theory (8)
(Pseudo-)random bit generators

▶ Translation: assuming nr = l · nb for some l, then

1. use TRBG ❀

{
generate a sufficiently large,
high-entropy seed �

2. use PRBG ❀




�[0] ← Seed(�, �)
�[1] , b[0] ← Update(�[0])
�[2] , b[1] ← Update(�[1])

...
�[i + 1] , b[i] ← Update(�[i])

...

meaning that
b = b[0]︸︷︷︸

nb-bits

‖ b[1]︸︷︷︸
nb-bits

‖ · · · ‖ b[l − 1]︸  ︷︷  ︸
nb-bits︸                                        ︷︷                                        ︸

l · nb = nr-bits

≡ G(�)

provides the output required per the PRG definition.
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Part 1: in theory (9)
(Pseudo-)random bit generators

https://xkcd.com/221
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Part 1: in theory (10)
(Pseudo-)random bit generators

▶ Problem: we need to assess the quality of our construction (and output from it).
▶ Solution:

1. for some instanciations, we can develop a proof,
2. for some instanciations, we must apply
▶ online (e.g., continuously or periodically during use), and/or
▶ offline (i.e., once before use)
statistical tests (see, e.g., [8, Section 5.4]) to sample outputs; note that
▶ the intention is to detect weakness (meaning a PRBG can only be rejected by a test),
▶ the conclusion is itself probabilistic, meaning use of multiple tests amplifies confidence.
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Part 1: in theory (11)
(Pseudo-)random bit generators

Definition

A PRBG is said to pass all statistical tests iff. no polynomial-time algorithm can, with probability greater than 1
2 ,

distinguish the output from a ideal random bit-sequence of the same length.

Definition

A PRBG is said to pass the next-bit test iff. no polynomial-time algorithm can, with probability greater than 1
2 , predict

the (n + 1)-th bit of output given the previous n bits.

Theorem (Yao [14])

If a PRBG passes the next-bit test, it will pass all statistical tests.
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Part 1: in theory (12)
(Pseudo-)random bit generators

Definition

Per [20, Section 4], imagine an attacker compromises the PRBG state at time t: we term a PRBG back-tracking resistant
(resp. prediction resistant) if said attacker cannot distinguish between an (unseen) PRBG output at time t′ < t (resp.
t′ > t) and an ideal random bit-sequence of the same length.

Definition

A Cryptographically Secure Pseudo-Random Bit Generator (CS-PRBG) is simple a PRBG whose properties make it
suitable for use within a cryptographic use-case. A CS-PRBG should (at least)
1. be a PRBG of sufficient quality, i.e., pass the next-bit test, and

2. resist state compromise attacks, i.e., be back-tracking and prediction resistant.
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Part 1: in theory (13)
(Pseudo-)random bit generators

▶ Problem: our construction is deterministic, so
▶ the same � will yield the same �[0] and hence any �[j] for j > 0,
▶ recovery of � allows computation of any �[j] for j ≥ 0,
▶ recovery of �[i] allows computation of any �[j] for j > i,
▶ the set S is finite, so per

ς θ[0] θ[1] · · · θ[t − 1] θ[t] θ[t + 1] · · · θ[t+c−1]
Seed Update Update Update Update Update Update Update

Update

tail cycle

period

the state, and thus also the output, will eventually cycle.
▶ Solution:

1. select parameters that mitigate such issues, and
2. introduce selected non-determinism.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Applied Cryptology git # b282dbb9 @ 2025-09-03

Notes:

Part 1: in theory (14)
(Pseudo-)random bit generators

Definition ([20, Figure 1])

θ[i]Seed

Update

θ[0]

θ[i]

θ[i + 1]

b[i]

entropy
source
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Part 1: in theory (14)
(Pseudo-)random bit generators

Definition ([20, Figure 1])

θ[i]Seed

Update

θ[0]

θ[i]

θ[i + 1]

b[i]

Wipe

Reseed

Test

θ[i + 1] =⊥

θ[i]

θ[i + 1]

θ[i]

