
Applied Cryptology

Daniel Page

Department of Computer Science,
University Of Bristol,

Merchant Venturers Building,
Woodland Road,

Bristol, BS8 1UB. UK.
〈csdsp@bristol.ac.uk〉

September 5, 2025

Keep in mind there are two PDFs available (of which this is the latter):
1. a PDF of examinable material used as lecture slides, and
2. a PDF of non-examinable, extra material:
▶ the associated notes page may be pre-populated with extra, written explaination of

material covered in lecture(s), plus
▶ anything with a “grey’ed out” header/footer represents extra material which is

useful and/or interesting but out of scope (and hence not covered).

Notes:

Notes:



COMS30048 lecture: week #24

▶ Agenda:
1. a 2-part unit summary:
▶ recap re. motivation, i.e., why the unit exists,
▶ what did and didn’t we do in the unit,

2. drop-in slot re. coursework assignment.

© Daniel Page 〈csdsp@bristol.ac.uk〉
Applied Cryptology git # b282dbb9 @ 2025-09-03

Notes:

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (1)

Quote

The function BN_nist_mod_384 (in crypto/bn/bn_nist.c) gives wrong results for some inputs.

– Reimann [5]
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A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (2)
Issue 1: arithmetic on NIST-P-{256, 384}

Algorithm (NIST-P-256-Reduce, per Solinas [6, Example 3, Page 20])

Input: For w = 32-bit words, a 16-word integer product z = x · y and the modulus p = 2256 − 2224 + 2192 + 296 − 1
Output: The result r = z (mod p)
1. Form the nine, 8-word intermediate variables

S0 = 〈 z0 , z1 , z2 , z3 , z4 , z5 , z6 , z7 〉
S1 = 〈 0, 0, 0, z11 , z12 , z13 , z14 , z15 〉
S2 = 〈 0, 0, 0, z12 , z13 , z14 , z15 , 0 〉
S3 = 〈 z8 , z9 , z10 , 0, 0, 0, z14 , z15 〉
S4 = 〈 z9 , z10 , z11 , z13 , z14 , z15 , z13 , z8 〉
S5 = 〈 z11 , z12 , z13 , 0, 0, 0, z8 , z10 〉
S6 = 〈 z12 , z13 , z14 , z15 , 0, 0, z9 , z11 〉
S7 = 〈 z13 , z14 , z15 , z8 , z9 , z10 , 0, z12 〉
S8 = 〈 z14 , z15 , 0, z9 , z10 , z11 , 0, z13 〉

2. Compute
r = S0 + 2S1 + 2S2 + S3 + S4 − S5 − S6 − S7 − S8 (mod p).

3. Return 0 ≤ r < p.
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A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (2)
Issue 1: arithmetic on NIST-P-{256, 384}

Algorithm (NIST-P-256-Reduce, per OpenSSL 0.9.8g)

Input: For w = 32-bit words, a 16-word integer product z = x · y and the modulus p = 2256 − 2224 + 2192 + 296 − 1
Output: The (potentially incorrect) result r = z (mod p)
1. Form the nine, 8-word intermediate variables

S0 = 〈 z0 , z1 , z2 , z3 , z4 , z5 , z6 , z7 〉
S1 = 〈 0, 0, 0, z11 , z12 , z13 , z14 , z15 〉
S2 = 〈 0, 0, 0, z12 , z13 , z14 , z15 , 0 〉
S3 = 〈 z8 , z9 , z10 , 0, 0, 0, z14 , z15 〉
S4 = 〈 z9 , z10 , z11 , z13 , z14 , z15 , z13 , z8 〉
S5 = 〈 z11 , z12 , z13 , 0, 0, 0, z8 , z10 〉
S6 = 〈 z12 , z13 , z14 , z15 , 0, 0, z9 , z11 〉
S7 = 〈 z13 , z14 , z15 , z8 , z9 , z10 , 0, z12 〉
S8 = 〈 z14 , z15 , 0, z9 , z10 , z11 , 0, z13 〉

2. Compute
S = S0 + 2S1 + 2S2 + S3 + S4 − S5 − S6 − S7 − S8

= t + c · 2256

3. Compute
r = t − c · p (mod 2256)

= t − sign(c) · T[|c|] (mod 2256)
for pre-computed T[i] = i · p.

