Applied Cryptology

Daniel Page

Department of Computer Science, University Of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB. UK. ⟨csdsp@bristol.ac.uk⟩

September 5, 2025

Keep in mind there are *two* PDFs available (of which this is the latter):

- 1. a PDF of examinable material used as lecture slides, and
- 2. a PDF of non-examinable, extra material:
 - the associated notes page may be pre-populated with extra, written explaination of material covered in lecture(s), plus
 - anything with a "grey'ed out" header/footer represents extra material which is useful and/or interesting but out of scope (and hence not covered).

Notes:
Notes:

COMS30048 lecture: week #24

Δ	$\boldsymbol{\sigma}$	Δ1	n.	а	9	٠

- 1. a 2-part unit summary:
 - recap re. motivation, i.e., why the unit exists, what did and didn't we do in the unit,
- 2. drop-in slot re. coursework assignment.

© Daniel Page (
Applie	d Cryptology

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (1)

Quote

The function BN_nist_mod_384 (in crypto/bn/bn_nist.c) gives wrong results for some inputs.

- Reimann [5]

Notes:		

1	Notes:			

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (2)

Issue 1: arithmetic on NIST-P-{256, 384}

Algorithm (NIST-P-256-Reduce, per Solinas [6, Example 3, Page 20])

Input: For w = 32-bit words, a 16-word integer product $z = x \cdot y$ and the modulus $p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$ **Output:** The result $r = z \pmod{p}$

1. Form the nine, 8-word intermediate variables

2. Compute

$$r = S_0 + 2S_1 + 2S_2 + S_3 + S_4 - S_5 - S_6 - S_7 - S_8 \pmod{p}$$
.

3. Return $0 \le r < p$.

© Daniel Page (excleption actual)

Applied Cryptology

University of BRISTOL

git # b282dbb9 @ 2025-09-03

Notes:

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (2) Issue 1: arithmetic on NIST-P-{256,384}

Algorithm (NIST-P-256-Reduce, per OpenSSL 0.9.8g)

Input: For w = 32-bit words, a 16-word integer product $z = x \cdot y$ and the modulus $p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$ **Output:** The (potentially incorrect) result $r = z \pmod{p}$

1. Form the nine, 8-word intermediate variables

2. Compute

$$S = S_0 + 2S_1 + 2S_2 + S_3 + S_4 - S_5 - S_6 - S_7 - S_8$$

= $t + c \cdot 2^{256}$

3. Compute

$$r = t - c \cdot p \pmod{2^{256}}$$

= $t - \text{sign}(c) \cdot T[|c|] \pmod{2^{256}}$

for pre-computed $T[i] = i \cdot p$.

4. If $r \ge p$ (resp. r < 0) then update $r \leftarrow r - p$ (resp. $r \leftarrow r + p$), return r.

Daniel Page (ssdsp@bristol.ac.ul) Applied Cryptology University of BRISTOL

otes:	

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (3) Issue 1: arithmetic on NIST-P-{256,384}

- Observation(s):
 - ▶ good: BN_nist_mod_256 (resp. BN_nist_mod_384) is more efficient.
 - bad: BN_nist_mod_256 (resp. BN_nist_mod_384) can produce an incorrect result, e.g.,
 - 1. triggered deliberately with special-form operands

$$x = (2^{32} - 1) \cdot 2^{224} + 3 \cdot 2^{128} + x_0$$

$$y = (2^{32} - 1) \cdot 2^{224} + 1 \cdot 2^{96} + y_0$$

for random $0 \le x_0, y_0 < 2^{32}$, or

2. triggered randomly with probability $\sim 10 \cdot 2^{-29}$.