θ[i + 1] ∈ {θ[i],⊥}

q[i] ∈ {false, true}

additional
input

additional
input

entropy
source

nonce

personalisation
input

© Daniel Page 〈csdsp@bristol.ac.uk〉
Applied Cryptology git # b282dbb9 @ 2025-09-03

Notes:

Part 2: in practice (1)

▶ (Sub-)agenda: explain selected, example designs, organised into 4 classes, i.e.,
1. “classic”,
2. software-oriented,
3. hardware-oriented,
4. system-oriented,
with a focus on design properties and trade-offs between them, e.g.,
▶ efficiency,
▶ security, i.e., quality of (pseudo-)random output,
▶ interface,
▶ assumptions,
▶ ...
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Part 2: in practice (2)
Class #1: “classic”

▶ Design: Linear-Feedback Shift Registers (LFSR) [5, 6].

Algorithm (type-1, or “external” or Fibonacci, LFSR)

θn−1 θn−2 θ1 θ0 outputinput

T 1 T 2 T n
−1

T n

Algorithm (type-2, or “internal” or Galois, LFSR)

θn−1 θn−2 θ1 θ0 outputinput

T
n

T
n−

1

T
n−

2

T
1
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Part 2: in practice (3)
Class #2: software-oriented

▶ Design: Blum-Blum-Shub (BBS) [10].

Algorithm (BBS.Seed)

Input: A security parameter �, and a seed �
Output: An initial state �[0]
Use entropy provided by � to perform the following steps:
1. Select two random (�/2)-bit primes p and q such that p ≡ q ≡ 3 (mod 4), and compute N = p · q.

2. Select a random s ∈ {0, 1, . . . ,N − 1} such that gcd(s,N) = 1.

3. Compute s[0] = s2 (mod N).
4. Return �[0] = (N, s[0]).
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Part 2: in practice (3)
Class #2: software-oriented

▶ Design: Blum-Blum-Shub (BBS) [10].

Algorithm (BBS.Update)

Input: A current state �[i] = (N, s[i])
Output: A next state �[i + 1], and nb = 1 bit pseudo-random output b[i]

1. Compute s[i + 1] = s[i]2 (mod N).
2. Let b[i] = s[i + 1] (mod 2), i.e., b[i] = LSB(s[i + 1]).
3. Return �[i + 1] = (N, s[i + 1]) and b[i].
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Part 2: in practice (4)
Class #2: software-oriented

▶ Design: ANSI X9.31 [18, Appendix A.2.4].

Algorithm (X9.31.Seed)

Input: A security parameter �, and a seed �
Output: An initial state �[0]
1. Use � to select a block cipher with an nk-bit key size and nb-bit block size, e.g.,

3DES ❀ nb = 64, nk = 192
AES-128 ❀ nb = 128, nk = 128
AES-192 ❀ nb = 128, nk = 192
AES-256 ❀ nb = 128, nk = 256

2. Use entropy provided by � to derive an nk-bit cipher key k (or pre-select a k for the PRBG).

3. Use entropy provided by � to derive an nb-bit block s[0].
4. Return �[0] = (k, s[0]).
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• Kelsey et al. [13, Section 3.1] critique this design, or at least a less-general precursor named X9.17. The crux of their argument is that an
attacker which recovers the block cipher key can recover the PRNG state given sample output (by guessing the timestamp, then
decrypting). You could argue recovering the key is analogous to recovering the state, so maybe this is catastrophic by definition, but,
either way, it should be clear that protecting both is vital.



Part 2: in practice (4)
Class #2: software-oriented

▶ Design: ANSI X9.31 [18, Appendix A.2.4].

Algorithm (X9.31.Update)

Input: A current state �[i] = (k, s[i])
Output: A next state �[i + 1], and nb-bit pseudo-random output b[i]

1. Compute t′ = Enc(k, t), where t is a nb-bit representation of the current time.

2. Compute b[i] = Enc(k, t′ ⊕ s[i]).
3. Compute s[i + 1] = Enc(k, t′ ⊕ b[i]).
4. Return �[i + 1] = (k, s[i + 1]) and b[i].
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• Kelsey et al. [13, Section 3.1] critique this design, or at least a less-general precursor named X9.17. The crux of their argument is that an
attacker which recovers the block cipher key can recover the PRNG state given sample output (by guessing the timestamp, then
decrypting). You could argue recovering the key is analogous to recovering the state, so maybe this is catastrophic by definition, but,
either way, it should be clear that protecting both is vital.