4. If r ≥ p (resp. r < 0) then update r← r − p (resp. r← r + p), return r.
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A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (3)
Issue 1: arithmetic on NIST-P-{256, 384}
▶ Observation(s):
▶ good: BN_nist_mod_256 (resp. BN_nist_mod_384) is more efficient.
▶ bad: BN_nist_mod_256 (resp. BN_nist_mod_384) can produce an incorrect result, e.g.,

1. triggered deliberately with special-form operands

x = (232 − 1) · 2224 + 3 · 2128 + x0
y = (232 − 1) · 2224 + 1 · 296 + y0

for random 0 ≤ x0 , y0 < 232 , or
2. triggered randomly with probability ∼ 10 · 2−29.
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A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (4)
Issue 2: (opt-out) ephemeral-static EC-DHE

Algorithm (EC-DH(E) key agreement [7, Section 8.1][8, Section 2.1])
A B

Knows G = E(Fq) = ⟨G⟩ of order n,
pkB, (pkA)†, (skA)†

Knows G = E(Fq) = ⟨G⟩ of order n,
(pkA)†, pkB, skB

k(i)
A

$←− {1, 2, . . . ,n − 1}
Q(i)
A ←

[
k(i)
A
]

G

k(i)
B

$←− {1, 2, . . . ,n − 1}
Q(i)
B ←

[
k(i)
B
]

G

R(i)
A ←

[
k(i)
A
]

Q(i)
B =
[
k(i)
A · k(i)

B
]

G R(i)
B ←

[
k(i)
B
]

Q(i)
A =
[
k(i)
B · k

(i)
A
]

G

Use R(i)
A Use R(i)

B

Q(i)
A

Q(i)
B
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• A high-level overview of how the above relates to OpenSSL can be found at

https://wiki.openssl.org/index.php/Diffie_Hellman

and
https://wiki.openssl.org/index.php/Elliptic_Curve_Diffie_Hellman

Note that the former explicitly warns against use of anonymous variants, offering a way to exclude them from the cipher suite list.

• It seems reasonable to say that the static-static and ephemeral-static options are confusion with respect to, e.g., the ECDHE cipher suite
identifier (which implies ephemeral, but not which, if any party respects this).



A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (4)
Issue 2: (opt-out) ephemeral-static EC-DHE

Algorithm (EC-DH(E) key agreement [7, Section 8.1][8, Section 2.4])
A B

Knows G = E(Fq) = ⟨G⟩ of order n,
pkB, (pkA)†, (skA)†

Knows G = E(Fq) = ⟨G⟩ of order n,
(pkA)†, pkB, skB

kA
$←− {1, 2, . . . ,n − 1}
QA ← [kA] G

kB
$←− {1, 2, . . . ,n − 1}
QB ← [kB] G

R(i)
A ← [kA] QB = [kA · kB] G R(i)

B ← [kB] QA = [kB · kA] G

Use R(i)
A Use R(i)

B

QA

QB
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• A high-level overview of how the above relates to OpenSSL can be found at

https://wiki.openssl.org/index.php/Diffie_Hellman

and
https://wiki.openssl.org/index.php/Elliptic_Curve_Diffie_Hellman

Note that the former explicitly warns against use of anonymous variants, offering a way to exclude them from the cipher suite list.

• It seems reasonable to say that the static-static and ephemeral-static options are confusion with respect to, e.g., the ECDHE cipher suite
identifier (which implies ephemeral, but not which, if any party respects this).

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (4)
Issue 2: (opt-out) ephemeral-static EC-DHE

Algorithm (EC-DH(E) key agreement [7, Section 8.1][8, Section 2.3])
A B

Knows G = E(Fq) = ⟨G⟩ of order n,
pkB, (pkA)†, (skA)†

Knows G = E(Fq) = ⟨G⟩ of order n,
(pkA)†, pkB, skB

kB
$←− {1, 2, . . . ,n − 1}
QB ← [kB] G

k(i)
A

$←− {1, 2, . . . ,n − 1}
Q(i)
A ←

[
k(i)
A
]

G

R(i)
A ←

[
k(i)
A
]

QB =
[
k(i)
A · kB

]
G R(i)

B ← [kB] Q(i)
A =
[
kB · k(i)

A
]

G

Use R(i)
A Use R(i)

B

Q(i)
A

QB
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• A high-level overview of how the above relates to OpenSSL can be found at

https://wiki.openssl.org/index.php/Diffie_Hellman

and
https://wiki.openssl.org/index.php/Elliptic_Curve_Diffie_Hellman

Note that the former explicitly warns against use of anonymous variants, offering a way to exclude them from the cipher suite list.