© Daniel Page (csdsp@bristol.ac	
Applied Camptology	

University of BRISTOL

git # b282dbb9 @ 2025-09-0

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (4) Issue 2: (opt-out) ephemeral-static EC-DHE

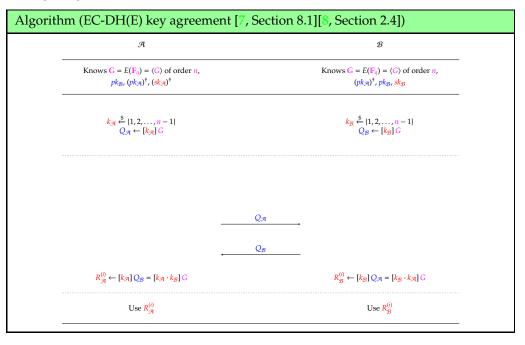
Я		${\cal B}$
Knows $G = E(\mathbf{F}_q) = \langle G \rangle$ of order n , $pk_{\mathcal{B}}, (pk_{\mathcal{A}})^{\dagger}, (\mathbf{sk}_{\mathcal{A}})^{\dagger}$		Knows $G = E(\mathbb{F}_q) = \langle G \rangle$ of order n $(pk_{\mathcal{P}_q})^{\dagger}, pk_{\mathcal{B}_l}, sk_{\mathcal{B}_l}$
$k_{\mathcal{A}}^{(0)} \stackrel{\$}{\leftarrow} \{1, 2, \dots, n-1\}$		$k_{g}^{(i)} \stackrel{\$}{\sim} \{1, 2, \dots, n-1\}$
$Q_{\mathcal{A}}^{(i)} \leftarrow \left[k_{\mathcal{A}}^{(i)}\right] G$		$Q_{\mathcal{B}}^{(i)} \leftarrow \left[k_{\mathcal{B}}^{(i)}\right]G$
_	$Q_{\mathcal{A}}^{(i)}$	→
-	$Q_{\mathcal{B}}^{(i)}$	_
$R_{\mathcal{A}}^{(i)} \leftarrow \left[k_{\mathcal{A}}^{(i)}\right] Q_{\mathcal{B}}^{(i)} = \left[k_{\mathcal{A}}^{(i)} \cdot k_{\mathcal{B}}^{(i)}\right] G$		$R_{\mathcal{B}}^{(i)} \leftarrow \left[k_{\mathcal{B}}^{(i)}\right] Q_{\mathcal{A}}^{(i)} = \left[k_{\mathcal{B}}^{(i)} \cdot k_{\mathcal{A}}^{(i)}\right] G$
Use $R_{a}^{(i)}$		Use $R_{g}^{(i)}$

© Daniel	Page (csdsp@bristol.ac.u
	Applied Cryptology

NT .

Notes:

https://wiki.openssl.org/index.php/Diffie_Hellman


and

https://wiki.openssl.org/index.php/Elliptic_Curve_Diffie_Hellman

Note that the former explicitly warns against use of anonymous variants, offering a way to exclude them from the cipher suite list.

It seems reasonable to say that the static-static and ephemeral-static options are confusion with respect to, e.g., the ECDHE cipher suite
identifier (which implies ephemeral, but not which, if any party respects this).

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (4) Issue 2: (opt-out) ephemeral-static EC-DHE

University of BRISTOL

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (4) Issue 2: (opt-out) ephemeral-static EC-DHE

hm (EC-DH(E) key agreement [7, S я	g
Knows $G = E(\mathbf{F}_{ij}) = \langle G \rangle$ of order n , $pk_{\mathcal{B}}, (pk_{\mathcal{A}})^{\dagger}, (\mathbf{sk}_{\mathcal{A}})^{\dagger}$	Knows $G = E(\mathbb{F}_q) = \langle G \rangle$ of order n , $(pk_{\mathcal{A}})^{\dagger}, pk_{\mathcal{B}}, sk_{\mathcal{B}}$
	$k_{\mathcal{B}} \stackrel{\mathcal{S}}{\leftarrow} \{1, 2, \dots, n-1\}$ $Q_{\mathcal{B}} \leftarrow [k_{\mathcal{B}}] G$
$k_{\mathcal{A}}^{(i)} \stackrel{\$}{\sim} \{1, 2, \dots, n-1\}$ $Q_{\mathcal{A}}^{(i)} \leftarrow [k_{\mathcal{A}}^{(i)}] G$	
	O ⁽ⁱ⁾
	$Q_{\mathcal{B}}$
$R_{\mathcal{A}}^{(i)} \leftarrow \left[k_{\mathcal{A}}^{(i)}\right] Q_{\mathcal{B}} = \left[k_{\mathcal{A}}^{(i)} \cdot k_{\mathcal{B}}\right] G$	$R_{\mathcal{B}}^{(i)} \leftarrow [k_{\mathcal{B}}] Q_{\mathcal{A}}^{(i)} = \left[k_{\mathcal{B}} \cdot k_{\mathcal{A}}^{(i)} \right] G$
Use $R^{(i)}_{\mathcal{A}}$	Use $R_{m{g}}^{(i)}$

