COMS30048 lecture: week #19

> Agenda: explore (pseudo-)random bit generation, via

1. an “in theory”, i.e., design-oriented perspective, and
2. an “in practice”, i.e., implementation-oriented perspective.

» Caveat!
~2hours = introductory, and (very) selective (versus definitive) coverage
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COMS30048 lecture: week #19

> Bad news: in theory, we need to consider each of
1. random bit, i.e., an
x e {0,1}
which is random,
2. random bit sequence, i.e., an
x€{0,1}*
which is random (e.g., for an AES cipher key k),
3. random number, i.e., an
xe{0,1,...,n-1}
which is random (e.g., for an RSA modulus N =p - ¢).

© Daniel Paj
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COMS30048 lecture: week #19

> Good news: in practice, we don't because
> 1. =2
e concatenate n random bits together, i.e.,
x=xo [l x|l - Nl X,
e produce x as output.
> 2. =3.
> ifn =2" for some integer 7/, then

e generate an 11’-bit sequence x’ per the above,
o interpret x’ as the integer

i<n’
_ ’
x= %
i=0
e produce x as output.
’
> if n # 2" for any integer 1/, then

7
o let 1’ be the smallest integer such that 2" >,
e generate an 1’-bit sequence x’ per the above,
e interpret x” as the integer

e if x > n, reject (or discard) it and try again; otherwise, if x < 1, produce x as output.

*. we can focus on random bits (and ignore numbers).
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Part 1: in theory (1)

Entropy
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Part 1: in theory (2)

Entropy

Definition

The concept of entropy is a measure of uncertainty with respect to a random variable. Less formally, the entropy of some
x relates to how much you know (resp. do not know) about x: if some x could be one of 2" possible values, it is said to
have n bits of entropy. In addition, we say

1. an x with n > 0 bits of entropy is termed entropic, and

2. if an entropic x has negligible probability of having been generated before, it is deemed fresh entropy.
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Part 1: in theory (2)

Entropy

Definition

The concept of entropy is a measure of uncertainty with respect to a random variable. Less formally, the entropy of some
x relates to how much you know (resp. do not know) about x: if some x could be one of 2" possible values, it is said to
have n bits of entropy. In addition, we say

1. an x with n > 0 bits of entropy is termed entropic, and

2. if an entropic x has negligible probability of having been generated before, it is deemed fresh entropy.

> Example: given a 32-bit sequence x,
> if x is random, then it has 32 bits of entropy,
> if xp = 0and x; =1 (i.e., the two LSBs of x are known), then it has 30 bits of entropy,
> if HW(x) = 14 (i.e., x has Hamming weight 14), then it has ~ 29 bits of entropy.
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Part 1: in theory (3)

Entropy

Definition

A noise source is a non-deterministic, physical process which provides a means of generating an unconditioned (or raw)
entropic output.

Applied Crypty
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Part 1:

Entropy

in theory (3)

Definition

A noise source is a non-deterministic, physical process which provides a means of generating an unconditioned (or raw)
entropic output.

> Example (see [8, Section 5.2], or [14, Section 3]):
1. hardware-based:

VYVYYVYYVYY

time between emission of (e.g., a or f§) particles during radioactive decay,
thermal (or Johnson-Nyquist) noise stemming from a resistor or capacitor,
frequency instability (or “jitter”) of a ring oscillator,

fluctuation of hard disk seek-time and access latency,

noise resulting from a disconnected audio input (or ADC),

2. software-based:

>

vvyyvyy

a high resolution system clock or cycle counter,

elapsed time between user input (e.g., key-presses or mouse movement),
content of input/output buffers (e.g., disk caches),

operating system state (e.g., load) or events (e.g., network activity),
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Part 1: in theory (4)

Entropy

Definition

An entropy source is a construction, based on a noise source, which provides a means of generating a conditioned entropic
output.

