COMS30048 lecture: week #19

> Agenda: explore (pseudo-)random bit generation, via

1. an “in theory”, i.e., design-oriented perspective, and
2. an “in practice”, i.e., implementation-oriented perspective.

» Caveat!
~2hours = introductory, and (very) selective (versus definitive) coverage

Applied Cryptolc

mailto:csdsp@bristol.ac.uk

COMS30048 lecture: week #19

> Bad news: in theory, we need to consider each of
1. random bit, i.e., an
x e {0,1}
which is random,
2. random bit sequence, i.e., an
x€{0,1}*
which is random (e.g., for an AES cipher key k),
3. random number, i.e., an
xe{0,1,...,n-1}
which is random (e.g., for an RSA modulus N =p - ¢).

© Daniel Paj

mailto:csdsp@bristol.ac.uk

COMS30048 lecture: week #19

> Good news: in practice, we don't because
> 1. =2
e concatenate n random bits together, i.e.,
x=xo [l x|l - Nl X,
e produce x as output.
> 2. =3.
> ifn =2" for some integer 7/, then

e generate an 11’-bit sequence x’ per the above,
o interpret x’ as the integer

i<n’
_ ’
x= %
i=0
e produce x as output.
’
> if n # 2" for any integer 1/, then

7
o let 1’ be the smallest integer such that 2" >,
e generate an 1’-bit sequence x’ per the above,
e interpret x” as the integer

e if x > n, reject (or discard) it and try again; otherwise, if x < 1, produce x as output.

*. we can focus on random bits (and ignore numbers).

mailto:csdsp@bristol.ac.uk

Part 1: in theory (1)

Entropy

Oo00oooooo00oooo

UNCOMMON -
ORDER
(N"” “s'ms‘o UNKNOUN
abe

CAPS? MON
= SUBSTITUTIONS ooo
afala) PUNCTURT
(¥ou cand AOD A By rere B To 1o
PCOUNT foR THE TACT THAT THE. aoog
IS ONLY OV OF B R Coon FoRVATS)

~28 BITS OF ENTROPY
goooonno
gooooood g
[mjuin) ooo
oooo a
2%= 3 Davs AT
1000 GUESSES /<&t
(mmm;nmunwwimt

YES, CRACKING A STOEN
NMN 13 EASTER, B) Her T

DIFFICOLTY T0 GUESS:

WAS IT TROMBONE? NG,

TROUBADOR. AND ONE OF
THE Os WRS A ZEROT

A\

\
AND THERE WAS

SOME SYBOL.... ™~

DIFFICULTY To REMEMRER:
HARD

correct horse battery stople

000o00 Oooooo Doogoo opoooo
pDoooo poooo 00000 00000

FOUR RANDOM
COMMON WORDS

~Y44 BITS OF ENTROPY
ooooooponoo
ooooooooooo
oooooopoodo
oonoooooooo
2" =550 YEARS AT
1000 GUESSES/SEC

DIFRICOLTY T0 GUESS:

HARD

MEMORIZED T

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PRSSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT ERSY FOR COMPUTERS Th GUESS,

https://xkcd.com/936

https://xkcd.com/936
mailto:csdsp@bristol.ac.uk

Part 1: in theory (2)

Entropy

Definition

The concept of entropy is a measure of uncertainty with respect to a random variable. Less formally, the entropy of some
x relates to how much you know (resp. do not know) about x: if some x could be one of 2" possible values, it is said to
have n bits of entropy. In addition, we say

1. an x with n > 0 bits of entropy is termed entropic, and

2. if an entropic x has negligible probability of having been generated before, it is deemed fresh entropy.

mailto:csdsp@bristol.ac.uk

Part 1: in theory (2)

Entropy

Definition

The concept of entropy is a measure of uncertainty with respect to a random variable. Less formally, the entropy of some
x relates to how much you know (resp. do not know) about x: if some x could be one of 2" possible values, it is said to
have n bits of entropy. In addition, we say

1. an x with n > 0 bits of entropy is termed entropic, and

2. if an entropic x has negligible probability of having been generated before, it is deemed fresh entropy.

