COMS30048 lecture: week #19

- Agenda: explore (pseudo-)random bit generation, via
  - 1. an "in theory", i.e., design-oriented perspective, and
  - 2. an "in practice", i.e., implementation-oriented perspective.
- Caveat!
  - $\sim$  2 hours  $\implies$  introductory, and (very) selective (versus definitive) coverage.

### COMS30048 lecture: week #19

- ▶ Bad news: in *theory*, we need to consider each of
  - 1. random bit, i.e., an

$$x \in \{0, 1\}$$

which is random,

2. random bit sequence, i.e., an

$$x \in \{0, 1\}^n$$

which is random (e.g., for an AES cipher key k),

3. random *number*, i.e., an

$$x \in \{0, 1, \dots, n-1\}$$

which is random (e.g., for an RSA modulus  $N = p \cdot q$ ).

### COMS30048 lecture: week #19

- ▶ Good news: in *practice*, we don't because
  - $ightharpoonup 1. \Rightarrow 2.$ 
    - concatenate n random bits together, i.e.,

$$x = x_0 \| x_1 \| \cdots \| x_{n-1}$$

- produce x as output.
- $ightharpoonup 2. \Rightarrow 3.$ 
  - if  $n = 2^{n'}$  for some integer n', then
    - generate an n'-bit sequence x' per the above,
    - interpret x' as the integer

$$x = \sum_{i=0}^{i < n'} x_i',$$

- produce *x* as output.
- if  $n \neq 2^{n'}$  for any integer n', then
  - let n' be the smallest integer such that  $2^{n'} > n$ ,
  - generate an n'-bit sequence x' per the above,
  - interpret x' as the integer

$$x = \sum_{i=0}^{i < n'} x_i',$$

- if  $x \ge n$ , reject (or discard) it and try again; otherwise, if x < n, produce x as output.
- : we can focus on random bits (and ignore numbers).

# Part 1: in theory (1) Entropy



EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

# Part 1: in theory (2) Entropy

### Definition

The concept of **entropy** is a measure of uncertainty with respect to a random variable. Less formally, the entropy of some x relates to how much you know (resp. do not know) about x: if some x could be one of  $2^n$  possible values, it is said to have n bits of entropy. In addition, we say

- 1. an x with n > 0 bits of entropy is termed **entropic**, and
- 2. if an entropic *x* has negligible probability of having been generated before, it is deemed **fresh entropy**.

# Part 1: in theory (2) Entropy

#### Definition

The concept of **entropy** is a measure of uncertainty with respect to a random variable. Less formally, the entropy of some x relates to how much you know (resp. do not know) about x: if some x could be one of  $2^n$  possible values, it is said to have n bits of entropy. In addition, we say

- 1. an x with n > 0 bits of entropy is termed **entropic**, and
- 2. if an entropic *x* has negligible probability of having been generated before, it is deemed **fresh entropy**.
- Example: given a 32-bit sequence x,
  - if x is random, then it has 32 bits of entropy,
  - if  $x_0 = 0$  and  $x_1 = 1$  (i.e., the two LSBs of x are known), then it has 30 bits of entropy,
  - if HW(x) = 14 (i.e., x has Hamming weight 14), then it has  $\sim 29$  bits of entropy.

# Part 1: in theory (3) Entropy

### Definition

A  ${f noise}$  source is a non-deterministic, physical process which provides a means of generating an  ${\it unconditioned}$  (or raw) entropic output.

# Part 1: in theory (3) Entropy

#### Definition

A **noise source** is a non-deterministic, physical process which provides a means of generating an *unconditioned* (or raw) entropic output.