• It seems reasonable to say that the static-static and ephemeral-static options are confusion with respect to, e.g., the ECDHE cipher suite
identifier (which implies ephemeral, but not which, if any party respects this).



A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (5)
Issue 2: (opt-out) ephemeral-static EC-DHE

▶ Observation(s):
▶ good: the key agreement is more efficient (for the server).
▶ good: input points are validated by testing whether

P2
y

?
= P3

x + a4Px + a6

given P = (Px , Py).
▶ bad: ephemeral-static EC-DHE is the default i.e.,
▶ uses a per-invocation (of the library) rather than a per-session key, unless
▶ one explicitly uses SSL_CTX_set_options using SSL_OP_SINGLE_ECDH_USE
which means kℬ is a static, fixed target for any attack.

▶ bad: if we select P = (Px , Py) as follows
1. Select Px such that during the computation of the RHS t′ = (P2

x + a4) · Px + a6 (mod p)
• the step t′0 = P2

x (mod p) does not trigger the bug, and
• the step t′1 = (t′0 + a4) · Px (mod p) does trigger the bug, and
• t′ is a quadratic residue modulo p.

2. Compute Py =
√

t′ (mod p).
then P passes validation, but is on some curve E′ rather than E.
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A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (6)
An attack!

Quote

Decrypting ciphertexts on any computer which multiplies even one pair of numbers incorrectly can lead to full leakage of the
secret key, sometimes with a single well-chosen ciphertext.

– Biham et. al. [1, Page 1]
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A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (7)
An attack!

▶ Scenario:
▶ given the following interaction between an attacker ℰ and a target T

E T
c

m (N, d)

m = RSA.Dec((N, d), c)
= cd (mod N)

1 algorithm RSA.Dec((N, d), c) begin
2 Pre-compute Π = (N, ρ, ω) from N
3 ĉ←MontMul(Π, c, ρ2 mod N)
4 r̂←MontMul(Π, c, ρ2 mod N)
5 for i = |d| − 2 downto 0 do
6 r̂←MontMul(Π, r̂, r̂)
7 if di = 1 then
8 r̂←MontMul(Π, r̂, ĉ)
9 end

10 end
11 return MontMul(Π, r̂, 1)
12 end

▶ and noting that
▶ there are no countermeasures implemented,
▶ the Montgomery multiplication implementation is FIOS-based [3],
▶ the (w × w)-bit integer multiplier hardware has a bug: when computing r = x × y if

x ≠ 
 ∨ y ≠ � ⇒ r is correct
x = 
 ∧ y = � ⇒ r is incorrect

for some known (but arbitrary) 
 and �.
▶ how can ℰ mount a successful attack, i.e., recover d ?
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A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (8)
An attack!

▶ Attack [1, Section 4.2]:
▶ in some t-th step, ℰ
▶ knows some more-significant portion of the binary expansion of d, and
▶ aims to recover dt, the next less-significant unknown bit,

▶ select a c so during decryption when i = t and just after line #6

∃ j such that r̂j = 

∃ j such that ĉj = �

i.e., 
 and � occur in the representations of r̂ and ĉ,
▶ this selection means

dt = 0 ⇒ r̂ is not multiplied by ĉ ⇒ the bug is not triggered
dt = 1 ⇒ r̂ is multiplied by ĉ ⇒ the bug is triggered

▶ test whether
me (mod N) ?

= c
and infer

m is correct ⇒ the bug was not triggered ⇒ dt = 0
m is incorrect ⇒ the bug was triggered ⇒ dt = 1
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A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (9)
An attack!

Feature Biham et. al. [1, Section 4.2] Brumley et. al. [2, Section 3 ]

Target Fixed d Fixed kT

Input
Arbitrary poisoned

integer c ∈ Z∗N
Controlled distinguisher
point Qℰ = [kℰ ]G ∈ E(Fp)

Computation
Left-to-right

binary exponentiation
Left-to-right (modified)

wNAF scalar multiplication

Leakage
Re-encrypt m using e,

check against c Handshake success/failure
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A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (10)
A patch?