Model [, Section 2.2]

GetNoise

sNogirscee Digitisation Post-processing Conditioning GetEntropy

HealthTest
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Part 1: in theory (5)

Randomness

Definition

Per [15, Section 4], an ideal random bit-sequence
x = (x0, %1, Xn-1)
will exhibit the following properties

1.  unpredictable = the probability of guessing x; is close to }
2. unbiased = x; =0and x; = 1 occur with equal probability
3. uncorrelated = x; and x; are statistically independent

and contain 7 bits of entropy.
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Part 1: in theory (5)

Randomness

Definition

Per [15, Section 4], a pseudo-random bit-sequence
x = (X0, X1,...Xy-1)

“looks random”, i.e., exhibits the same properties as an ideal random sequence, but is generated algorithmically and thus
likely contains less than n bits of entropy.
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Part 1: in theory (6)

(Pseudo-)random bit generators

Definition

A Random Bit Generator (RBG) can be used to generates a sequence of random bits. There are two more specific cases,
namely

True Random Bit Generator (TRBG) = Non-deterministic Random Bit Generator (NRBG)
Pseudo-Random Bit Generator (PRBG) = Deterministic Random Bit Generator (DRBG)

with the right-hand terms preferred by [15]. Based on this, it is reasonable to say that

TRBG = NRBG = entropy source.
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Part 1: in theory (6)

(Pseudo-)random bit generators

Definition

A Random Bit Generator (RBG) can be used to generates a sequence of random bits. There are two more specific cases,
namely

True Random Bit Generator (TRBG)
Pseudo-Random Bit Generator (PRBG)

Non-deterministic Random Bit Generator (NRBG)
Deterministic Random Bit Generator (DRBG)

with the right-hand terms preferred by [15]. Based on this, it is reasonable to say that

TRBG = NRBG = entropy source.

> Idea: informally at least,

TRBG PRBG
> unpredictable, > predictable,
»> hardware-based, I > software-based,
> may have high latency, > can have low latency,
> can be high quality. > may be low quality.

*. we'll consider a hybrid construction.

ME] BRISTOL


mailto:csdsp@bristol.ac.uk

Part 1: in theory (7)

(Pseudo-)random bit generators

Definition

Consider a deterministic, polynomial-time algorithm G. Given a seed ¢ € {0,1}" as input, it produces G(c) € {0,1}"" as
output where 1, = f(n.) for some polynomial function f. As such, we call G a Pseudo-Random Generator (PRG) if

1. for every n. it holds that n, > n., and
2. for all polynomial-time destinguishers D, there exists a negligible function negl such that
| Pr[D(G(c)) = 1] = Pr[D(r) =1]| < negl(n)

where ¢ and r are chosen uniformly at random from {0, 1}"s and {0, 1}"" respectively.
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Part 1: in theory (7)

(Pseudo-)random bit generators

Syntax

Having fixed the (finite) space S of states, a concrete Pseudo-Random Generator (PRG) is defined by
1. analgorithm Sgep : Z X {0,1}" — S that

> accepts a security parameter and an 1¢-bit seed as input, and
> produces an initial state as output

2. an algorithm Uppate : § — S x {0,1}™ that

> accepts a current state as input, and
> produces a next state and an 71,-bit block of pseudo-random bits as output.
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Part 1: in theory (8)

(Pseudo-)random bit generators

> Translation: assuming n, = [ - n}, for some I, then

generate a sufficiently large,

1 useTRBG  ~ { high-entropy seed ¢

00] Seep(4, ¢)
o[t p[o] Urpats(0[0])
0[2] ,b[1] <« Uprbate(O[1])

«—
«—

2. use PRBG ~
Oli+1],b[i] <« Urpate(O[i])

meaning that

b= bl0] [ b[a] [ - I B[I-1] = G(c)
—— —— ~——
ny-bits  ny-bits ny-bits
- ny = ny-bits

provides the output required per the PRG definition.
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Part 1: in theory (9)

(Pseudo-)random bit generators

int getRondomNmberO

return Y, // chosen by fair dice roll.
H quaranteed to be random.

https://xkcd.com/221

Applied Cryptolc


https://xkcd.com/221
mailto:csdsp@bristol.ac.uk

Part 1: in theory (10)

(Pseudo-)random bit generators

> Problem: we need to assess the quality of our construction (and output from it).