University of BRISTOL

· A high-level overview of how the above relates to OpenSSL can be found at

https://wiki.openssl.org/index.php/Diffie_Hellman

and

 $https://wiki.openssl.org/index.php/Elliptic_Curve_Diffie_Hellman$

Note that the former explicitly warns against use of anonymous variants, offering a way to exclude them from the cipher suite list.

• It seems reasonable to say that the static-static and ephemeral-static options are confusion with respect to, e.g., the ECDHE cipher suite identifier (which implies ephemeral, but not which, if any party respects this).

· A high-level overview of how the above relates to OpenSSL can be found at

https://wiki.openssl.org/index.php/Diffie_Hellman

and

 $https://wiki.openssl.org/index.php/Elliptic_Curve_Diffie_Hellman$

Note that the former explicitly warns against use of anonymous variants, offering a way to exclude them from the cipher suite list.

• It seems reasonable to say that the static-static and ephemeral-static options are confusion with respect to, e.g., the ECDHE cipher suite identifier (which implies ephemeral, but not which, if any party respects this).

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (5) Issue 2: (opt-out) ephemeral-static EC-DHE

- Observation(s):
 - **good**: the key agreement is more efficient (for the server).
 - good: input points are validated by testing whether

$$P_y^2 \stackrel{?}{=} P_x^3 + a_4 P_x + a_6$$

given $P = (P_x, P_y)$.

- bad: ephemeral-static EC-DHE is the default i.e.,
 - uses a per-invocation (of the library) rather than a per-session key, *unless*
 - one explicitly uses SSL_CTX_set_options using SSL_OP_SINGLE_ECDH_USE

which means k_B is a static, fixed target for any attack.

- **bad**: if we select $P = (P_x, P_y)$ as follows
 - 1. Select P_x such that during the computation of the RHS $t' = (P_x^2 + a_4) \cdot P_x + a_6 \pmod{p}$
 - the step $t'_0 = P_x^2 \pmod{p}$ does not trigger the bug, and
 - the step $t_1' = (t_0' + a_4) \cdot P_x \pmod{p}$ does trigger the bug, and
 - t' is a quadratic residue modulo p.
 - 2. Compute $P_{\nu} = \sqrt{t'} \pmod{p}$.

then P passes validation, but is on some curve E' rather than E.

© Daniel Page (csdsp@bristol.a Applied Cryptology University of BRISTOL

git # b282dbb9 @ 2025-09-0

Notes:

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (6) $_{\mbox{\scriptsize An attack!}}$

Quote

Decrypting ciphertexts on any computer which multiplies even one pair of numbers incorrectly can lead to full leakage of the secret key, sometimes with a single well-chosen ciphertext.

- Biham et. al. [1, Page 1]

Notes:	

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (7) An attack!

► Scenario:

ightharpoonup given the following interaction between an **attacker** $\mathcal E$ and a **target** $\mathcal T$

- and noting that
 - there are no countermeasures implemented,
 - the Montgomery multiplication implementation is FIOS-based [3],
 - the $(w \times w)$ -bit integer multiplier hardware has a bug: when computing $r = x \times y$ if

$$x \neq \alpha$$
 \forall $y \neq \beta$ \Rightarrow r is correct $x = \alpha$ \land $y = \beta$ \Rightarrow r is incorrect

for some known (but arbitrary) α and β .

▶ how can \mathcal{E} mount a successful attack, i.e., recover $\frac{d}{d}$?

© Daniel Page (csdsp@bristol.ac.uk) Applied Cryptology	University of BRISTOL

git # b282dbb9 @ 2025-09-03

A real-world story: an attack [2] on TLS $1.2 + OpenSSL\ 0.9.8g\ (8)$ An attack!