▶ Epilogue:
▶ good(ish):

Quote

We appreciate you reporting this issue to us but, unfortunately, we aren’t inclined to handle this vulnerability because it is
already patched and only affects obsolete Linux distributions.

– CERT

https://jscholarship.library.jhu.edu/items/00b58834-a88c-449e-ab23-db2f44207383
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• The analysis paper by Martin et al. [4] was published in 2013: the attack paper by Brumley et al. [2] was published in 2012, but
OpenSSL 0.9.8g was released in2007 (i.e., much earlier).



A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (10)
A patch?

▶ Epilogue:

▶ bad: even circa 2013, the reality [4] seemed to differ somewhat:

Version Percentage

0.9.8e-fips-rhel5 37.25
0.9.8g 14.50
0.9.7a 7.02
0.9.8o 4.76
1.0.0-fips 4.36
0.9.7d 2.91
0.9.8n 2.75
0.9.7e 1.94
0.9.8c 1.80
0.9.8m 1.74
0.9.8e 1.72
0.9.8r 1.71

Table 2: Most popular OpenSSL versions on the Internet.

Distribution OSSL Version CVEs

Debian Squeeze (6.0) 0.9.8o 11
Debian Lenny (5.0) 0.9.8g 24
Debian Etch (4.0) 0.9.8c 26
RHEL 6 0.9.8e/1.0.0-fips 0/14
RHEL 5 0.9.7a/0.9.8e-fips 14/0
RHEL 4 0.9.6b/0.9.7a 9/14
Fedora 18 1.0.1c 3
Fedora 17 1.0.0i 3
Fedora 16 1.0.0e 9

Table 3: Default OpenSSL versions shipping with popular
Linux distributions.

https://jscholarship.library.jhu.edu/items/00b58834-a88c-449e-ab23-db2f44207383
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• The analysis paper by Martin et al. [4] was published in 2013: the attack paper by Brumley et al. [2] was published in 2012, but
OpenSSL 0.9.8g was released in2007 (i.e., much earlier).

Unit summary (1)

▶ Summary:

https://memegenerator.net
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Unit summary (2)

▶ Summary: what have we done includes

1. focused on some high-level outcomes:
▶ improved

awareness
understanding

skills
...



⇒ ability to engage with problems, produce solutions, ...

▶ general concepts (versus specific examples)⇒ long-term (versus short-term) value.

2. highlighted some high-level principles:
▶ most effective implementation will be domain-specific,
▶ apply adversarial thinking to everything,
▶ need for and value in well-considered trade-offs,
▶ don’t over-optimise to the point efficiency > security,
▶ apply “inverse Postel’s Law”, i.e., be very strict re. what you accept as input,
▶ ...

3. exposed some low-level detail:
▶ tools, techniques, and technologies,
▶ shift from abstract toward and including concrete (e.g., AES versus generic block cipher),
▶ written standards, RFCs, etc. (e.g., FIPS-197 versus lecture slides),
▶ ...

© Daniel Page 〈csdsp@bristol.ac.uk〉
Applied Cryptology git # b282dbb9 @ 2025-09-03

Notes:

Unit summary (3)

▶ Summary: what haven’t we done includes

1. greater depth, i.e., more X for X ∈ COMS30048:
▶ more implementation

• platforms (e.g., FPGAs, ASICs, GPUs, ..., JavaScript versus C)
• constraints (e.g., from use-case, platform, tooling, ...)
• co-design (e.g., hardware/software, specification/implementation, ...)
• ...

▶ more attacks
▶ more countermeasures
▶ more primitives (e.g., PQC, LWC, hash functions, ..., FHE, MPC, ...)
▶ more protocols (e.g., DNSSEC, IPSec, ...)

2. greater breadth, i.e., more X for X ∉ COMS30048:
▶ hardware security (e.g., TEEs, HSMs, secure boot and update, FDE, ...)
▶ formal verification
▶ key management (e.g., secure generation, storage, and erasure, ...)
▶ social-technical (e.g., usability, politics, risk analysis, supply chain, disclosure, ...)
▶ certification and standardisation processes
▶ ...
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