COMS30048 lecture: week #24

- Agenda:
 - 1. a 2-part unit summary:
 - recap re. motivation, i.e., why the unit exists,what did and didn't we do in the unit,
 - 2. drop-in slot re. coursework assignment.

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (1)

Quote

The function BN_nist_mod_384 (in crypto/bn/bn_nist.c) gives wrong results for some inputs.

- Reimann [5]

Issue 1: arithmetic on NIST-P-{256, 384}

Algorithm (NIST-P-256-Reduce, per Solinas [6, Example 3, Page 20])

Input: For w = 32-bit words, a 16-word integer product $z = x \cdot y$ and the modulus $p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$ **Output:** The result $r = z \pmod{p}$

1. Form the nine, 8-word intermediate variables

Compute

$$r = S_0 + 2S_1 + 2S_2 + S_3 + S_4 - S_5 - S_6 - S_7 - S_8 \pmod{p}$$
.

3. Return $0 \le r < p$.

Issue 1: arithmetic on NIST-P-{256, 384}

Algorithm (NIST-P-256-Reduce, per OpenSSL 0.9.8g)

Input: For w = 32-bit words, a 16-word integer product $z = x \cdot y$ and the modulus $p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$ **Output:** The (potentially incorrect) result $r = z \pmod{p}$

1. Form the nine, 8-word intermediate variables

2. Compute

$$S = S_0 + 2S_1 + 2S_2 + S_3 + S_4 - S_5 - S_6 - S_7 - S_8$$

= $t + c \cdot 2^{256}$

Compute

$$= t - c \cdot p$$
 (mod 2²⁵⁶)
= $t - \text{sign}(c) \cdot T[|c|]$ (mod 2²⁵⁶)

for pre-computed $T[i] = i \cdot p$.

4. If $r \ge p$ (resp. r < 0) then update $r \leftarrow r - p$ (resp. $r \leftarrow r + p$), return r.

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (3) Issue 1: arithmetic on NIST-P-(256.384)

- ► Observation(s):
 - ▶ good: BN_nist_mod_256 (resp. BN_nist_mod_384) is more efficient.
 - bad: BN_nist_mod_256 (resp. BN_nist_mod_384) can produce an incorrect result, e.g.,
 - 1. triggered deliberately with special-form operands

$$x = (2^{32} - 1) \cdot 2^{224} + 3 \cdot 2^{128} + x_0$$

$$y = (2^{32} - 1) \cdot 2^{224} + 1 \cdot 2^{96} + y_0$$

for random $0 \le x_0, y_0 < 2^{32}$, or

2. triggered randomly with probability $\sim 10 \cdot 2^{-29}$.

Algorithm (EC-DH(E) key agreement [7, Section 8.1][8, Section 2.1])

Я

 \mathcal{B}

Knows
$$G = E(\mathbb{F}_q) = \langle G \rangle$$
 of order n ,
 pk_B , $(pk_A)^{\dagger}$, $(sk_A)^{\dagger}$

Knows
$$G = E(\mathbb{F}_q) = \langle G \rangle$$
 of order n ,
 $(pk_{\mathcal{A}})^{\dagger}$, $pk_{\mathcal{B}}$, $sk_{\mathcal{B}}$

$$k_{\mathcal{A}}^{(i)} \stackrel{\$}{\leftarrow} \{1, 2, \dots, n-1\}$$

$$Q_{\mathcal{A}}^{(i)} \leftarrow \left[k_{\mathcal{A}}^{(i)}\right] G$$

$$k_{\mathcal{B}}^{(i)} \stackrel{\$}{\leftarrow} \{1, 2, \dots, n-1\}$$

$$Q_{\mathcal{B}}^{(i)} \leftarrow \left[k_{\mathcal{B}}^{(i)}\right] G$$

$$Q_{\mathcal{A}}^{(i)}$$
 $Q_{\mathcal{B}}^{(i)}$

$$R_{\mathcal{A}}^{(i)} \leftarrow \left[k_{\mathcal{A}}^{(i)}\right] Q_{\mathcal{B}}^{(i)} = \left[k_{\mathcal{A}}^{(i)} \cdot k_{\mathcal{B}}^{(i)}\right] G$$

$$R_{\mathcal{B}}^{(i)} \leftarrow \left[k_{\mathcal{B}}^{(i)}\right] Q_{\mathcal{A}}^{(i)} = \left[k_{\mathcal{B}}^{(i)} \cdot k_{\mathcal{A}}^{(i)}\right] G$$