- ► Attack [1, Section 4.2]:
 - ▶ in some t-th step, \mathcal{E}
 - ightharpoonup knows some more-significant portion of the binary expansion of d, and
 - ightharpoonup aims to recover d_t , the next less-significant unknown bit,
 - rightharpoonup select a c so during decryption when i = t and just after line #6

$$\exists j$$
 such that $\hat{r}_j = \alpha$
 $\exists j$ such that $\hat{c}_j = \beta$

i.e., α and β occur in the representations of \hat{r} and \hat{c} ,

this selection means

$$\frac{d_t}{d_t} = 0 \Rightarrow \hat{r}$$
 is not multiplied by $\hat{c} \Rightarrow$ the bug is not triggered $\frac{d_t}{d_t} = 1 \Rightarrow \hat{r}$ is multiplied by $\hat{c} \Rightarrow$ the bug is triggered

test whether

$$m^e \pmod{N} \stackrel{?}{=} c$$

and infer

$$m$$
 is correct \Rightarrow the bug was not triggered \Rightarrow $d_t = 0$ m is incorrect \Rightarrow the bug was triggered \Rightarrow $d_t = 1$

82dbb9@2025_09_03

Notes:	
Notes:	

Not	tes:			
1				
1				

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (9) An attack!

Feature	Biham et. al. [1, Section 4.2]	Brumley et. al. [2, Section 3]
Target	Fixed d	Fixed $k_{\mathcal{T}}$
Input	Arbitrary poisoned integer $c \in \mathbb{Z}_N^*$	Controlled distinguisher point $Q_{\mathcal{E}} = [k_{\mathcal{E}}] G \in E(\mathbb{F}_p)$
Computation	Left-to-right binary exponentiation	Left-to-right (modified) wNAF scalar multiplication
Leakage	Re-encrypt <i>m</i> using <i>e</i> , check against <i>c</i>	Handshake success/failure

Applied Cryptology Salar D1C3 1 O.D. git # 02020009 @ 2023-09-03	© Daniel Page ⟨csdsp@bristol.ac.uk⟩ Applied Cryptology	University of BRISTOL	git # b282dbb9 @ 2025-09-03
--	---	-----------------------	-----------------------------

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (10) A patch?

- ► Epilogue:
 - ▶ good(ish):

Quote

We appreciate you reporting this issue to us but, unfortunately, we aren't inclined to handle this vulnerability because it is already patched and only affects obsolete Linux distributions.

- CERT

Notes:

• The analysis paper by Martin et al. [4] was published in 2013: the attack paper by Brumley et al. [2] was published in 2012, but OpenSSL 0.9.8g was released in 2007 (i.e., much earlier).

https://jscholarship.library.jhu.edu/items/00b58834-a88c-449e-ab23-db2f44207383

iel Page (satspiloristol.ac.ul)

Applied Cryptology

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (10) A patch?

► Epilogue:

bad: even circa 2013, the reality [4] seemed to differ somewhat:

Version	Percentage
0.9.8e-fips-rhel5	37.25
0.9.8g	14.50
0.9.7a	7.02
0.9.8o	4.76
1.0.0-fips	4.36
0.9.7d	2.91
0.9.8n	2.75
0.9.7e	1.94
0.9.8c	1.80
0.9.8m	1.74
0.9.8e	1.72
0.9.8r	1.71

Distribution	OSSL Version	CVEs
Debian Squeeze (6.0)	0.9.80	11
Debian Lenny (5.0)	0.9.8g	24
Debian Etch (4.0)	0.9.8c	26
RHEL 6	0.9.8e/1.0.0-fips	0/14
RHEL 5	0.9.7a/0.9.8e-fips	14/0
RHEL 4	0.9.6b/0.9.7a	9/14
Fedora 18	1.0.1c	3
Fedora 17	1.0.0i	3
Fedora 16	1.0.0e	9

Table 3: Default OpenSSL versions shipping with popular

Table 2: Most popular OpenSSL versions on the Internet.

https://jscholarship.library.jhu.edu/items/00b58834-a88c-449e-ab23-db2f44207383

© Daniel Page (csdsp@bristo Applied Cryptology

University of BRISTOL

Unit summary (1)

► Summary:

tps:/	/memegenerator.net	
	@ Daniel Page (csdsn@hristol ac	

E781/	
100 Km	University of
1 4 5	DDICTOI

ı		
	NT-	

•	The analysis paper by Martin et al. [4] was published in 2013: the attack paper by Brumley et al. [2] was published in 2012, bu
	OpenSSL 0.9.8g was released in2007 (i.e., much earlier).