- Example (see [8, Section 5.2], or [14, Section 3]):
  - 1. hardware-based:
    - time between emission of (e.g.,  $\alpha$  or  $\beta$ ) particles during radioactive decay,
    - thermal (or Johnson-Nyquist) noise stemming from a resistor or capacitor,
    - frequency instability (or "jitter") of a ring oscillator,
    - fluctuation of hard disk seek-time and access latency,
    - noise resulting from a disconnected audio input (or ADC),
  - software-based:
    - a high resolution system clock or cycle counter,
    - lapsed time between user input (e.g., key-presses or mouse movement),
    - content of input/output buffers (e.g., disk caches),
    - operating system state (e.g., load) or events (e.g., network activity),

# Part 1: in theory (4) Entropy

### Definition

An **entropy source** is a construction, based on a noise source, which provides a means of generating a *conditioned* entropic output.



### Definition

Per [15, Section 4], an ideal random bit-sequence

$$x=\langle x_0,x_1,\dots x_{n-1}\rangle$$

will exhibit the following properties

 1.
 unpredictable
  $\Rightarrow$  the probability of guessing  $x_i$  is close to  $\frac{1}{2}$  

 2.
 unbiased
  $\Rightarrow$   $x_i = 0$  and  $x_i = 1$  occur with equal probability

 3.
 uncorrelated
  $\Rightarrow$   $x_i$  and  $x_j$  are statistically independent

and contain n bits of entropy.

# Part 1: in theory (5) Randomness

### Definition

Per [15, Section 4], a pseudo-random bit-sequence

$$x = \langle x_0, x_1, \dots x_{n-1} \rangle$$

"looks random", i.e., exhibits the same properties as an ideal random sequence, but is generated algorithmically and thus likely contains less than n bits of entropy.

# Part 1: in theory (6) (Pseudo-)random bit generators

### Definition

A **Random Bit Generator (RBG)** can be used to generates a sequence of random bits. There are two more specific cases, namely

```
True Random Bit Generator (TRBG) ≡ Non-deterministic Random Bit Generator (NRBG)

Pseudo-Random Bit Generator (PRBG) ≡ Deterministic Random Bit Generator (DRBG)
```

with the right-hand terms preferred by [15]. Based on this, it is reasonable to say that

TRBG 
$$\equiv$$
 NRBG  $\simeq$  entropy source.

# Part 1: in theory (6) (Pseudo-)random bit generators

#### Definition

A **Random Bit Generator (RBG)** can be used to generates a sequence of random bits. There are two more specific cases, namely

True Random Bit Generator (TRBG) ≡ Non-deterministic Random Bit Generator (NRBG)

Pseudo-Random Bit Generator (PRBG) ≡ Deterministic Random Bit Generator (DRBG)

with the right-hand terms preferred by [15]. Based on this, it is reasonable to say that

TRBG  $\equiv$  NRBG  $\simeq$  entropy source.

Idea: informally at least,



∴ we'll consider a *hybrid* construction.

# Part 1: in theory (7) (Pseudo-)random bit generators

#### Definition

Consider a deterministic, polynomial-time algorithm G. Given a **seed**  $\varsigma \in \{0,1\}^{n_\varsigma}$  as input, it produces  $G(\varsigma) \in \{0,1\}^{n_r}$  as output where  $n_r = f(n_\varsigma)$  for some polynomial function f. As such, we call G a **Pseudo-Random Generator (PRG)** if

- 1. for every  $n_{\varsigma}$  it holds that  $n_r > n_{\varsigma}$ , and
- 2. for all polynomial-time destinguishers  $\mathcal{D}$ , there exists a negligible function negl such that

$$\mid \Pr[D(G(\varsigma)) = 1] \ - \ \Pr[D(r) = 1] \mid \ \leq \ \operatorname{negl}(\mathsf{n}_\varsigma)$$

where  $\varsigma$  and r are chosen uniformly at random from  $\{0,1\}^{n_{\varsigma}}$  and  $\{0,1\}^{n_{r}}$  respectively.

Part 1: in theory (7) (Pseudo-)random bit generators

# Syntax

Having fixed the (finite) space  ${\mathcal S}$  of states, a concrete **Pseudo-Random Generator (PRG)** is defined by

- 1. an algorithm Seed :  $\mathbb{Z} \times \{0,1\}^{n_{\varsigma}} \to \mathcal{S}$  that
  - accepts a security parameter and an  $n_{\varsigma}$ -bit seed as input, and
  - produces an initial state as output
- 2. an algorithm Update :  $S \to S \times \{0,1\}^{n_b}$  that
  - accepts a current state as input, and
  - produces a next state and an  $n_b$ -bit block of pseudo-random bits as output.