> Example: given a 32-bit sequence x,
> if x is random, then it has 32 bits of entropy,
> if xp = 0and x; =1 (i.e., the two LSBs of x are known), then it has 30 bits of entropy,
> if HW(x) = 14 (i.e., x has Hamming weight 14), then it has ~ 29 bits of entropy.

mailto:csdsp@bristol.ac.uk

Part 1: in theory (3)

Entropy

Definition

A noise source is a non-deterministic, physical process which provides a means of generating an unconditioned (or raw)
entropic output.

Applied Crypty

mailto:csdsp@bristol.ac.uk

Part 1:

Entropy

in theory (3)

Definition

A noise source is a non-deterministic, physical process which provides a means of generating an unconditioned (or raw)
entropic output.

> Example (see [8, Section 5.2], or [14, Section 3]):
1. hardware-based:

VYVYYVYYVYY

time between emission of (e.g., a or f§) particles during radioactive decay,
thermal (or Johnson-Nyquist) noise stemming from a resistor or capacitor,
frequency instability (or “jitter”) of a ring oscillator,

fluctuation of hard disk seek-time and access latency,

noise resulting from a disconnected audio input (or ADC),

2. software-based:

>

vvyyvyy

a high resolution system clock or cycle counter,

elapsed time between user input (e.g., key-presses or mouse movement),
content of input/output buffers (e.g., disk caches),

operating system state (e.g., load) or events (e.g., network activity),

mailto:csdsp@bristol.ac.uk

Part 1: in theory (4)

Entropy

Definition

An entropy source is a construction, based on a noise source, which provides a means of generating a conditioned entropic
output.

Model [, Section 2.2]

GetNoise

sNogirscee Digitisation Post-processing Conditioning GetEntropy

HealthTest

mailto:csdsp@bristol.ac.uk

Part 1: in theory (5)

Randomness

Definition

Per [15, Section 4], an ideal random bit-sequence
x = (x0, %1, Xn-1)
will exhibit the following properties

1. unpredictable = the probability of guessing x; is close to }
2. unbiased = x; =0and x; = 1 occur with equal probability
3. uncorrelated = x; and x; are statistically independent

and contain 7 bits of entropy.

mailto:csdsp@bristol.ac.uk

Part 1: in theory (5)

Randomness

Definition

Per [15, Section 4], a pseudo-random bit-sequence
x = (X0, X1,...Xy-1)

“looks random”, i.e., exhibits the same properties as an ideal random sequence, but is generated algorithmically and thus
likely contains less than n bits of entropy.

mailto:csdsp@bristol.ac.uk

Part 1: in theory (6)

(Pseudo-)random bit generators

Definition

A Random Bit Generator (RBG) can be used to generates a sequence of random bits. There are two more specific cases,
namely

True Random Bit Generator (TRBG) = Non-deterministic Random Bit Generator (NRBG)
Pseudo-Random Bit Generator (PRBG) = Deterministic Random Bit Generator (DRBG)

with the right-hand terms preferred by [15]. Based on this, it is reasonable to say that

TRBG = NRBG = entropy source.

mailto:csdsp@bristol.ac.uk

Part 1: in theory (6)

(Pseudo-)random bit generators

Definition

A Random Bit Generator (RBG) can be used to generates a sequence of random bits. There are two more specific cases,
namely

True Random Bit Generator (TRBG)
Pseudo-Random Bit Generator (PRBG)

Non-deterministic Random Bit Generator (NRBG)
Deterministic Random Bit Generator (DRBG)

with the right-hand terms preferred by [15]. Based on this, it is reasonable to say that

TRBG = NRBG = entropy source.

> Idea: informally at least,

TRBG PRBG
> unpredictable, > predictable,
»> hardware-based, I > software-based,
> may have high latency, > can have low latency,
> can be high quality. > may be low quality.

*. we'll consider a hybrid construction.