Use
$$R_{\mathcal{A}}^{(i)}$$

Use
$$R_{\mathcal{B}}^{(i)}$$

Algorithm (EC-DH(E) key agreement [7, Section 8.1][8, Section 2.4])

Я

 \mathcal{B}

Knows
$$\mathbb{G} = E(\mathbb{F}_q) = \langle \mathbb{G} \rangle$$
 of order n ,
 $pk_{\mathcal{B}}, (pk_{\mathcal{A}})^{\dagger}, (sk_{\mathcal{A}})^{\dagger}$

Knows
$$\mathbb{G} = E(\mathbb{F}_q) = \langle G \rangle$$
 of order n ,
 $(pk_{\mathcal{A}})^{\dagger}, pk_{\mathcal{B}}, sk_{\mathcal{B}}$

$$k_{\mathcal{A}} \stackrel{\$}{\leftarrow} \{1, 2, \dots, n-1\}$$
$$Q_{\mathcal{A}} \leftarrow [k_{\mathcal{A}}] G$$

$$\begin{matrix} k_{\mathcal{B}} \overset{\$}{\leftarrow} \{1,2,\ldots,n-1\} \\ Q_{\mathcal{B}} \leftarrow [k_{\mathcal{B}}] \, G \end{matrix}$$

$$Q_{\mathcal{B}}$$

$$R_{\mathcal{A}}^{(i)} \leftarrow [k_{\mathcal{A}}] Q_{\mathcal{B}} = [k_{\mathcal{A}} \cdot k_{\mathcal{B}}] G$$

$$R_{\mathcal{B}}^{(i)} \leftarrow [k_{\mathcal{B}}] \, Q_{\mathcal{A}} = [k_{\mathcal{B}} \cdot k_{\mathcal{A}}] \, G$$

Use
$$R_{\mathcal{A}}^{(i)}$$

Use
$$R_{\mathcal{B}}^{(i)}$$

Algorithm (EC-DH(E) key agreement [7, Section 8.1][8, Section 2.3])

Я

 \mathcal{B}

Knows
$$\mathbb{G} = E(\mathbb{F}_q) = \langle \mathbb{G} \rangle$$
 of order n ,
 $pk_{\mathcal{B}}, (pk_{\mathcal{A}})^{\dagger}, (sk_{\mathcal{A}})^{\dagger}$

Knows
$$G = E(\mathbb{F}_q) = \langle G \rangle$$
 of order n ,
 $(pk_{\mathcal{A}})^{\dagger}$, $pk_{\mathcal{B}}$, $sk_{\mathcal{B}}$

$$k_{\mathcal{B}} \stackrel{\$}{\leftarrow} \{1, 2, \dots, n-1\}$$
$$Q_{\mathcal{B}} \leftarrow [k_{\mathcal{B}}] G$$

$$k_{\mathcal{A}}^{(i)} \stackrel{\$}{\leftarrow} \{1, 2, \dots, n-1\}$$

$$Q_{\mathcal{A}}^{(i)} \leftarrow \begin{bmatrix} k_{\mathcal{A}}^{(i)} \end{bmatrix} G$$

$$Q_{\mathcal{A}}^{(i)}$$

$$Q_B$$

$$R_{\mathcal{A}}^{(i)} \leftarrow \begin{bmatrix} k_{\mathcal{A}}^{(i)} \end{bmatrix} Q_{\mathcal{B}} = \begin{bmatrix} k_{\mathcal{A}}^{(i)} \cdot k_{\mathcal{B}} \end{bmatrix} G$$

$$R_{\mathcal{B}}^{(i)} \leftarrow \left[k_{\mathcal{B}}\right] Q_{\mathcal{A}}^{(i)} = \left[k_{\mathcal{B}} \cdot k_{\mathcal{A}}^{(i)}\right] G$$

Use
$$R_{\alpha}^{(i)}$$

Use
$$R_B^{(i)}$$

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (5) Issue 2: (opt-out) ephemeral-static EC-DHE

- ► Observation(s):
 - good: the key agreement is more efficient (for the server).
 - good: input points are validated by testing whether

$$P_y^2 \stackrel{?}{=} P_x^3 + a_4 P_x + a_6$$

given $P = (P_x, P_y)$.