► Translation: assuming  $n_r = l \cdot n_h$  for some l, then

1. use TRBG 
$$\sim$$
  $\begin{cases} \text{generate a sufficiently large,} \\ \text{high-entropy seed } \varsigma \end{cases}$ 

$$2. \quad \text{use PRBG} \quad \sim \quad \left\{ \begin{array}{l} \theta[0] & \leftarrow & \text{Seed}(\lambda, \varsigma) \\ \theta[1] & , b[0] & \leftarrow & \text{Update}(\theta[0]) \\ \theta[2] & , b[1] & \leftarrow & \text{Update}(\theta[1]) \\ & \vdots & \\ \theta[i+1] \, , b[i] & \leftarrow & \text{Update}(\theta[i]) \\ & \vdots & \\ \end{array} \right.$$

meaning that

$$b = \underbrace{b[0]}_{n_b\text{-bits}} \parallel \underbrace{b[1]}_{n_b\text{-bits}} \parallel \cdots \parallel \underbrace{b[l-1]}_{n_b\text{-bits}} \equiv G(\varsigma)$$

$$l \cdot n_b = n_r\text{-bits}$$

provides the output required per the PRG definition.

### Part 1: in theory (9) (Pseudo-)random bit generators

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

# Part 1: in theory (10) (Pseudo-)random bit generators

- ▶ Problem: we need to assess the quality of our construction (and output from it).
- Solution:
  - 1. for *some* instanciations, we can develop a proof,
  - 2. for *some* instanciations, we must apply
    - online (e.g., continuously or periodically *during* use), and/or
    - offline (i.e., once *before* use)

statistical tests (see, e.g., [8, Section 5.4]) to sample outputs; note that

- the intention is to detect weakness (meaning a PRBG can only be rejected by a test),
- the conclusion is itself probabilistic, meaning use of multiple tests amplifies confidence.

# Part 1: in theory (11) (Pseudo-)random bit generators

### Definition

A PRBG is said to pass all **statistical tests** iff. no polynomial-time algorithm can, with probability greater than  $\frac{1}{2}$ , distinguish the output from a ideal random bit-sequence of the same length.

#### Definition

A PRBG is said to pass the **next-bit test** iff. no polynomial-time algorithm can, with probability greater than  $\frac{1}{2}$ , predict the (n+1)-th bit of output given the previous n bits.

### Theorem (Yao [11])

If a PRBG passes the next-bit test, it will pass all statistical tests.

# Part 1: in theory (12) (Pseudo-)random bit generators

#### Definition

Per [15, Section 4], imagine an attacker compromises the PRBG state at time t: we term a PRBG **back-tracking resistant** (resp. **prediction resistant**) if said attacker cannot distinguish between an (unseen) PRBG output at time t' < t (resp. t' > t) and an ideal random bit-sequence of the same length.

#### Definition

- A Cryptographically Secure Pseudo-Random Bit Generator (CS-PRBG) is simple a PRBG whose properties make it suitable for use within a cryptographic use-case. A CS-PRBG should (at least)
- 1. be a PRBG of sufficient quality, i.e., pass the next-bit test, and
- 2. resist state compromise attacks, i.e., be back-tracking and prediction resistant.

# Part 1: in theory (13) (Pseudo-)random bit generators

- Problem: our construction is deterministic, so
  - the same  $\varsigma$  will yield the same  $\theta[0]$  and hence any  $\theta[j]$  for j > 0,
  - recovery of  $\varsigma$  allows computation of any  $\theta[j]$  for  $j \ge 0$ ,
  - recovery of  $\theta[i]$  allows computation of any  $\theta[j]$  for j > i,
  - the set S is finite, so per



the state, and thus also the output, will eventually cycle.