Notes:	

Unit summary (2)

- ▶ Summary: what *have* we done includes
 - 1. focused on some high-level outcomes:
 - improved

```
awareness understanding skills 

⇒ ability to engage with problems, produce solutions, ...

:
```

- ▶ general concepts (versus specific examples) ⇒ long-term (versus short-term) value.
- 2. highlighted some high-level principles:
 - most effective implementation will be domain-specific,
 - apply adversarial thinking to everything,
 - need for and value in well-considered trade-offs,
 - don't over-optimise to the point efficiency > security,
 - apply "inverse Postel's Law", i.e., be very strict re. what you accept as input,
 - **.**..
- 3. exposed some low-level detail:
 - tools, techniques, and technologies,
 - shift from abstract toward and including concrete (e.g., AES versus generic block cipher),
 - written standards, RFCs, etc. (e.g., FIPS-197 versus lecture slides),
 - **.**..

```
Applied Cryptology
```


git # b282dbb9 @ 2025-09-0

Unit summary (3)

- ▶ Summary: what *haven't* we done includes
 - 1. greater *depth*, i.e., more X for $X \in COMS30048$:
 - more implementation
 - platforms (e.g., FPGAs, ASICs, GPUs, ..., JavaScript versus C)
 - constraints (e.g., from use-case, platform, tooling, ...)
 - co-design (e.g., hardware/software, specification/implementation, ...)
 - more attacks
 - more countermeasures
 - more primitives (e.g., PQC, LWC, hash functions, ..., FHE, MPC, ...)
 - more protocols (e.g., DNSSEC, IPSec, ...)
 - 2. greater *breadth*, i.e., more X for $X \notin COMS30048$:
 - hardware security (e.g., TEEs, HSMs, secure boot and update, FDE, ...)
 - ▶ formal verification
 - key management (e.g., secure generation, storage, and erasure, ...)
 - social-technical (e.g., usability, politics, risk analysis, supply chain, disclosure, ...)
 - certification and standardisation processes
 - ٠..

Notes:	

Notes:			

References

- E. Biham, Y. Carmeli, and A. Shamir. "Bug Attacks". In: Advances in Cryptology (CRYPTO). Vol. 5157. LNCS. Springer-Verlag, 2008, pp. 221–240 (see pp. 23, 27, 29).
- [2] B. Brumley et al. "Practical realisation and elimination of an ECC-related software bug attack". In: Topics in Cryptology (CT-RSA). LNCS 7178. Springer-Verlag, 2012, pp. 171–186 (see pp. 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31–34).
- [3] Ç.K. Koç, T. Acar, and B.S. Kaliski. "Analyzing and comparing Montgomery multiplication algorithms". In: IEEE Micro 16.3 (1996), pp. 26–33 (see p. 25).
- [4] P.D. Martin et al. Classifying Network Protocol Implementation Versions: An OpenSSL Case Study. Tech. rep. 13-01. Johns Hopkins University, 2013. URL: http://www.michaelrushanan.org/pdf/martin.pdf (see pp. 31-34).
- [5] H. Reimann. BN_nist_mod_384 gives wrong answers. openssl-dev mailing list #1593. 2007. URL: http://marc.info/?t=119271238800004 (see p. 7).
- [6] J.A. Solinas. Generalized Mersenne Numbers. Tech. rep. CORR 99-39. Centre for Applied Cryptographic Research (CACR), University of Waterloo, 1999 (see p. 9).
- [7] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol version 1.2. Internet Engineering Task Force (IETF) Request for Comments (RFC) 5246. 2008. URL: http://tools.ietf.org/html/rfc5246 (see pp. 15, 17, 19).
- [8] E. Rescorla. Diffie-Hellman Key Agreement Method. Internet Engineering Task Force (IETF) Request for Comments (RFC) 2631. 1999. URL: http://tools.ietf.org/html/rfc2631 (see pp. 15, 17, 19).

Daniel Page (csdsp@bristol.ac.uk) Applied Cryptology	University of BRISTOL

git # b282dbb9 @ 2025-09-03

Notes:		