- bad: ephemeral-static EC-DHE is the default i.e.,
 - uses a per-invocation (of the library) rather than a per-session key, *unless*
 - one explicitly uses SSL_CTX_set_options using SSL_OP_SINGLE_ECDH_USE which means k_B is a static, fixed target for any attack.
- **bad**: if we select $P = (P_x, P_y)$ as follows
 - 1. Select P_x such that during the computation of the RHS $t' = (P_x^2 + a_4) \cdot P_x + a_6 \pmod{p}$
 - the step $t'_0 = P_x^2 \pmod{p}$ does not trigger the bug, and
 - the step $t_1^y = (t_0' + a_4) \cdot P_x \pmod{p}$ does trigger the bug, and
 - t' is a quadratic residue modulo p.
 - 2. Compute $P_y = \sqrt{t'} \pmod{p}$.

then P passes validation, but is on some curve E' rather than E.

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (6)

Quote

Decrypting ciphertexts on any computer which multiplies even one pair of numbers incorrectly can lead to full leakage of the secret key, sometimes with a single well-chosen ciphertext.

Biham et. al. [1, Page 1]

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (7) An attack!

- Scenario:
 - ightharpoonup given the following interaction between an **attacker** $\mathcal E$ and a **target** $\mathcal T$

- and noting that
 - there are no countermeasures implemented,
 - the Montgomery multiplication implementation is FIOS-based [3],
 - the $(w \times w)$ -bit integer multiplier hardware has a bug: when computing $r = x \times y$ if

$$x \neq \alpha \quad \lor \quad y \neq \beta \quad \Rightarrow \quad r \text{ is correct}$$

 $x = \alpha \quad \land \quad y = \beta \quad \Rightarrow \quad r \text{ is incorrect}$

for some known (but arbitrary) α and β .

▶ how can \mathcal{E} mount a successful attack, i.e., recover $\frac{d}{d}$?

A real-world story: an attack [2] on TLS $1.2 + OpenSSL\ 0.9.8g\ (8)$ An attack!

- Attack [1, Section 4.2]:
 - in some t-th step, \mathcal{E}
 - \triangleright knows some more-significant portion of the binary expansion of d, and
 - \triangleright aims to recover $\frac{d_t}{d_t}$, the next less-significant unknown bit,
 - rightharpoonup select a c so during decryption when i = t and just after line #6

$$\exists j$$
 such that $\hat{r}_j = \alpha$
 $\exists j$ such that $\hat{c}_j = \beta$

i.e., α and β occur in the representations of \hat{r} and \hat{c} ,

this selection means

$$d_t = 0 \implies \hat{r}$$
 is not multiplied by $\hat{c} \implies$ the bug is not triggered $d_t = 1 \implies \hat{r}$ is multiplied by $\hat{c} \implies$ the bug is triggered

test whether

$$m^e \pmod{N} \stackrel{?}{=} c$$

and infer

$$m$$
 is correct \Rightarrow the bug was not triggered \Rightarrow $d_t = 0$ m is incorrect \Rightarrow the bug was triggered \Rightarrow $d_t = 1$

A real-world story: an attack [2] on TLS $1.2 + OpenSSL\ 0.9.8g\ (9)$ An attack!

Feature	Biham et. al. [1, Section 4.2]	Brumley et. al. [2, Section 3]
Target	Fixed d	Fixed $k_{\mathcal{T}}$
Input	Arbitrary poisoned integer $c \in \mathbb{Z}_N^*$	Controlled distinguisher point $Q_{\mathcal{E}} = [k_{\mathcal{E}}] G \in E(\mathbb{F}_p)$
Computation	Left-to-right binary exponentiation	Left-to-right (modified) wNAF scalar multiplication
Leakage	Re-encrypt m using e , check against c	Handshake success/failure

A real-world story: an attack [2] on TLS 1.2 + OpenSSL 0.9.8g (10) A patch?

- Epilogue:
 - ▶ good(ish):

Quote

We appreciate you reporting this issue to us but, unfortunately, we aren't inclined to handle this vulnerability because it is already patched and only affects obsolete Linux distributions.