#### ► Solution:

- 1. select parameters that mitigate such issues, and
- 2. introduce selected *non*-determinism.





### Part 2: in practice (1)

- ▶ (Sub-)agenda: explain selected, example designs, organised into 4 classes, i.e.,
  - 1. "classic",
  - 2. software-oriented,
  - 3. hardware-oriented,
  - 4. system-oriented,

with a focus on design properties and trade-offs between them, e.g.,

- efficiency,
- security, i.e., quality of (pseudo-)random output,
- interface,
- assumptions,
- •

# Part 2: in practice (2)

Class #1: "classic"

Design: Linear-Feedback Shift Registers (LFSR) [5, 6].





Design: Blum-Blum-Shub (BBS) [10].

### Algorithm (BBS.SEED)

**Input:** A security parameter  $\lambda$ , and a seed  $\varsigma$ 

**Output:** An initial state  $\theta[0]$ 

Use entropy provided by  $\varsigma$  to perform the following steps:

- 1. Select two random ( $\lambda/2$ )-bit primes p and q such that  $p \equiv q \equiv 3 \pmod{4}$ , and compute  $N = p \cdot q$ .
- 2. Select a random  $s \in \{0, 1, \dots, N-1\}$  such that gcd(s, N) = 1.
- 3. Compute  $s[0] = s^2 \pmod{N}$ .
- 4. Return  $\theta[0] = (N, s[0])$ .

▶ Design: Blum-Blum-Shub (BBS) [10].

# Algorithm (BBS.UPDATE)

**Input:** A current state  $\theta[i] = (N, s[i])$ 

**Output:** A next state  $\theta[i+1]$ , and  $n_b = 1$  bit pseudo-random output b[i]

- 1. Compute  $s[i + 1] = s[i]^2 \pmod{N}$ .
- 2. Let  $b[i] = s[i+1] \pmod{2}$ , i.e., b[i] = LSB(s[i+1]).
- 3. Return  $\theta[i+1] = (N, s[i+1])$  and b[i].

# Design: ANSI X9.31 [13, Appendix A.2.4].

### Algorithm (X9.31.SEED)

**Input:** A security parameter  $\lambda$ , and a seed  $\varsigma$  **Output:** An initial state  $\theta[0]$ 

1. Use  $\lambda$  to select a block cipher with an  $n_k$ -bit key size and  $n_b$ -bit block size, e.g.,

- 2. Use entropy provided by  $\varsigma$  to derive an  $n_k$ -bit cipher key k (or pre-select a k for the PRBG).
- 3. Use entropy provided by  $\varsigma$  to derive an  $n_b$ -bit block s[0].
- 4. Return  $\theta[0] = (k, s[0])$ .

Design: ANSI X9.31 [13, Appendix A.2.4].

### Algorithm (X9.31.UPDATE)

**Input:** A current state  $\theta[i] = (k, s[i])$ 

**Output:** A next state  $\theta[i+1]$ , and  $n_b$ -bit pseudo-random output b[i]

- 1. Compute  $t' = \text{Enc}(\mathbf{k}, t)$ , where t is a  $n_b$ -bit representation of the current time.
- 2. Compute  $b[i] = \text{Enc}(k, t' \oplus s[i])$ .
- 3. Compute  $s[i+1] = \text{Enc}(k, t' \oplus b[i])$ .
- 4. Return  $\theta[i+1] = (k, s[i+1])$  and b[i].

Design: NIST CTR\_DRBG [15, Section 10.2.1].



▶ Design: NIST CTR\_DRBG [15, Section 10.2.1].



Design: NIST CTR\_DRBG [15, Section 10.2.1].



Design: NIST CTR\_DRBG [15, Section 10.2.1].



► Design: Intel Secure Key [12].

# Algorithm (RdRand entropy source) clock out 1-SHOT DIFF BUFFER heart\_clock

Design: Intel Secure Key [12].