ME] BRISTOL

mailto:csdsp@bristol.ac.uk

Part 1: in theory (7)

(Pseudo-)random bit generators

Definition

Consider a deterministic, polynomial-time algorithm G. Given a seed ¢ € {0,1}" as input, it produces G(c) € {0,1}"" as
output where 1, = f(n.) for some polynomial function f. As such, we call G a Pseudo-Random Generator (PRG) if

1. for every n. it holds that n, > n., and
2. for all polynomial-time destinguishers D, there exists a negligible function negl such that
| Pr[D(G(c)) = 1] = Pr[D(r) =1]| < negl(n)

where ¢ and r are chosen uniformly at random from {0, 1}"s and {0, 1}"" respectively.

mailto:csdsp@bristol.ac.uk

Part 1: in theory (7)

(Pseudo-)random bit generators

Syntax

Having fixed the (finite) space S of states, a concrete Pseudo-Random Generator (PRG) is defined by
1. analgorithm Sgep : Z X {0,1}" — S that

> accepts a security parameter and an 1¢-bit seed as input, and
> produces an initial state as output

2. an algorithm Uppate : § — S x {0,1}™ that

> accepts a current state as input, and
> produces a next state and an 71,-bit block of pseudo-random bits as output.

mailto:csdsp@bristol.ac.uk

Part 1: in theory (8)

(Pseudo-)random bit generators

> Translation: assuming n, = [- n}, for some I, then

generate a sufficiently large,

1 useTRBG ~ { high-entropy seed ¢

00] Seep(4, ¢)
o[t p[o] Urpats(0[0])
0[2] ,b[1] <« Uprbate(O[1])

«—
«—

2. use PRBG ~
Oli+1],b[i] <« Urpate(O[i])

meaning that

b= bl0] [b[a] [- I B[I-1] = G(c)
—— —— ~——
ny-bits ny-bits ny-bits
- ny = ny-bits

provides the output required per the PRG definition.

mailto:csdsp@bristol.ac.uk

Part 1: in theory (9)

(Pseudo-)random bit generators

int getRondomNmberO

return Y, // chosen by fair dice roll.
H quaranteed to be random.

https://xkcd.com/221

Applied Cryptolc

https://xkcd.com/221
mailto:csdsp@bristol.ac.uk

Part 1: in theory (10)

(Pseudo-)random bit generators

> Problem: we need to assess the quality of our construction (and output from it).

> Solution:
1. for some instanciations, we can develop a proof,
2. for some instanciations, we must apply
> online (e.g., continuously or periodically during use), and/or
> offline (i.e., once before use)
statistical tests (see, e.g., [8, Section 5.4]) to sample outputs; note that

> the intention is to detect weakness (meaning a PRBG can only be rejected by a test),
> the conclusion is itself probabilistic, meaning use of multiple tests amplifies confidence.

mailto:csdsp@bristol.ac.uk

Part 1: in theory (11)

(Pseudo-)random bit generators

Definition

A PRBG is said to pass all statistical tests iff. no polynomial-time algorithm can, with probability greater than }

3
distinguish the output from a ideal random bit-sequence of the same length.

Definition

A PRBG is said to pass the next-bit test iff. no polynomial-time algorithm can, with probability greater than 3, predict
the (n + 1)-th bit of output given the previous # bits.

Theorem (Yao [])

If a PRBG passes the next-bit test, it will pass all statistical tests.

mailto:csdsp@bristol.ac.uk

Part 1: in theory (12)

(Pseudo-)random bit generators

Definition

Per [15, Section 4], imagine an attacker compromises the PRBG state at time #: we term a PRBG back-tracking resistant
(resp. prediction resistant) if said attacker cannot distinguish between an (unseen) PRBG output at time # < t (resp.
' > t) and an ideal random bit-sequence of the same length.

Definition

A Cryptographically Secure Pseudo-Random Bit Generator (CS-PRBG) is simple a PRBG whose properties make it
suitable for use within a cryptographic use-case. A CS-PRBG should (at least)

1. be a PRBG of sufficient quality, i.e., pass the next-bit test, and

2. resist state compromise attacks, i.e., be back-tracking and prediction resistant.

ME] BRISTOL

mailto:csdsp@bristol.ac.uk

Part 1: in theory (13)

(Pseudo-)random bit generators

» Problem: our construction is deterministic, so
> the same ¢ will yield the same 6[0] and hence any 6]j] forj > 0,
> recovery of ¢ allows computation of any 0[] forj > 0,
> recovery of 0[i] allows computation of any 6[j] forj > i,
> the set S is finite, so per

Urpate

period

the state, and thus also the output, will eventually cycle.