> Solution:
1. for some instanciations, we can develop a proof,
2. for some instanciations, we must apply
> online (e.g., continuously or periodically during use), and/or
> offline (i.e., once before use)
statistical tests (see, e.g., [8, Section 5.4]) to sample outputs; note that

> the intention is to detect weakness (meaning a PRBG can only be rejected by a test),
> the conclusion is itself probabilistic, meaning use of multiple tests amplifies confidence.
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Part 1: in theory (11)

(Pseudo-)random bit generators

Definition

A PRBG is said to pass all statistical tests iff. no polynomial-time algorithm can, with probability greater than }

3
distinguish the output from a ideal random bit-sequence of the same length.

Definition

A PRBG is said to pass the next-bit test iff. no polynomial-time algorithm can, with probability greater than 3, predict
the (n + 1)-th bit of output given the previous # bits.

Theorem (Yao [ ])

If a PRBG passes the next-bit test, it will pass all statistical tests.
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Part 1: in theory (12)

(Pseudo-)random bit generators

Definition

Per [15, Section 4], imagine an attacker compromises the PRBG state at time #: we term a PRBG back-tracking resistant
(resp. prediction resistant) if said attacker cannot distinguish between an (unseen) PRBG output at time # < t (resp.
' > t) and an ideal random bit-sequence of the same length.

Definition

A Cryptographically Secure Pseudo-Random Bit Generator (CS-PRBG) is simple a PRBG whose properties make it
suitable for use within a cryptographic use-case. A CS-PRBG should (at least)

1. be a PRBG of sufficient quality, i.e., pass the next-bit test, and

2. resist state compromise attacks, i.e., be back-tracking and prediction resistant.

ME] BRISTOL
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Part 1: in theory (13)

(Pseudo-)random bit generators

» Problem: our construction is deterministic, so
> the same ¢ will yield the same 6[0] and hence any 6]j] forj > 0,
> recovery of ¢ allows computation of any 0[] forj > 0,
> recovery of 0[i] allows computation of any 6[j] forj > i,
> the set S is finite, so per

Urpate

period

the state, and thus also the output, will eventually cycle.

> Solution:
1. select parameters that mitigate such issues, and
2. introduce selected non-determinism.
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Part 1: in theory (14)

(Pseudo-)random bit generators

Definition ([, Figure 1])

0[0]
SEED e
entropy

source \9[,]‘
H[k

UPDATE
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Part 1: in theory (14)

(Pseudo-)random bit generators

Definition ([, Figure 1])

personalisation
input
nonce ——>
entropy
source
additional
input

SEED

REsEED

—\e[inlu

0[0]

oli]

_%1]

qli] € {false, true}

oli]

oli+1] € {6[i], L}

\9[{]‘
H[k

Uroas :  additional
PDATE <— input
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Part 2: in practice (1)

> (Sub-)agenda: explain selected, example designs, organised into 4 classes, i.e.,
1. “classic”,
2. software-oriented,
3. hardware-oriented,
4. system-oriented,

with a focus on design properties and trade-offs between them, e.g.,
> efficiency,

security, i.e., quality of (pseudo-)random output,

interface,

assumptions,

>
'S
>
> B
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Part 2: in practice (2)

Class #1: “classic”

> Design: Linear-Feedback Shift Registers (LFSR) [5, 6].

Algorithm (type-1, or “external” or Fibonacci, LFSR)

input On-1 ’ 02 ' e ol Oy , 6y | output

input

© Daniel Page
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Part 2: in practice (3)

Class #2: software-oriented

> Design: Blum-Blum-Shub (BBS) [10].

Algorithm (BBS.SeeD)

Input: A security parameter A, and a seed ¢
Output: An initial state 0[0]

Use entropy provided by ¢ to perform the following steps:

1. Select two random (A /2)-bit primes p and g such that p = g = 3 (mod 4), and compute N = p - g.
2. Selectarandoms € {0,1,...,N — 1} such that gcd(s, N) = 1.

3. Compute s[0] = s2 (mod N).

4. Return 0[0] = (N, s[0]).
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Part 2: in practice (3)

Class #2: software-oriented

>

Design: Blum-Blum-Shub (BBS) [10].

Algorithm (BBS.UPDATE)

Input: A current state 0[i] = (N, s[i])

Output: A next state 6[i + 1], and 1, = 1 bit pseudo-random output b[i]
1. Compute s[i + 1] = s[i]? (mod N).