### ► Design: Intel Secure Key [12].

# Listing (RdRand interface)

### Listing (RdRand interface)

```
1 bool rdrand64_retry( uint64_t* r, int 1 ) {
2    int i = 0;
3
4    do {
6        if( rdrand64( r ) ) {
7        }
8    } while( i++ < 1 );
9
10    return false;
11 }</pre>
```

- Design: Linux.
  - circa 1994(ish):
    - ightharpoonup maintain entropy pool  $\theta[i]$ , injecting entropy, e.g., from system-related events,
    - define a predicate

$$P(\theta[i]) = \left\{ \begin{array}{ll} \text{false} & \text{if estimated entropy in } \theta[i] \text{ is deemed insufficient} \\ \text{true} & \text{if estimated entropy in } \theta[i] \text{ is deemed} & \text{sufficient} \end{array} \right.$$

based on the concept of entropy estimation,

• expose  $\theta[i]$  to user-space via the (pseudo) files

write to /dev/random 
$$\simeq$$
 inject entropy into  $\theta[i]$ 

$$\text{read from /dev/random} \ \, \simeq \left\{ \begin{array}{l} \text{if } P(\theta[i]) = \text{false, block then sample from PRNG (re)seeded from } \theta[i] \\ \text{if } P(\theta[i]) = \text{true,} \end{array} \right. \\ \text{then sample from PRNG (re)seeded from } \theta[i]$$

read from /dev/urandom  $\simeq$  sample from PRNG (re)seeded from  $\theta[i]$ 

- Design: Linux.
  - circa 2014(ish):
    - update re. additional system call

```
\label{eq:ssize_t} ssize\_t \ getrandom(\ void^*\ x,\ size\_t\ n,\ unsigned\ int\ flags\ ) where \label{eq:getrandom} getrandom\ \simeq \left\{ \begin{array}{ll} \ if\ PRNG\ has\ not\ been\ initialised,\ then\ do\ not\ block \\ \ if\ PRNG\ has \ been\ initialised,\ then\ do\ not\ block \\ \end{array} \right.
```

this yields clear(er) semantics, and avoids need for file handle.

- Design: Linux.
  - circa 2016(ish):
    - ▶ update re. PRNG, which is changed from being based on SHA-1 to ChaCha20,
    - this yields, e.g., lower latency with respect to sampling output.

- Design: Linux.
  - circa 2020(ish):
    - update re. file-based semantics

```
/dev/urandom ≃ do not block

/dev/random ≃ { if PRNG has not been initialised, then do block if PRNG has been initialised, then do not block
```

#### Conclusions

### Quote

Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.

- von Neumann (https://en.wikiquote.org/wiki/Randomness)

### Ouote

The generation of random numbers is too important to be left to chance.

- Coveyou (https://en.wikiquote.org/wiki/Randomness)

### Quote

The design of such pseudo-random number generation algorithms, like the design of symmetric encryption algorithms, is not a task for amateurs.

- Eastlake, Schiller, and Crocker [14]

#### Conclusions

### Take away points:

- 1. A high-quality source of randomness is fundamental to more or less *every* security proof: it might be an assumption in in theory, but in practice this issue requires care.
- 2. Iff. you need to develop your own PRBG implementation, use a standard (e.g., NIST SP800-90A [15]) design or framework ...
- 3. ... often such a design can leverage a primitive (e.g., a block cipher) you need anyway, thus reducing effort, attack surface, etc.
- 4. Some golden rules:
  - use a large, high-entropy seed,
  - avoid reliance on a single entropy source where possible,
  - opt for a cryptographically secure design and ensure it is parameterised correctly,
  - hedge against failure via robust pre- and post-processing where need be,
  - include quality tests on pseudo-randomness generation (e.g., alongside functional unit testing),
  - don't compromise security for efficiency,
    - •