> Solution:
1. select parameters that mitigate such issues, and
2. introduce selected non-determinism.

mailto:csdsp@bristol.ac.uk

Part 1: in theory (14)

(Pseudo-)random bit generators

Definition ([, Figure 1])

0[0]
SEED e
entropy

source \9[,]‘
H[k

UPDATE

mailto:csdsp@bristol.ac.uk

Part 1: in theory (14)

(Pseudo-)random bit generators

Definition ([, Figure 1])

personalisation
input
nonce ——>
entropy
source
additional
input

SEED

REsEED

—\e[inlu

0[0]

oli]

_%1]

qli] € {false, true}

oli]

oli+1] € {6[i], L}

\9[{]‘
H[k

Uroas : additional
PDATE <— input

mailto:csdsp@bristol.ac.uk

Part 2: in practice (1)

> (Sub-)agenda: explain selected, example designs, organised into 4 classes, i.e.,
1. “classic”,
2. software-oriented,
3. hardware-oriented,
4. system-oriented,

with a focus on design properties and trade-offs between them, e.g.,
> efficiency,

security, i.e., quality of (pseudo-)random output,

interface,

assumptions,

>
'S
>
> B

mailto:csdsp@bristol.ac.uk

Part 2: in practice (2)

Class #1: “classic”

> Design: Linear-Feedback Shift Registers (LFSR) [5, 6].

Algorithm (type-1, or “external” or Fibonacci, LFSR)

input On-1 ’ 02 ' e ol Oy , 6y | output

input

© Daniel Page

mailto:csdsp@bristol.ac.uk

Part 2: in practice (3)

Class #2: software-oriented

> Design: Blum-Blum-Shub (BBS) [10].

Algorithm (BBS.SeeD)

Input: A security parameter A, and a seed ¢
Output: An initial state 0[0]

Use entropy provided by ¢ to perform the following steps:

1. Select two random (A /2)-bit primes p and g such that p = g = 3 (mod 4), and compute N = p - g.
2. Selectarandoms € {0,1,...,N — 1} such that gcd(s, N) = 1.

3. Compute s[0] = s2 (mod N).

4. Return 0[0] = (N, s[0]).

mailto:csdsp@bristol.ac.uk

Part 2: in practice (3)

Class #2: software-oriented

>

Design: Blum-Blum-Shub (BBS) [10].

Algorithm (BBS.UPDATE)

Input: A current state 0[i] = (N, s[i])

Output: A next state 6[i + 1], and 1, = 1 bit pseudo-random output b[i]
1. Compute s[i + 1] = s[i]? (mod N).

2. Letb[i] = s[i + 1] (mod 2), i.e., b[i] = LSB(s[i + 1]).

3. Return 6[i + 1] = (N, s[i + 1]) and b[i].

niel Page (

mailto:csdsp@bristol.ac.uk

Part 2: in practice (4)

Class #2: software-oriented

> Design: ANSI X9.31 [13, Appendix A.2.4].

Algorithm (X9.31.SeeD)

Input: A security parameter A, and a seed ¢
Output: An initial state 0[0]

1. Use A to select a block cipher with an 1y-bit key size and 1,-bit block size, e.g.,

3DES ~ np= 64, n=192
AES-128 ~ mp =128, m =128
AES-192 ~ mp =128, m =192
AES-256 ~» mp =128, m =256

2. Use entropy provided by ¢ to derive an n-bit cipher key k (or pre-select a k for the PRBG).
3. Use entropy provided by ¢ to derive an 11;,-bit block s[0].
4. Return 0[0] = (k, s[0]).

mailto:csdsp@bristol.ac.uk

Part 2: in practice (4)

Class #2: software-oriented

>

Design: ANSI X9.31 [13, Appendix A.2.4].