2. Letb[i] = s[i + 1] (mod 2), i.e., b[i] = LSB(s[i + 1]).

3. Return 6[i + 1] = (N, s[i + 1]) and b[i].

niel Page (
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Part 2: in practice (4)

Class #2: software-oriented

> Design: ANSI X9.31 [13, Appendix A.2.4].

Algorithm (X9.31.SeeD)

Input: A security parameter A, and a seed ¢
Output: An initial state 0[0]

1. Use A to select a block cipher with an 1y-bit key size and 1,-bit block size, e.g.,

3DES ~  np= 64, n=192
AES-128  ~ mp =128, m =128
AES-192  ~  mp =128, m =192
AES-256 ~» mp =128, m =256

2. Use entropy provided by ¢ to derive an n-bit cipher key k (or pre-select a k for the PRBG).
3. Use entropy provided by ¢ to derive an 11;,-bit block s[0].
4. Return 0[0] = (k, s[0]).
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Part 2: in practice (4)

Class #2: software-oriented

>

Design: ANSI X9.31 [13, Appendix A.2.4].

Algorithm (X9.31.UPDATE)

Input: A current state 0[i] = (k, s[i])
Output: A next state 0[i + 1], and n,-bit pseudo-random output b[i]

1. Compute t’ = Enc(k, t), where t is a n5-bit representation of the current time.
2. Compute b[i] = Enc(k, ' & s[i]).

3. Compute s[i + 1] = Enc(k, t’ @ b[i]).

4. Return O[i + 1] = (k, s[i + 1]) and b[].
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Part 2: in practice (5)

Class #2: software-oriented

> Design: NIST CTR_DRBG [15, Section 10.2.1].

Algorithm (CTR_DRBG.UPDATE )

provided dats—» @

ani

https://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
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Part 2: in practice (5)

Class #2: software-oriented

> Design: NIST CTR_DRBG [15, Section 10.2.1].

Algorithm (CTR_DRBG.INSTANTIATE )

(Opi) additional input

BLOCK CIPHER
DERIVATION
FUNCTION

seedlen bits

UPDATE

https://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
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Part 2: in practice (5)

Class #2: software-oriented

> Design: NIST CTR_DRBG [15, Section 10.2.1].
Algorithm (CTR_DRBG.GENERATE )

Iterate

|

Block
Encrypt

—

State

reseed
-

Byl IIBis

Pseudorandom bits

https://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
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Part 2: in practice (5)

Class #2: software-oriented

> Design: NIST CTR_DRBG [15, Section 10.2.1].
Algorithm (CTR_DRBG.RESEED)

https://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
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Part 2: in practice (6)

Class #3: hardware-oriented

> Design: Intel Secure Key [12].

Algorithm (RdRand entropy source)

. o
-
— | A

e s

e
_qé s EIY I E
R Tacaps B capsL

A

node A 1| node B
heart_clock ,J L,
} =
o
ot i
N

https://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.pdf



https://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.pdf
mailto:csdsp@bristol.ac.uk

Part 2: in practice (6)

Class #3: hardware-oriented

> Design: Intel Secure Key [12].

Algorithm (RdRand TRBG)

Raw Entropy Digital Post-Processing

Generation
Deterministic Random Bit
Generator (DRBG)
g o
Healths | |8 ] &
« eal E =l
Entropy 1 ] g S o S
B Swellness S 2 Fy
Source F . o a a i)
(€S) @, Testing 3 = 7 2o
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o
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4
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7
B
8
4

https://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.pdf
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Part 2: in practice (7)

Class #3: hardware-oriented

> Design: Intel Secure Key [12].