### Additional Reading

- Wikipedia: Randomness. url: https://en.wikipedia.org/wiki/Randomness.
- Wikipedia: Pseudorandomness. url: https://en.wikipedia.org/wiki/Pseudorandomness.
- Wikipedia: /dev/random. url: https://en.wikipedia.org/wiki/dev/random.
- ► Wikipedia: RDRAND. url: https://en.wikipedia.org/wiki/RDRAND.
- K.H. Rosen. "Chapter 7: Discrete probability". In: Discrete Mathematics and Its Applications. 7th ed. McGraw Hill, 2013.
- A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. "Chapter 5: Pseudorandom bits and sequences". In: Handbook of Applied Cryptography. CRC, 1996. URL: http://cacr.uwaterloo.ca/hac/about/chap5.pdf.
- D. Johnston. Random Number Generators Principles and Practices: A Guide for Engineers and Programmers. 1st ed. De | G Press, 2018.
- D. Eastlake, J. Schiller, and S. Crocker. Randomness Requirements for Security. Internet Engineering Task Force (IETF) Request for Comments (RFC) 4086. 2005. URL: http://tools.ietf.org/html/rfc4086.

#### References

- [1] Wikipedia: /dev/random. URL: https://en.wikipedia.org/wiki/dev/random (see p. 43).
- [2] Wikipedia: Pseudorandomness. URL: https://en.wikipedia.org/wiki/Pseudorandomness (see p. 43).
- [3] Wikipedia: Randomness. url: https://en.wikipedia.org/wiki/Randomness (see p. 43).
- [4] Wikipedia: RDRAND. url: https://en.wikipedia.org/wiki/RDRAND (see p. 43).
- [5] S.W. Golomb. Shift Register Sequences. 3rd ed. https://doi.org/10.1142/9361. Aegean Park Press, 2017 (see p. 25).
- [6] M. Goresky and A. Klapper. Algebraic Shift Register Sequences. 1st ed. https://doi.org/10.1017/CB09781139057448. Cambridge University Press, 2012 (see p. 25).
- [7] D. Johnston. Random Number Generators Principles and Practices: A Guide for Engineers and Programmers. 1st ed. De | G Press, 2018 (see p. 43).
- [8] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. "Chapter 5: Pseudorandom bits and sequences". In: Handbook of Applied Cryptography. CRC, 1996. URL: http://cacr.uwaterloo.ca/hac/about/chap5.pdf (see pp. 7, 8, 18, 43).
- [9] K.H. Rosen. "Chapter 7: Discrete probability". In: Discrete Mathematics and Its Applications. 7th ed. McGraw Hill, 2013 (see p. 43).
- [10] L. Blum, M. Blum, and M. Shub. "A Simple Unpredictable Pseudo-Random Number Generator". In: SIAM Journal on Computing 15.2 (1986), pp. 364–383 (see pp. 26, 27).
- [11] A.C. Yao. "Theory and application of trapdoor functions". In: Symposium on Foundations of Computer Science (SFCS). 1982, pp. 80–91 (see p. 19).
- [12] Intel Digital Random Number Generator (DRNG) Software Implementation Guide. Tech. rep. Intel Corp., 2012. URL: http://software.intel.com/sites/default/files/m/d/4/1/d/8/441\_Intel\_R\_DRNG\_Software\_Implementation\_Guide\_final\_Aug7.pdf (see pp. 34-36).
- [13] Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry. American National Standards Institute (ANSI) Standard X9.31. 1993 (see pp. 28, 29).
- [14] D. Eastlake, J. Schiller, and S. Crocker. Randomness Requirements for Security. Internet Engineering Task Force (IETF) Request for Comments (RFC) 4086. 2005. URL: http://tools.ietf.org/html/rfc4086 (see pp. 7, 8, 41, 43).

#### References

- [15] Recommendation for Random Number Generation Using Deterministic Random Bit Generators. National Institute of Standards and Technology (NIST) Special Publication 800-90Ar1. 2015. URL: https://doi.org/10.6028/NIST.SP.800-90Ar1 (see pp. 10-13, 20, 22, 23, 30-33, 42).
- [16] Recommendation for the Entropy Sources Used for Random Bit Generation. National Institute of Standards and Technology (NIST) Special Publication 800-90B. 2018. URL: https://doi.org/10.6028/NIST.SP.800-90B (see p. 9).