Part 2: in practice (5)
Class #2: software-oriented

▶ Design: NIST CTR_DRBG [20, Section 10.2.1].

Algorithm (CTR_DRBG.Update )

https://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
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Part 2: in practice (5)
Class #2: software-oriented

▶ Design: NIST CTR_DRBG [20, Section 10.2.1].

Algorithm (CTR_DRBG.Instantiate )

https://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
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Part 2: in practice (5)
Class #2: software-oriented

▶ Design: NIST CTR_DRBG [20, Section 10.2.1].

Algorithm (CTR_DRBG.Generate )

 

Key V
reseed

counter
...

State

Block
Encrypt

Iterate

Bi

Pseudorandom bits

...B0 || ... || Bi-1                          

+

1

https://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
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Part 2: in practice (5)
Class #2: software-oriented

▶ Design: NIST CTR_DRBG [20, Section 10.2.1].

Algorithm (CTR_DRBG.Reseed)

https://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
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Part 2: in practice (6)
Class #3: hardware-oriented

▶ Design: Intel Secure Key [16].

Algorithm (RdRand entropy source)

’

https://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.pdf
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• The entropy source diagram is for one cell, many of which are distributed in and around the associated micro-processor core. The
TRNG diagram uses somewhat generic blocks: in more detail
– the conditioning step uses a MAC, namely AES-CBC-MAC [16, Section 3.2.2],
– the output generation and reseeding step uses a block cipher, namely AES-CTR [16, Section 3.2.3],
– the entropy source outputs bits at a rate of ∼ 3Gbit s−1 [16, Section 3.2.1],
– the TRNG outputs bits at a rate of ∼ 6Gbit s−1 , and
– the FIFO-based output buffer is read from by using the rdrand instruction.

• The ‘D’ in DRNG here isn’t for deterministic: it’s for digital (versus analogue, which earlier Intel designs were).

• The DRNG, and hence associated instructions, are only available on modern Intel processors; on Linux, checking /proc/cpuinfo
highlights whether or not the features is available.

• In additional to official Intel documentation [16] (which acts as a user manual), a more technical overview is given by a technical report
by Hamburg et al. [15] (with a similar analysis of an earlier Intel design [17] also interesting).



Part 2: in practice (6)
Class #3: hardware-oriented

▶ Design: Intel Secure Key [16].

Algorithm (RdRand TRBG)
’
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https://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.pdf
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• The entropy source diagram is for one cell, many of which are distributed in and around the associated micro-processor core. The
TRNG diagram uses somewhat generic blocks: in more detail
– the conditioning step uses a MAC, namely AES-CBC-MAC [16, Section 3.2.2],
– the output generation and reseeding step uses a block cipher, namely AES-CTR [16, Section 3.2.3],
– the entropy source outputs bits at a rate of ∼ 3Gbit s−1 [16, Section 3.2.1],
– the TRNG outputs bits at a rate of ∼ 6Gbit s−1 , and
– the FIFO-based output buffer is read from by using the rdrand instruction.

• The ‘D’ in DRNG here isn’t for deterministic: it’s for digital (versus analogue, which earlier Intel designs were).

• The DRNG, and hence associated instructions, are only available on modern Intel processors; on Linux, checking /proc/cpuinfo
highlights whether or not the features is available.

• In additional to official Intel documentation [16] (which acts as a user manual), a more technical overview is given by a technical report
by Hamburg et al. [15] (with a similar analysis of an earlier Intel design [17] also interesting).

Part 2: in practice (7)
Class #3: hardware-oriented

▶ Design: Intel Secure Key [16].