Algorithm (X9.31.UPDATE)

Input: A current state 0[i] = (k, s[i])
Output: A next state 0[i + 1], and n,-bit pseudo-random output b[i]

1. Compute t’ = Enc(k, t), where t is a n5-bit representation of the current time.
2. Compute b[i] = Enc(k, ' & s[i]).

3. Compute s[i + 1] = Enc(k, t’ @ b[i]).

4. Return O[i + 1] = (k, s[i + 1]) and b[].

mailto:csdsp@bristol.ac.uk

Part 2: in practice (5)

Class #2: software-oriented

> Design: NIST CTR_DRBG [15, Section 10.2.1].

Algorithm (CTR_DRBG.UPDATE)

provided dats—» @

ani

https://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

https://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
mailto:csdsp@bristol.ac.uk

Part 2: in practice (5)

Class #2: software-oriented

> Design: NIST CTR_DRBG [15, Section 10.2.1].

Algorithm (CTR_DRBG.INSTANTIATE)

(Opi) additional input

BLOCK CIPHER
DERIVATION
FUNCTION

seedlen bits

UPDATE

https://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

https://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
mailto:csdsp@bristol.ac.uk

Part 2: in practice (5)

Class #2: software-oriented

> Design: NIST CTR_DRBG [15, Section 10.2.1].
Algorithm (CTR_DRBG.GENERATE)

Iterate

|

Block
Encrypt

—

State

reseed
-

Byl IIBis

Pseudorandom bits

https://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

https://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
mailto:csdsp@bristol.ac.uk

Part 2: in practice (5)

Class #2: software-oriented

> Design: NIST CTR_DRBG [15, Section 10.2.1].
Algorithm (CTR_DRBG.RESEED)

https://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

https://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
mailto:csdsp@bristol.ac.uk

Part 2: in practice (6)

Class #3: hardware-oriented

> Design: Intel Secure Key [12].

Algorithm (RdRand entropy source)

. o
-
— | A

e s

e
_qé s EIY I E
R Tacaps B capsL

A

node A 1| node B
heart_clock ,J L,
} =
o
ot i
N

https://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.pdf

https://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.pdf
mailto:csdsp@bristol.ac.uk

Part 2: in practice (6)

Class #3: hardware-oriented

> Design: Intel Secure Key [12].

Algorithm (RdRand TRBG)

Raw Entropy Digital Post-Processing

Generation
Deterministic Random Bit
Generator (DRBG)
g o
Healths | |8] &
« eal E =l
Entropy 1] g S o S
B Swellness S 2 Fy
Source F . o a a i)
(€S) @, Testing 3 = 7 2o
i (OHT) 8 S g 58
= 2 3 = ®
R 5 @ 3 5
l I 2 S
g S 3 ®
= g &
z

o
s
2

4
z
7
B
8
4

https://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.pdf

https://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.pdf
mailto:csdsp@bristol.ac.uk

Part 2: in practice (7)

Class #3: hardware-oriented

> Design: Intel Secure Key [12].

Listing (RdRand interface)

bool rdrand64(uint64_t* r) {

1

2 bool success;

3

4 asm("rdrand %0 ; setc %1"

5 @ "=r" (*r), "=gm" (success));
6

7 ~ return success;

8%

Listing (RdRand interface)

bool rdrand64_retry(uint64_t* r, int 1) {

1

2 int i =0

3

1 do {

5 if(rdrand64(r)) {
6 return true;

7 }

8 } while(i++ < 1);
9

10 return false;

11}

mailto:csdsp@bristol.ac.uk

Part 2: in practice (8)
Class #4: system-oriented
> Design: Linux.
> circa 1994(ish):
> maintain entropy pool 6[i], injecting entropy, e.g., from system-related events,

> define a predicate

P(O[i]) = false if estimated entropy in 6][i] is deemed insufficient
=1 true if estimated entropy in 0[i] is deemed sufficient

based on the concept of entropy estimation,
> expose 0][i] to user-space via the (pseudo) files

write to /dev/random = inject entropy into 01i]

df /dev/randon =~ if P(0[i]) = false, block then sample from PRNG (re)seeded from 0[i]
read trom /dev/random =\ i p(g[i]) = true, then sample from PRNG (re)seeded from 6][i]

read from /dev/urandom =~ sample from PRNG (re)seeded from 6[i]

mailto:csdsp@bristol.ac.uk

Part 2: in practice (8)
Class #4: system-oriented
> Design: Linux.
> circa 2014(ish):
> update re. additional system call
ssize_t getrandom(void* x, size_t n, unsigned int flags)

where
trand - if PRNG has not been initialised, then do block
getrandom = if PRNG has been initialised, then do not block