- CERT

► Epilogue:

bad: even circa 2013, the reality [4] seemed to differ somewhat:

Version	Percentage
0.9.8e-fips-rhel5	37.25
0.9.8g	14.50
0.9.7a	7.02
0.9.8o	4.76
1.0.0-fips	4.36
0.9.7d	2.91
0.9.8n	2.75
0.9.7e	1.94
0.9.8c	1.80
0.9.8m	1.74
0.9.8e	1.72
0.9.8r	1.71

Distribution	OSSL Version	CVEs
Debian Squeeze (6.0)	0.9.8o	11
Debian Lenny (5.0)	0.9.8g	24
Debian Etch (4.0)	0.9.8c	26
RHEL 6	0.9.8e/1.0.0-fips	0/14
RHEL 5	0.9.7a/0.9.8e-fips	14/0
RHEL 4	0.9.6b/0.9.7a	9/14
Fedora 18	1.0.1c	3
Fedora 17	1.0.0i	3
Fedora 16	1.0.0e	9

Table 3: Default OpenSSL versions shipping with popular Linux distributions.

Table 2: Most popular OpenSSL versions on the Internet.

Unit summary (1)

► Summary:

Unit summary (2)

- Summary: what have we done includes
 - 1. focused on some high-level outcomes:
 - improved

```
awareness
understanding
     skills
                        ability to engage with problems, produce solutions, ...
```

- general concepts (versus specific examples) ⇒ long-term (versus short-term) value.
- 2. highlighted some high-level principles:
 - most effective implementation will be domain-specific,
 - apply adversarial thinking to everything,
 - need for and value in well-considered trade-offs,
 - don't over-optimise to the point efficiency > security,

 - apply "inverse Postel's Law", i.e., be very strict re. what you accept as input,
- 3. exposed some low-level detail:
 - tools, techniques, and technologies,
 - shift from abstract toward and including concrete (e.g., AES versus generic block cipher),
 - written standards, RFCs, etc. (e.g., FIPS-197 versus lecture slides),

Unit summary (3)

- ► Summary: what *haven't* we done includes
 - 1. greater *depth*, i.e., more X for $X \in COMS30048$:
 - more implementation
 - platforms (e.g., FPGAs, ASICs, GPUs, ..., JavaScript versus C)
 - · constraints (e.g., from use-case, platform, tooling, ...)
 - co-design (e.g., hardware/software, specification/implementation, ...)
 - more attacks
 - more countermeasures
 - more primitives (e.g., PQC, LWC, hash functions, ..., FHE, MPC, ...)
 - more protocols (e.g., DNSSEC, IPSec, ...)
 - 2. greater breadth, i.e., more X for $X \notin COMS30048$:
 - hardware security (e.g., TEEs, HSMs, secure boot and update, FDE, ...)
 - formal verification
 - key management (e.g., secure generation, storage, and erasure, ...)
 - social-technical (e.g., usability, politics, risk analysis, supply chain, disclosure, ...)
 - certification and standardisation processes
 - •

References

[3]

- E. Biham, Y. Carmeli, and A. Shamir. "Bug Attacks". In: Advances in Cryptology (CRYPTO). Vol. 5157. LNCS. Springer-Verlag, 2008, pp. 221–240 (see pp. 10, 12, 13).
- [2] B. Brumley et al. "Practical realisation and elimination of an ECC-related software bug attack". In: Topics in Cryptology (CT-RSA). LNCS 7178. Springer-Verlag, 2012, pp. 171–186 (see pp. 2–15).
- (1996), pp. 26–33 (see p. 11).

C.K. Koc, T. Acar, and B.S. Kaliski. "Analyzing and comparing Montgomery multiplication algorithms". In: IEEE Micro 16.3

- [4] P.D. Martin et al. Classifying Network Protocol Implementation Versions: An OpenSSL Case Study. Tech. rep. 13-01. Johns Hopkins University, 2013. url: http://www.michaelrushanan.org/pdf/martin.pdf (see pp. 14, 15).
- [5] H. Reimann. BN_nist_mod_384 gives wrong answers. openssl-dev mailing list #1593. 2007. URL: http://marc.info/?t=119271238800004 (see p. 2).
- [6] J.A. Solinas. Generalized Mersenne Numbers. Tech. rep. CORR 99-39. Centre for Applied Cryptographic Research (CACR), University of Waterloo, 1999 (see p. 3).
- T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol version 1.2. Internet Engineering Task Force (IETF) Request for Comments (RFC) 5246. 2008. URL: http://tools.ietf.org/html/rfc5246 (see pp. 6–8).
- [8] E. Rescorla. Diffie-Hellman Key Agreement Method. Internet Engineering Task Force (IETF) Request for Comments (RFC) 2631. 1999. URL: http://tools.ietf.org/html/rfc2631 (see pp. 6–8).