Listing (RdRand interface)

bool rdrand64( uint64_t* r ) {

1

2 bool success;

3

4 asm( "rdrand %0 ; setc %1"

5 @ "=r" (*r), "=gm" (success) );
6

7 ~ return success;

8%

Listing (RdRand interface)

bool rdrand64_retry( uint64_t* r, int 1 ) {

1

2 int i =0

3

1 do {

5 if( rdrand64( r ) ) {
6 return true;

7 }

8 } while( i++ < 1 );
9

10 return false;

11}
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Part 2: in practice (8)
Class #4: system-oriented
> Design: Linux.
> circa 1994(ish):
> maintain entropy pool 6[i], injecting entropy, e.g., from system-related events,

> define a predicate

P(O[i]) = false if estimated entropy in 6][i] is deemed insufficient
=1 true  if estimated entropy in 0[i] is deemed  sufficient

based on the concept of entropy estimation,
> expose 0][i] to user-space via the (pseudo) files

write to /dev/random = inject entropy into 01i]

df /dev/randon =~ if P(0[i]) = false, block then sample from PRNG (re)seeded from 0[i]
read trom /dev/random =\ i p(g[i]) = true, then sample from PRNG (re)seeded from 6][i]

read from /dev/urandom =~ sample from PRNG (re)seeded from 6[i]
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Part 2: in practice (8)
Class #4: system-oriented
> Design: Linux.
> circa 2014(ish):
> update re. additional system call
ssize_t getrandom( void* x, size_t n, unsigned int flags )

where
trand - if PRNG has not been initialised, then do block
getrandom = if PRNG has been initialised, then do not block

> this yields clear(er) semantics, and avoids need for file handle.
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Part 2: in practice (8)

Class #4: system-oriented

> Design: Linux.
> circa 2016(ish):
> update re. PRNG, which is changed from being based on SHA-1 to ChaCha20,
> this yields, e.g., lower latency with respect to sampling output.
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Part 2: in practice (8)
Class #4: system-oriented
> Design: Linux.
> circa 2020(ish):
> update re. file-based semantics

/dev/urandom = do not block

13

/dev/random

{ if PRNG has not been initialised, then do block

if PRNG has been initialised, then do not block
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Conclusions

Quote

Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.

—von Neumann (https://en.wikiquote.org/wiki/Randomness)

Quote

The generation of random numbers is too important to be left to chance.

— Coveyou (https://en.wikiquote.org/wiki/Randomness)

Quote

The design of such pseudo-random number generation algorithms, like the design of symmetric encryption algorithms, is not
a task for amateurs.

— Eastlake, Schiller, and Crocker [14]
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Conclusions

> Take away points:

1.

2.

A high-quality source of randomness is fundamental to more or less every security proof: it
might be an assumption in in theory, but in practice this issue requires care.

Iff. you need to develop your own PRBG implementation, use a standard (e.g., NIST
SP800-90A [15]) design or framework ...

. ... often such a design can leverage a primitive (e.g., a block cipher) you need anyway, thus

reducing effort, attack surface, etc.

. Some :

> use a large, high-entropy seed,

avoid reliance on a single entropy source where possible,

opt for a cryptographically secure design and ensure it is parameterised correctly,

hedge against failure via robust pre- and post-processing where need be,

include quality tests on pseudo-randomness generation (e.g., alongside functional unit testing),
don’t compromise security for efficiency,

© Daniel Page

Applie


mailto:csdsp@bristol.ac.uk

Additional Reading

Y Y VY VY VY

v

Wikipedia: Randomness. urL: https://en.wikipedia.org/wiki/Randomness.

Wikipedia: Pseudorandomness. urL: https://en.wikipedia.org/wiki/Pseudorandomness.

Wikipedia: /dev/random. urL: https://en.wikipedia.org/wiki/dev/random.

Wikipedia: RDRAND. urL: https://en.wikipedia.org/wiki/RDRAND.

K.H. Rosen. “Chapter 7: Discrete probability”. In: Discrete Mathematics and Its Applications. 7th ed. McGraw Hill, 2013.

AlJ. Menezes, P.C. van Oorschot, and S.A. Vanstone. “Chapter 5: Pseudorandom bits and sequences”. In: Handbook of Applied
Cryptography. CRC, 1996. urL: http://cacr.uwaterloo.ca/hac/about/chap5.pdf.

D. Johnston. Random Number Generators — Principles and Practices: A Guide for Engineers and Programmers. 1st ed. De | G Press, 2018.

D. Eastlake, J. Schiller, and S. Crocker. Randomness Requirements for Security. Internet Engineering Task Force (IETF) Request for
Comments (RFC) 4086. 2005. urL: http://tools.ietf.org/html/rfc4086.
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