> this yields clear(er) semantics, and avoids need for file handle.

mailto:csdsp@bristol.ac.uk

Part 2: in practice (8)

Class #4: system-oriented

> Design: Linux.
> circa 2016(ish):
> update re. PRNG, which is changed from being based on SHA-1 to ChaCha20,
> this yields, e.g., lower latency with respect to sampling output.

mailto:csdsp@bristol.ac.uk

Part 2: in practice (8)
Class #4: system-oriented
> Design: Linux.
> circa 2020(ish):
> update re. file-based semantics

/dev/urandom = do not block

13

/dev/random

{ if PRNG has not been initialised, then do block

if PRNG has been initialised, then do not block

mailto:csdsp@bristol.ac.uk

Conclusions

Quote

Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.

—von Neumann (https://en.wikiquote.org/wiki/Randomness)

Quote

The generation of random numbers is too important to be left to chance.

— Coveyou (https://en.wikiquote.org/wiki/Randomness)

Quote

The design of such pseudo-random number generation algorithms, like the design of symmetric encryption algorithms, is not
a task for amateurs.

— Eastlake, Schiller, and Crocker [14]

https://en.wikiquote.org/wiki/Randomness
https://en.wikiquote.org/wiki/Randomness
mailto:csdsp@bristol.ac.uk

Conclusions

> Take away points:

1.

2.

A high-quality source of randomness is fundamental to more or less every security proof: it
might be an assumption in in theory, but in practice this issue requires care.

Iff. you need to develop your own PRBG implementation, use a standard (e.g., NIST
SP800-90A [15]) design or framework ...

. ... often such a design can leverage a primitive (e.g., a block cipher) you need anyway, thus

reducing effort, attack surface, etc.

. Some :

> use a large, high-entropy seed,

avoid reliance on a single entropy source where possible,

opt for a cryptographically secure design and ensure it is parameterised correctly,

hedge against failure via robust pre- and post-processing where need be,

include quality tests on pseudo-randomness generation (e.g., alongside functional unit testing),
don’t compromise security for efficiency,

© Daniel Page

Applie

mailto:csdsp@bristol.ac.uk

Additional Reading

Y Y VY VY VY

v

Wikipedia: Randomness. urL: https://en.wikipedia.org/wiki/Randomness.

Wikipedia: Pseudorandomness. urL: https://en.wikipedia.org/wiki/Pseudorandomness.

Wikipedia: /dev/random. urL: https://en.wikipedia.org/wiki/dev/random.

Wikipedia: RDRAND. urL: https://en.wikipedia.org/wiki/RDRAND.

K.H. Rosen. “Chapter 7: Discrete probability”. In: Discrete Mathematics and Its Applications. 7th ed. McGraw Hill, 2013.

AlJ. Menezes, P.C. van Oorschot, and S.A. Vanstone. “Chapter 5: Pseudorandom bits and sequences”. In: Handbook of Applied
Cryptography. CRC, 1996. urL: http://cacr.uwaterloo.ca/hac/about/chap5.pdf.

D. Johnston. Random Number Generators — Principles and Practices: A Guide for Engineers and Programmers. 1st ed. De | G Press, 2018.

D. Eastlake, J. Schiller, and S. Crocker. Randomness Requirements for Security. Internet Engineering Task Force (IETF) Request for
Comments (RFC) 4086. 2005. urL: http://tools.ietf.org/html/rfc4086.

https://en.wikipedia.org/wiki/Randomness
https://en.wikipedia.org/wiki/Pseudorandomness
https://en.wikipedia.org/wiki/dev/random
https://en.wikipedia.org/wiki/RDRAND
http://cacr.uwaterloo.ca/hac/about/chap5.pdf
http://tools.ietf.org/html/rfc4086
mailto:csdsp@bristol.ac.uk

References

(1
[2]
[3]
[4]
[5]
[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Wikipedia: /dev/random. urL: https://en.wikipedia.org/wiki/dev/random (see p. 43).