Listing (RdRand interface)
1 bool rdrand64( uint64_t* r ) {
2 bool success;
3
4 asm( "rdrand %0 ; setc %1"
5 : "=r" (*r), "=qm" (success) );
6
7 return success;
8 }

Listing (RdRand interface)
1 bool rdrand64_retry( uint64_t* r, int l ) {
2 int i = 0;
3
4 do {
5 if( rdrand64( r ) ) {
6 return true;
7 }
8 } while( i++ < l );
9

10 return false;
11 }
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Part 2: in practice (8)
Class #4: system-oriented

▶ Design: Linux.
▶ circa 1994(ish):
▶ maintain entropy pool �[i], injecting entropy, e.g., from system-related events,
▶ define a predicate

P(�[i]) =
{

false if estimated entropy in �[i] is deemed insufficient
true if estimated entropy in �[i] is deemed sufficient

based on the concept of entropy estimation,
▶ expose �[i] to user-space via the (pseudo) files

write to /dev/random ' inject entropy into �[i]

read from /dev/random '
{

if P(�[i]) = false, block then sample from PRNG (re)seeded from �[i]
if P(�[i]) = true, then sample from PRNG (re)seeded from �[i]

read from /dev/urandom ' sample from PRNG (re)seeded from �[i]
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• A major challenge in describing “the” Linux implementation is that it is continually evolving! On one hand, this is positive in the sense
it continues to improve to 1) address new threats, and 2) serve the demands of new use-cases. On the other hand, however, this moving
target makes it harder to offer an accurate, general overview. Modulo their publication date, various resources offer descriptions worth
reading: see, for example, Gutterman et. al [12] and Dodis et al. [11].

• There are several notable controversies associated with the approach and implementation used by Linux. These include 1) use or
non-use of RdRand (based on arguments around trust), and 2) the semantics of whatever mechanism is exposed to user-space (e.g., the
concept of entropy estimation, blocking versus non-blocking).

• The associated man page, i.e.,
man -s 4 random

gives some operational details with respect to use of /dev/random and/or /dev/urandom. It’s also possible to inspect various
information about of them via /proc/sys/kernel/random. For example, the file /proc/sys/kernel/random/entropy_avail exposes
the estimate of available entropy in the entropy pool(s).

• An important quote from the man page is:
“If you are unsure about whether you should use /dev/random or /dev/urandom, then probably you want to use the latter. As a

general rule, /dev/urandom should be used for everything except long-lived GPG/SSL/SSH keys.”

This seems a slightly dangerous statement: ephemeral keys are often just as security-critical as long term (cf. forward secrecy), so
arguably a better rule would be to use /dev/random for anything cryptographically related (and /dev/urandom otherwise). But even this
is somewhat contentious, reflecting the general difficulty of this topic. To this end,

https://www.2uo.de/myths-about-urandom

offers some perspective: some points should be obvious already (e.g., the difference between true- and pseudo-random), but offers some
interesting points about use of /dev/random versus /dev/urandom.

• There are various associated or alternative user- and kernel-space systems, such as the Entropy Gathering Daemon (EGD)

https://egd.sourceforge.net/

Part 2: in practice (8)
Class #4: system-oriented

▶ Design: Linux.
▶ circa 2014(ish):
▶ update re. additional system call

ssize_t getrandom( void* x, size_t n, unsigned int flags )

where

getrandom '
{

if PRNG has not been initialised, then do block
if PRNG has been initialised, then do not block

▶ this yields clear(er) semantics, and avoids need for file handle.
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• A major challenge in describing “the” Linux implementation is that it is continually evolving! On one hand, this is positive in the sense
it continues to improve to 1) address new threats, and 2) serve the demands of new use-cases. On the other hand, however, this moving
target makes it harder to offer an accurate, general overview. Modulo their publication date, various resources offer descriptions worth
reading: see, for example, Gutterman et. al [12] and Dodis et al. [11].

• There are several notable controversies associated with the approach and implementation used by Linux. These include 1) use or
non-use of RdRand (based on arguments around trust), and 2) the semantics of whatever mechanism is exposed to user-space (e.g., the
concept of entropy estimation, blocking versus non-blocking).

• The associated man page, i.e.,
man -s 4 random

gives some operational details with respect to use of /dev/random and/or /dev/urandom. It’s also possible to inspect various
information about of them via /proc/sys/kernel/random. For example, the file /proc/sys/kernel/random/entropy_avail exposes
the estimate of available entropy in the entropy pool(s).

• An important quote from the man page is:
“If you are unsure about whether you should use /dev/random or /dev/urandom, then probably you want to use the latter. As a

general rule, /dev/urandom should be used for everything except long-lived GPG/SSL/SSH keys.”

This seems a slightly dangerous statement: ephemeral keys are often just as security-critical as long term (cf. forward secrecy), so
arguably a better rule would be to use /dev/random for anything cryptographically related (and /dev/urandom otherwise). But even this
is somewhat contentious, reflecting the general difficulty of this topic. To this end,

https://www.2uo.de/myths-about-urandom

offers some perspective: some points should be obvious already (e.g., the difference between true- and pseudo-random), but offers some
interesting points about use of /dev/random versus /dev/urandom.

• There are various associated or alternative user- and kernel-space systems, such as the Entropy Gathering Daemon (EGD)

https://egd.sourceforge.net/



Part 2: in practice (8)
Class #4: system-oriented

▶ Design: Linux.
▶ circa 2016(ish):
▶ update re. PRNG, which is changed from being based on SHA-1 to ChaCha20,
▶ this yields, e.g., lower latency with respect to sampling output.
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• A major challenge in describing “the” Linux implementation is that it is continually evolving! On one hand, this is positive in the sense
it continues to improve to 1) address new threats, and 2) serve the demands of new use-cases. On the other hand, however, this moving
target makes it harder to offer an accurate, general overview. Modulo their publication date, various resources offer descriptions worth
reading: see, for example, Gutterman et. al [12] and Dodis et al. [11].

• There are several notable controversies associated with the approach and implementation used by Linux. These include 1) use or
non-use of RdRand (based on arguments around trust), and 2) the semantics of whatever mechanism is exposed to user-space (e.g., the
concept of entropy estimation, blocking versus non-blocking).

• The associated man page, i.e.,
man -s 4 random

gives some operational details with respect to use of /dev/random and/or /dev/urandom. It’s also possible to inspect various
information about of them via /proc/sys/kernel/random. For example, the file /proc/sys/kernel/random/entropy_avail exposes
the estimate of available entropy in the entropy pool(s).

• An important quote from the man page is:
“If you are unsure about whether you should use /dev/random or /dev/urandom, then probably you want to use the latter. As a

general rule, /dev/urandom should be used for everything except long-lived GPG/SSL/SSH keys.”

This seems a slightly dangerous statement: ephemeral keys are often just as security-critical as long term (cf. forward secrecy), so
arguably a better rule would be to use /dev/random for anything cryptographically related (and /dev/urandom otherwise). But even this
is somewhat contentious, reflecting the general difficulty of this topic. To this end,

https://www.2uo.de/myths-about-urandom

offers some perspective: some points should be obvious already (e.g., the difference between true- and pseudo-random), but offers some
interesting points about use of /dev/random versus /dev/urandom.

• There are various associated or alternative user- and kernel-space systems, such as the Entropy Gathering Daemon (EGD)

https://egd.sourceforge.net/

Part 2: in practice (8)
Class #4: system-oriented

▶ Design: Linux.
▶ circa 2020(ish):
▶ update re. file-based semantics

/dev/urandom ' do not block

/dev/random '
{

if PRNG has not been initialised, then do block
if PRNG has been initialised, then do not block

© Daniel Page 〈csdsp@bristol.ac.uk〉
Applied Cryptology git # b282dbb9 @ 2025-09-03

Notes:

• A major challenge in describing “the” Linux implementation is that it is continually evolving! On one hand, this is positive in the sense
it continues to improve to 1) address new threats, and 2) serve the demands of new use-cases. On the other hand, however, this moving
target makes it harder to offer an accurate, general overview. Modulo their publication date, various resources offer descriptions worth
reading: see, for example, Gutterman et. al [12] and Dodis et al. [11].