Wikipedia: Pseudorandomness. UrL: https://en.wikipedia.org/wiki/Pseudorandomness (see p. 43).

Wikipedia: Randomness. urL: https://en.wikipedia.org/wiki/Randomness (see p. 43).

Wikipedia: RDRAND. UrL: https://en.wikipedia.org/wiki/RDRAND (see p. 43).

S.W. Golomb. Shift Register Sequences. 3rd ed. https://doi.org/10.1142/9361. Aegean Park Press, 2017 (see p. 25).

M. Goresky and A. Klapper. Algebraic Shift Register Sequences. 1st ed. https://doi.org/10.1017/CB09781139057448.
Cambridge University Press, 2012 (see p. 25).

D. Johnston. Random Number Generators — Principles and Practices: A Guide for Engineers and Programmers. 1st ed. De | G Press,
2018 (see p. 43).

AlJ. Menezes, P.C. van Oorschot, and S.A. Vanstone. “Chapter 5: Pseudorandom bits and sequences”. In: Handbook of Applied
Cryptography. CRC, 1996. urL: http://cacr.uwaterloo.ca/hac/about/chap5.pdf (see pp. 7, 8, 18, 43).

K.H. Rosen. “Chapter 7: Discrete probability”. In: Discrete Mathematics and Its Applications. 7th ed. McGraw Hill, 2013 (see
p. 43).

L. Blum, M. Blum, and M. Shub. “A Simple Unpredictable Pseudo-Random Number Generator”. In: SIAM Journal on
Computing 15.2 (1986), pp. 364-383 (see pp. 26, 27).

A.C. Yao. “Theory and application of trapdoor functions”. In: Symposium on Foundations of Computer Science (SFCS). 1982,
pp. 80-91 (see p. 19).

Intel Digital Random Number Generator (DRNG) — Software Implementation Guide. Tech. rep. Intel Corp., 2012. URL:
http://software.intel.com/sites/default/files/m/d/4/1/d/8/441_Intel _R__DRNG_Software_Implementation_
Guide_final_Aug7.pdf (see pp. 34-36).

Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry. American National Standards
Institute (ANSI) Standard X9.31. 1993 (see pp. 28, 29).

D. Eastlake, J. Schiller, and S. Crocker. Randomness Requirements for Security. Internet Engineering Task Force (IETF) Request
for Comments (RFC) 4086. 2005. urL: http://tools.ietf.org/html/rfc4086 (see pp.7, 8,41, 43).

https://en.wikipedia.org/wiki/dev/random
https://en.wikipedia.org/wiki/Pseudorandomness
https://en.wikipedia.org/wiki/Randomness
https://en.wikipedia.org/wiki/RDRAND
https://doi.org/10.1142/9361
https://doi.org/10.1017/CBO9781139057448
http://cacr.uwaterloo.ca/hac/about/chap5.pdf
http://software.intel.com/sites/default/files/m/d/4/1/d/8/441_Intel_R__DRNG_Software_Implementation_Guide_final_Aug7.pdf
http://software.intel.com/sites/default/files/m/d/4/1/d/8/441_Intel_R__DRNG_Software_Implementation_Guide_final_Aug7.pdf
http://tools.ietf.org/html/rfc4086
mailto:csdsp@bristol.ac.uk

References

[15] Recommendation for Random Number Generation Using Deterministic Random Bit Generators. National Institute of Standards
and Technology (NIST) Special Publication 800-90Ar1. 2015. urt: https://doi.org/10.6028/NIST.SP.800-90Ar1 (see
pp- 10-13, 20, 22, 23, 30-33, 42).

[16] Recommendation for the Entropy Sources Used for Random Bit Generation. National Institute of Standards and Technology
(NIST) Special Publication 800-90B. 2018. urL: https://doi.org/10.6028/NIST.SP.800-90B (see p. 9).

https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90B
mailto:csdsp@bristol.ac.uk