• There are several notable controversies associated with the approach and implementation used by Linux. These include 1) use or
non-use of RdRand (based on arguments around trust), and 2) the semantics of whatever mechanism is exposed to user-space (e.g., the
concept of entropy estimation, blocking versus non-blocking).

• The associated man page, i.e.,
man -s 4 random

gives some operational details with respect to use of /dev/random and/or /dev/urandom. It’s also possible to inspect various
information about of them via /proc/sys/kernel/random. For example, the file /proc/sys/kernel/random/entropy_avail exposes
the estimate of available entropy in the entropy pool(s).

• An important quote from the man page is:
“If you are unsure about whether you should use /dev/random or /dev/urandom, then probably you want to use the latter. As a

general rule, /dev/urandom should be used for everything except long-lived GPG/SSL/SSH keys.”

This seems a slightly dangerous statement: ephemeral keys are often just as security-critical as long term (cf. forward secrecy), so
arguably a better rule would be to use /dev/random for anything cryptographically related (and /dev/urandom otherwise). But even this
is somewhat contentious, reflecting the general difficulty of this topic. To this end,

https://www.2uo.de/myths-about-urandom

offers some perspective: some points should be obvious already (e.g., the difference between true- and pseudo-random), but offers some
interesting points about use of /dev/random versus /dev/urandom.

• There are various associated or alternative user- and kernel-space systems, such as the Entropy Gathering Daemon (EGD)

https://egd.sourceforge.net/



Conclusions

Quote

Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.

– von Neumann (https://en.wikiquote.org/wiki/Randomness)

Quote

The generation of random numbers is too important to be left to chance.

– Coveyou (https://en.wikiquote.org/wiki/Randomness)

Quote

The design of such pseudo-random number generation algorithms, like the design of symmetric encryption algorithms, is not
a task for amateurs.

– Eastlake, Schiller, and Crocker [19]
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Conclusions

▶ Take away points:
1. A high-quality source of randomness is fundamental to more or less every security proof: it

might be an assumption in in theory, but in practice this issue requires care.
2. Iff. you need to develop your own PRBG implementation, use a standard (e.g., NIST

SP800-90A [20]) design or framework ...
3. ... often such a design can leverage a primitive (e.g., a block cipher) you need anyway, thus

reducing effort, attack surface, etc.
4. Some golden rules:
▶ use a large, high-entropy seed,
▶ avoid reliance on a single entropy source where possible,
▶ opt for a cryptographically secure design and ensure it is parameterised correctly,
▶ hedge against failure via robust pre- and post-processing where need be,
▶ include quality tests on pseudo-randomness generation (e.g., alongside functional unit testing),
▶ don’t compromise security for efficiency,
▶ ...
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Additional Reading

▶ Wikipedia: Randomness. url: https://en.wikipedia.org/wiki/Randomness.
▶ Wikipedia: Pseudorandomness. url: https://en.wikipedia.org/wiki/Pseudorandomness.
▶ Wikipedia: /dev/random. url: https://en.wikipedia.org/wiki/dev/random.
▶ Wikipedia: RDRAND. url: https://en.wikipedia.org/wiki/RDRAND.
▶ K.H. Rosen. “Chapter 7: Discrete probability”. In: Discrete Mathematics and Its Applications. 7th ed. McGraw Hill, 2013.
▶ A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. “Chapter 5: Pseudorandom bits and sequences”. In: Handbook of Applied

Cryptography. CRC, 1996. url: http://cacr.uwaterloo.ca/hac/about/chap5.pdf.
▶ D. Johnston. Random Number Generators – Principles and Practices: A Guide for Engineers and Programmers. 1st ed. De|G Press, 2018.
▶ D. Eastlake, J. Schiller, and S. Crocker. Randomness Requirements for Security. Internet Engineering Task Force (IETF) Request for

Comments (RFC) 4086. 2005. url: http://tools.ietf.org/html/rfc4086.
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